• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    微生物参与的不产氧光合硫氧化过程中硫同位素分馏效应及其地质学意义

    谢逸豪 吴耿 鲜文东 李文均 蒋宏忱

    谢逸豪, 吴耿, 鲜文东, 李文均, 蒋宏忱, 2023. 微生物参与的不产氧光合硫氧化过程中硫同位素分馏效应及其地质学意义. 地球科学, 48(8): 2837-2850. doi: 10.3799/dqkx.2022.420
    引用本文: 谢逸豪, 吴耿, 鲜文东, 李文均, 蒋宏忱, 2023. 微生物参与的不产氧光合硫氧化过程中硫同位素分馏效应及其地质学意义. 地球科学, 48(8): 2837-2850. doi: 10.3799/dqkx.2022.420
    Xie Yihao, Wu Geng, Xian Wendong, Li Wenjun, Jiang Hongchen, 2023. Sulfur Isotope Fractionation Mediated by Microbial Anoxygenic Photosynthetic Sulfur Oxidation Processes and Its Geological Implications. Earth Science, 48(8): 2837-2850. doi: 10.3799/dqkx.2022.420
    Citation: Xie Yihao, Wu Geng, Xian Wendong, Li Wenjun, Jiang Hongchen, 2023. Sulfur Isotope Fractionation Mediated by Microbial Anoxygenic Photosynthetic Sulfur Oxidation Processes and Its Geological Implications. Earth Science, 48(8): 2837-2850. doi: 10.3799/dqkx.2022.420

    微生物参与的不产氧光合硫氧化过程中硫同位素分馏效应及其地质学意义

    doi: 10.3799/dqkx.2022.420
    基金项目: 

    国家自然科学基金 41877322

    国家自然科学基金 42172339

    国家自然科学基金 91951205

    详细信息
      作者简介:

      谢逸豪(1998—),男,硕士研究生,主要从事地质微生物学研究. ORCID:0000-0003-3650-6428. E-mail:xieyihao12138@cug.edu.cn

      通讯作者:

      吴耿, ORCID:0000-0002-7259-1044.E-mail:wugeng@cug.edu.cn

      蒋宏忱, ORCID:0000-0003-1271-7028.E-mail:jiangh@cug.edu.cn

    • 中图分类号: P593

    Sulfur Isotope Fractionation Mediated by Microbial Anoxygenic Photosynthetic Sulfur Oxidation Processes and Its Geological Implications

    • 摘要: 微生物在利用含硫物质时的同位素偏好性会导致代谢产物中硫同位素的分馏,因此地质记录中的硫同位素可以用来反演其中的微生物活动以及古海洋和大气的氧化还原条件. 对微生物参与的硫循环的传统认知中,只有微生物介导的硫还原作用和硫歧化作用会导致明显的同位素分馏现象,而微生物硫氧化过程造成的分馏效应不明显. 而最近的研究发现一株硫氧化细菌可以产生巨大的硫同位素分馏,意味着我们需要重新评估地质记录中的硫氧化过程. 综述了微生物参与的不产氧光合硫氧化过程中硫同位素分馏效应及其地质学意义,包括硫氧化微生物及绿弯菌的分布和功能、微生物介导硫氧化过程的硫同位素分馏效应、以及微生物硫氧化过程硫同位素分馏研究的地质记录. 最后对微生物参与的不产氧光合硫氧化过程中硫同位素分馏效应研究现状和未来发展方向提出总结和展望.

       

    • 图  1  自然界无机硫循环的主要转换路径

      实线代表硫酸盐还原过程,中间态硫歧化过程和还原态硫的氧化过程;虚线表示平衡过程形成多聚硫化物;本图基于(Canfield,2001)修改

      Fig.  1.  Outlined here are the principal pathways of inorganic sulfur-compound transformations in nature

      图  2  绿弯菌门系统发育树

      该树由基于16S rRNA基因的最大似然法构建,以Thermodesulfobium narugense DSM14796T作为树根. 右上角展示了绿弯菌门不同纲的系统发育关系和形态学特征. 黄色阴影区域表示绿弯菌纲的光合类群

      Fig.  2.  Phylogenetic tree of the phylum Chloroflexota

      图  3  腾冲火山地热区热泉菌席,环境温度为50 ℃

      图中橙黄色区域为绿弯菌,绿色区域为蓝藻

      Fig.  3.  Hot spring mats of Tengchong volcanic-geothermal area at ambient temperature of 50 ℃

      表  1  主要不产氧光合细菌菌株介导硫氧化过程产生的硫同位素分馏特征

      Table  1.   Characteristic of sulfur isotope fractionation during the sulfur-oxidation process mediated by major photosynthetic sulfur-oxidizing bacterial strains

      底物→产物 菌株 种属 温度(℃) pH ε产物—底物 (‰) 参考文献
      H2S→S0 Chlorobium tepidum. GSB 48 7.0 1.8 Zerkle et al.(2009)
      S0→SO42- 48 7.0 -3.3~0
      H2S→S0 Chromatium vinosum PSB 35 8.1 2.4 Howard Gest and Hayes(1984)
      S0→SO42- 35 8.1 0.2
      SO32-→SO42- Chromatium vinosum PSB 35 8.1 5.0 Fry et al.(1985)
      H2S→SO42- Allochromatium vinosum PSB 25 7.0 0.1 Brabec et al.(2012)
      H2S→S0 Ectothiorhodospira shaposhnikovii PSB 28 8.2 2.2 Ivanov et al.(1976)
      H2S→SO42- 28 8.2 0.7~2.0
      H2S→SO42- Chlorobaculum tepidum GSB 45 7.0 0.1 Brabec et al.(2012)
      注:GSB. 绿硫细菌(green sulfur bacteria);PSB. 紫硫细菌(purple sulfur bacteria)
      下载: 导出CSV
    • Algeo, T., Shen, Y., Zhang, T., et al., 2008. Association of 34S-Depleted Pyrite Layers with Negative Carbonate δ13C Excursions at the Permian-Triassic Boundary: Evidence for Upwelling of Sulfidic Deep-Ocean Water Masses. Geochemistry, Geophysics, Geosystems, 9(4): 25.
      Balci, N., Shanks, W. C. Ⅲ, Mayer, B., et al., 2007. Oxygen and Sulfur Isotope Systematics of Sulfate Produced by Bacterial and Abiotic Oxidation of Pyrite. Geochimica et Cosmochimica Acta, 71(15): 3796-3811. https://doi.org/10.1016/j.gca.2007.04.017
      Baumgartner, R. J., Caruso, S., Fiorentini, M. L., et al., 2020. Sulfidization of 3.48 Billion-Year-Old Stromatolites of the Dresser Formation, Pilbara Craton: Constraints from In-Situ Sulfur Isotope Analysis of Pyrite. Chemical Geology, 538(11): 119488. https://doi.org/10.1016/j.chemgeo.2020.119488
      Berg, I. A., Kockelkorn, D., Buckel, W., et al., 2007. A 3-Hydroxypropionate/4-Hydroxybutyrate Autotrophic Carbon Dioxide Assimilation Pathway in Archaea. Science, 318(5857): 1782-1786. https://doi.org/10.1126/science. 1149976 doi: 10.1126/science.1149976
      Blankenship, R. E., 1992. Origin and Early Evolution of Photosynthesis. Photosynthesis Research, 33(2): 91-111. https://doi.org/10.1007/bf00039173
      Bontognali, T. R. R., Sessions, A. L., Allwood, A. C., et al., 2012. Sulfur Isotopes of Organic Matter Preserved in 3.45-Billion-Year-Old Stromatolites Reveal Microbial Metabolism. Proceedings of the National Academy of Sciences, 109(38): 15146-15151. https://doi.org/10.1073/pnas.1207491109
      Boyle, R. A., Clark, J. R., Poulton, S. W., et al., 2013. Nitrogen Cycle Feedbacks as a Control on Euxinia in the Mid-Proterozoic Ocean. Nature Communications, 4(1): 1533. https://doi.org/10.1038/ncomms2511
      Brabec, M. Y., Lyons, T. W., Mandernack, K. W., 2012. Oxygen and Sulfur Isotope Fractionation during Sulfide Oxidation by Anoxygenic Phototrophic Bacteria. Geochimica et Cosmochimica Acta, 83: 234-251. https://doi.org/10.1016/j.gca.2011.12.008
      Brocks, J. J., Love, G. D., Summons, R. E., et al., 2005. Biomarker Evidence for Green and Purple Sulphur Bacteria in a Stratified Palaeoproterozoic Sea. Nature, 437(7060): 866-870. https://doi.org/10.1038/nature04068
      Brocks, J. J., Schaeffer, P., 2008. Okenane, a Biomarker for Purple Sulfur Bacteria (Chromatiaceae), and other New Carotenoid Derivatives from the 1640Ma Barney Creek Formation. Geochimica et Cosmochimica Acta, 72(5): 1396-1414. https://doi.org/10.1016/j.gca.2007.12.006
      Butler, I. B., Böttcher, M. E., Rickard, D., et al., 2004. Sulfur Isotope Partitioning during Experimental Formation of Pyrite Via the Polysulfide and Hydrogen Sulfide Pathways: Implications for the Interpretation of Sedimentary and Hydrothermal Pyrite Isotope Records. Earth and Planetary Science Letters, 228(3/4): 495-509. https://doi.org/10.1016/j.epsl.2004.10.005
      Butterfield, N. J., 2015. Proterozoic Photosynthesis: A Critical Review. Palaeontology, 58(6): 953-972. https://doi.org/10.1111/pala.12211
      Campbell, K. A., Lynne, B. Y., Handley, K. M., et al., 2015. Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record. Astrobiology, 15(10): 858-882. doi: 10.1089/ast.2015.1307
      Canfield, D. E., 1998. A New Model for Proterozoic Ocean Chemistry. Nature, 396(6710): 450-453. https://doi.org/10.1038/24839
      Canfield, D. E., 2001. Biogeochemistry of Sulfur Isotopes. Reviews in Mineralogy and Geochemistry, 43(1): 607-636. https://doi.org/10.2138/gsrmg.43.1.607
      Canfield, D. E., Raiswell, R., 1999. The Evolution of the Sulfur Cycle. American Journal of Science, 299(7/8/9): 697-723. https://doi.org/10.2475/ajs.299.7-9.697
      Canfield, D. E., Thamdrup, B., 1994. The Production of 34S-Depleted Sulfide during Bacterial Disproportionation of Elemental Sulfur. Science, 266(5193): 1973-1975. https://doi.org/10.1126/science.11540246
      Cardona, T., Sánchez-Baracaldo, P., Rutherford, A. W., et al., 2019. Early Archean Origin of Photosystem Ⅱ. Geobiology, 17(2): 127-150. https://doi.org/10.1111/gbi.12322
      Crowe, S. A., Paris, G., Katsev, S., et al., 2014. Sulfate was a Trace Constituent of Archean Seawater. Science, 346(6210): 735-739. https://doi.org/10.1126/science.1258966
      Cui, X., Liu, X. L., Shen, G., et al., 2020. Niche Expansion for Phototrophic Sulfur Bacteria at the Proterozoic-Phanerozoic Transition. Proceedings of the National Academy of Sciences, 117(30): 17599-17606. https://doi.org/10.1073/pnas.2006379117
      Dahl, C., 2008. Inorganic Sulfur Compounds as Electron Donors in Purple Sulfur Bacteria. Sulfur Metabolism in Phototrophic Organisms. Sulfur Metabolism in Phototrophic Organisms, Springer Netherlands, Dordrecht, 289-317.
      Fike, D. A., Bradley, A. S., Rose, C. V., 2015. Rethinking the Ancient Sulfur Cycle. Annual Review of Earth and Planetary Sciences, 43(1): 593-622. https://doi.org/10.1146/annurev-earth-060313-054802
      Findlay, A. J., 2016. Microbial Impact on Polysulfide Dynamics in the Environment. FEMS Microbiology Letters, 363(11): fnw103. https://doi.org/10.1093/femsle/fnw103
      Fry, B., Gest, H., Hayes, J. M., 1985. Isotope Effects Associated with the Anaerobic Oxidation of Sulfite and Thiosulfate by the Photosynthetic Bacterium, Chromatium Vinosum. FEMS Microbiology Letters, 27(2): 227-232. https://doi.org/10.1111/j.1574-6968.1985.tb00672.x
      Fry, B., Ruf, W., Gest, H., et al., 1988. Sulfur Isotope Effects Associated with Oxidation of Sulfide by O2 in Aqueous Solution. Chemical Geology: Isotope Geoscience section, 73(3): 205-210. https://doi.org/10.1016/0168-9622(88)90001-2
      Gaisin, V. A., Kalashnikov, A. M., Grouzdev, D. S., et al., 2017. Chloroflexus Islandicus Sp. Nov., a Thermophilic Filamentous Anoxygenic Phototrophic Bacterium from a Geyser. International Journal of Systematic and Evolutionary Microbiology, 67(5): 1381-1386. https://doi.org/10.1099/ijsem.0.001820
      Giovannoni, S. J., Revsbech, N. P., Ward, D. M., et al., 1987. Obligately Phototrophic Chloroflexus: Primary Production in Anaerobic Hot Spring Microbial Mats. Archives of Microbiology, 147(1): 80-87. https://doi.org/10.1007/bf00492909
      Gomes, M. L., Hurtgen, M. T., 2013. Sulfur Isotope Systematics of a Euxinic, Low-Sulfate Lake: Evaluating the Importance of the Reservoir Effect in Modern and Ancient Oceans. Geology, 41(6): 663-666. https://doi.org/10.1130/g34187.1
      Grice, K., Cao, C., Love, G. D., et al., 2005. Photic Zone Euxinia during the Permian-Triassic Superanoxic Event. Science, 307(5710): 706-709. https://doi.org/10.1126/science.1104323
      Gupta, R. S., Mukhtar, T., Singh, B., 1999. Evolutionary Relationships among Photosynthetic Prokaryotes (Heliobacterium Chlorum, Chloroflexus Aurantiacus, Cyanobacteria, Chlorobium Tepidum and Proteobacteria): Implications Regarding the Origin of Photosynthesis. Molecular Microbiology, 32(5): 893-906. https://doi.org/10.1046/j.1365-2958.1999.01417.x
      Habicht, K. S., Canfield, D. E., Rethmeier, J., 1998. Sulfur Isotope Fractionation during Bacterial Reduction and Disproportionation of Thiosulfate and Sulfite. Geochimica et Cosmochimica Acta, 62(15): 2585-2595. https://doi.org/10.1016/s0016-7037(98)00167-7
      Habicht, K. S., Gade, M., Thamdrup, B., et al., 2002. Calibration of Sulfate Levels in the Archean Ocean. Science, 298(5602): 2372-2374. doi: 10.1126/science.1078265
      He, T., Dal Corso, J., Newton, R. J., et al., 2020. An Enormous Sulfur Isotope Excursion Indicates Marine Anoxia during the End-Triassic Mass Extinction. Science Advances, 6(37): eabb6704. https://doi.org/10.1126/sciadv.abb6704
      Herrera, A., Cockell, C. S., Self, S., et al., 2009. A Cryptoendolithic Community in Volcanic Glass. Astrobiology, 9(4): 369-381. https://doi.org/10.1089/ast.2008.0278
      Holo, H., Sirevåg, R., 1986. Autotrophic Growth and CO2 Fixation of Chloroflexus Aurantiacus. Archives of Microbiology, 145(2): 173-180. https://doi.org/10.1007/bf00446776
      House, C. H., Schopf, J. W., McKeegan, K. D., et al., 2000. Carbon Isotopic Composition of Individual Precambrian Microfossils. Geology, 28(8): 707. https://doi.org/10.1130/0091-7613(2000)28<707:cicoip>2.0.co;2 doi: 10.1130/0091-7613(2000)28<707:cicoip>2.0.co;2
      House, C. H., Schopf, J. W., Stetter, K. O., 2003. Carbon Isotopic Fractionation by Archaeans and other Thermophilic Prokaryotes. Organic Geochemistry, 34(3): 345-356. https://doi.org/10.1016/s0146-6380(02)00237-1
      Howard Gest, B. F., Hayes, J. M., 1984. Isotope Effects Associated with the Anaerobic Oxidation of Sulfide by the Purple Photosynthetic Bacterium, Chromatium Vinosum. FEMS Microbiology Letters, 22(3): 283-287. https://doi.org/10.1111/j.1574-6968.1984.tb00742.x
      Hubert, C., Voordouw, G., Mayer, B., 2009. Elucidating Microbial Processes in Nitrate- and Sulfate-Reducing Systems Using Sulfur and Oxygen Isotope Ratios: The Example of Oil Reservoir Souring Control. Geochimica et Cosmochimica Acta, 73(13): 3864-3879. https://doi.org/10.1016/j.gca.2009.03.025
      Ivanov, M., Gogotova, G., Matrosov, A., et al., 1976. Fractionation of Sulfur Isotopes by Phototrophic Sulfur Bacterium Ectothiorhodospira Shaposhnikovii. Mikrobiologiia, 45(5): 757-762.
      Johnston, D. T., Wolfe-Simon, F., Pearson, A., et al., 2009. Anoxygenic Photosynthesis Modulated Proterozoic Oxygen and Sustained Earth's Middle Age. Proceedings of the National Academy of Sciences, 106(40): 16925-16929. https://doi.org/10.1073/pnas.0909248106
      Jørgensen, B. B., Findlay, A. J., Pellerin, A., 2019. The Biogeochemical Sulfur Cycle of Marine Sediments. Frontiers in Microbiology, 10: 849. https://doi.org/10.3389/fmicb.2019.00849
      Kamyshny, A. Jr, 2009. Solubility of Cyclooctasulfur in Pure Water and Sea Water at Different Temperatures. Geochimica et Cosmochimica Acta, 73(20): 6022-6028. https://doi.org/10.1016/j.gca.2009.07.003
      Kanno, N., Haruta, S., Hanada, S., 2019. Sulfide-Dependent Photoautotrophy in the Filamentous Anoxygenic Phototrophic Bacterium, Chloroflexus Aggregans. Microbes and Environments, 34(3): 304-309. https://doi.org/10.1264/jsme2.me19008
      Kaplan, I. R., Rittenberg, S. C., 1964. Microbiological Fractionation of Sulphur Isotopes. Journal of General Microbiology, 34(2): 195-212. https://doi.org/10.1099/00221287-34-2-195
      Kawai, S., Kamiya, N., Matsuura, K., et al., 2019a. Symbiotic Growth of a Thermophilic Sulfide-Oxidizing Photoautotroph and an Elemental Sulfur-Disproportionating Chemolithoautotroph and Cooperative Dissimilatory Oxidation of Sulfide to Sulfate. Frontiers in Microbiology, 10: 1150. https://doi.org/10.3389/fmicb.2019.01150
      Kawai, S., Martinez, J. N., Lichtenberg, M., et al., 2021. In-Situ Metatranscriptomic Analyses Reveal the Metabolic Flexibility of the Thermophilic Anoxygenic Photosynthetic Bacterium Chloroflexus Aggregans in a Hot Spring Cyanobacteria-Dominated Microbial Mat. Microorganisms, 9(3): 652. https://doi.org/10.3390/microorganisms9030652
      Kawai, S., Nishihara, A., Matsuura, K., et al., 2019b. Hydrogen-Dependent Autotrophic Growth in Phototrophic and Chemolithotrophic Cultures of Thermophilic Bacteria, Chloroflexus Aggregans and Chloroflexus Aurantiacus, Isolated from Nakabusa Hot Springs. FEMS Microbiology Letters, 366(10): fnz122. https://doi.org/10.1093/femsle/fnz122
      Klatt, C. G., Bryant, D. A., Ward, D. M., 2007. Comparative Genomics Provides Evidence for the 3-Hydroxypropionate Autotrophic Pathway in Filamentous Anoxygenic Phototrophic Bacteria and in Hot Spring Microbial Mats. Environmental Microbiology, 9(8): 2067-2078. https://doi.org/10.1111/j.1462-2920.2007.01323.x
      Knauth, L. P., 2005. Temperature and Salinity History of the Precambrian Ocean: Implications for the Course of Microbial Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1/2): 53-69. https://doi.org/10.1016/j.palaeo.2004.10.014
      Knauth, L. P., Lowe, D. R., 2003. High Archean Climatic Temperature Inferred from Oxygen Isotope Geochemistry of Cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geological Society of America Bulletin, 115: 566-580. https://doi.org/10.1130/0016-7606(2003)115<0566:hactif>2.0.co;2 doi: 10.1130/0016-7606(2003)115<0566:hactif>2.0.co;2
      Knudsen, E., Jantzen, E., Bryn, K., et al., 1982. Quantitative and Structural Characteristics of Lipids in Chlorobium and Chloroflexus. Archives of Microbiology, 132(2): 149-154. https://doi.org/10.1007/bf00508721
      Kump, L. R., Pavlov, A., Arthur, M. A., 2005. Massive Release of Hydrogen Sulfide to the Surface Ocean and Atmosphere during Intervals of Oceanic Anoxia. Geology, 33(5): 397. https://doi.org/10.1130/g21295.1
      Leavitt, W. D., Halevy, I., Bradley, A. S., et al., 2013. Influence of Sulfate Reduction Rates on the Phanerozoic Sulfur Isotope Record. Proceedings of the National Academy of Sciences, 110(28): 11244-11249. https://doi.org/10.1073/pnas.1218874110
      Li, M., Wang, Z. F., Yao, Z. L., 2021. Microfossils and Paleoenvironmental Significance of Late Paleoproterozoic Ruyang Group in South Margin of North China Craton: Evidence from Microstructure and Biomarker. Earth Science, 46(11): 4072-4083 (in Chinese with English abstract).
      Liu, Y., Jiang, L. J., Shao, Z. Z., 2018. Advances in Sulfur-Oxidizing Bacterial Taxa and Their Sulfur Oxidation Pathways. Acta Microbiologica Sinica, 58(2): 191-201 (in Chinese with English abstract).
      Madigan, M. T., 1984. A Novel Photosynthetic Purple Bacterium Isolated from a Yellowstone Hot Spring. Science, 225(4659): 313-315. https://doi.org/10.1126/science.225.4659.313
      Madigan, M. T., Brock, T. D., 1975. Photosynthetic Sulfide Oxidation by Chloroflexus Aurantiacus, a Filamentous, Photosynthetic, Gliding Bacterium. Journal of Bacteriology, 122(2): 782-784. https://doi.org/10.1128/jb.122.2.782-784.1975
      Magnall, J. M., Gleeson, S. A., Hayward, N., et al., 2022. Using Whole Rock and in Situ Pyrite Chemistry to Evaluate Authigenic and Hydrothermal Controls on Trace Element Variability in a Zn Mineralized Proterozoic Subbasin. Geochimica et Cosmochimica Acta, 318: 366-387. https://doi.org/10.1016/j.gca.2021.12.001
      McGunnigle, J. P., Cano, E. J., Sharp, Z. D., et al., 2022. Triple Oxygen Isotope Evidence for a Hot Archean Ocean. Geology, 50(9): 991-995. https://doi.org/10.1130/g50230.1
      Menendez, C., Bauer, Z., Huber, H., et al., 1999. Presence of Acetyl Coenzyme a (Coa) Carboxylase and Propionyl-Coa Carboxylase in Autotrophic Crenarchaeota and Indication for Operation of a 3-Hydroxypropionate Cycle in Autotrophic Carbon Fixation. Journal of Bacteriology, 181(4): 1088-1098. https://doi.org/10.1128/jb.181.4.1088-1098.1999
      Ménez, B., 2020. Abiotic Hydrogen and Methane: Fuels for Life. Elements, 16(1): 39-46. https://doi.org/10.2138/gselements.16.1.39
      Meyer, K. M., Kump, L. R., 2008. Oceanic Euxinia in Earth History: Causes and Consequences. Annual Review of Earth and Planetary Sciences, 36(1): 251-288. https://doi.org/10.1146/annurev.earth.36.031207.124256
      Miller, S. R., Strong, A. L., Jones, K. L., et al., 2009. Bar-Coded Pyrosequencing Reveals Shared Bacterial Community Properties along the Temperature Gradients of Two Alkaline Hot Springs in Yellowstone National Park. Applied and Environmental Microbiology, 75(13): 4565-4572. https://doi.org/10.1128/aem.02792-08
      Neefs, J. M., Van de Peer, Y., De Rijk, P., et al., 1993. Compilation of Small Ribosomal Subunit RNA Structures. Nucleic Acids Research, 21(13): 3025-3049. https://doi.org/10.1093/nar/21.13.3025
      Neutzling, O., Pfleiderer, C., Truper, H. G., 1985. Dissimilatory Sulphur Metabolism in Phototrophic 'Non-Sulphur' Bacteria. Microbiology, 131(4): 791-798. https://doi.org/10.1099/00221287-131-4-791
      Nubel, U., Bateson, M. M., Madigan, M. T., et al., 2001. Diversity and Distribution in Hypersaline Microbial Mats of Bacteria Related to Chloroflexus Spp. Applied and Environmental Microbiology, 67(9): 4365-4371. https://doi.org/10.1128/aem.67.9.4365-4371.2001
      Ohmoto, H., 2020. A Seawater-Sulfate Origin for Early Earth's Volcanic Sulfur. Nature Geoscience, 13(8): 576-583. https://doi.org/10.1038/s41561-020-0601-6
      Otaki, H., Everroad, R. C., Matsuura, K., et al., 2009. Production and Consumption of Hydrogen in Hot Spring Microbial Mats Dominated by a Filamentous Anoxygenic Photosynthetic Bacterium. Microbes and Environments, 27(3): 293-299. https://doi.org/10.1264/jsme2.me11348
      Oyaizu, H., Debrunner-Vossbrinck, B., Mandelco, L., et al., 1987. The Green Non-Sulfur Bacteria: A Deep Branching in the Eubacterial Line of Descent. Systematic and Applied Microbiology, 9(1/2): 47-53. https://doi.org/10.1016/s0723-2020(87)80055-3
      Pearson, A., Hurley, S. J., Elling, F. J., et al., 2019. CO2-Dependent Carbon Isotope Fractionation in Archaea, Part Ⅰ: Modeling the 3HP/4HB Pathway. Geochimica et Cosmochimica Acta, 261(4): 368-382. https://doi.org/10.1016/j.gca.2019.06.042
      Pellerin, A., Antler, G., Holm, S. A., et al., 2019. Large Sulfur Isotope Fractionation by Bacterial Sulfide Oxidation. Science Advances, 5(7): eaaw1480. https://doi.org/10.1126/sciadv.aaw1480
      Pierson, B. K., Castenholz, R. W., 1971. Bacteriochlorophylls in Gliding Filamentous Prokaryotes from Hot Springs. Nature New Biology, 233(35): 25-27. https://doi.org/10.1038/newbio233025a0
      Pierson, B. K., Mitchell, H. K., Ruff-Roberts, A. L., 1993. Chloroflexus Aurantiacus and Ultraviolet Radiation: Implications for Archean Shallow-Water Stromatolites. Origins of Life and Evolution of the Biosphere, 23(4): 243-260. https://doi.org/10.1007/bf01581902
      Pierson, B. K., Valdez, D., Larsen, M., et al., 1994. Chloroflexus-Like Organisms from Marine and Hypersaline Environments: Distribution and Diversity. Photosynthesis Research, 41(1): 35-52. https://doi.org/10.1007/bf02184144
      Poser, A., Vogt, C., Knöller, K., et al., 2014. Stable Sulfur and Oxygen Isotope Fractionation of Anoxic Sulfide Oxidation by Two Different Enzymatic Pathways. Environmental Science & Technology, 48(16): 9094-9102. https://doi.org/10.1021/es404808r
      Poulton, S. W., Fralick, P. W., Canfield, D. E., 2010. Spatial Variability in Oceanic Redox Structure 1.8 billion Years ago. Nature Geoscience, 3(7): 486-490. https://doi.org/10.1038/ngeo889
      Riccardi, A. L., Arthur, M. A., Kump, L. R., 2006. Sulfur Isotopic Evidence for Chemocline Upward Excursions during the End-Permian Mass Extinction. Geochimica et Cosmochimica Acta, 70(23): 5740-5752. https://doi.org/10.1016/j.gca.2006.08.005
      Robert, F., Chaussidon, M., 2006. A Palaeotemperature Curve for the Precambrian Oceans Based on Silicon Isotopes in Cherts. Nature, 443(7114): 969-972. https://doi.org/10.1038/nature05239
      Roush, D., Couradeau, E., Guida, B., et al., 2018. A New Niche for Anoxygenic Phototrophs as Endoliths. Applied and Environmental Microbiology, 84(4): e02055-02017. https://doi.org/10.1128/aem.02055-17
      Sælen, G., Raiswell, R., Talbot, M. R., et al., 1993. Heavy Sedimentary Sulfur Isotopes as Indicators of Super-Anoxic Bottom-Water Conditions. Geology, 21(12): 1091-1094. https://doi.org/10.1130/0091-7613(1993)021<1091:hssiai>2.3.co;2 doi: 10.1130/0091-7613(1993)021<1091:hssiai>2.3.co;2
      Schidlowski, M., 1988. A 3, 800-Million-Year Isotopic Record of Life from Carbon in Sedimentary Rocks. Nature, 333(6171): 313-318. https://doi.org/10.1038/333313a0
      Scott, C. T., Bekker, A., Reinhard, C. T., et al., 2011. Late Archean Euxinic Conditions before the Rise of Atmospheric Oxygen. Geology, 39(2): 119-122. https://doi.org/10.1130/g31571.1
      Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633-677. https://doi.org/10.2138/rmg.2006.61.12
      Shiea, J., Brassel, S. C., Ward, D. M., 1991. Comparative Analysis of Extractable Lipids in Hot Spring Microbial Mats and their Component Photosynthetic Bacteria. Organic Geochemistry, 17(3): 309-319. https://doi.org/10.1016/0146-6380(91)90094-z
      Shih, P. M., Ward, L. M., Fischer, W. W., et al., 2017. Evolution of the 3-Hydroxypropionate Bicycle and Recent Transfer of Anoxygenic Photosynthesis into the Chloroflexi. Proceedings of the National Academy of Sciences, 114(40): 10749-10754. https://doi.org/10.1073/pnas.1710798114
      Sim, M. S., 2019. Effect of Sulfate Limitation on Sulfur Isotope Fractionation in Batch Cultures of Sulfate Reducing Bacteria. Geosciences Journal, 23(5): 687-694. https://doi.org/10.1007/s12303-019-0015-x
      Sim, M. S., Bosak, T., Ono, S., 2011. Large Sulfur Isotope Fractionation does not Require Disproportionation. Science, 333(6038): 74-77. https://doi.org/10.1126/science.1205103
      Smith, D. A., Steele, A., Fogel, M. L., et al., 2015. Pigment Production and Isotopic Fractionations in Continuous Culture: Okenone Producing Purple Sulfur Bacteria Part Ⅱ. Geobiology, 13(3): 292-301. https://doi.org/10.1111/gbi.12135
      Sorokin, D. Y., Tourova, T. P., Mußmann, M., et al., 2008. Dethiobacter Alkaliphilus Gen. Nov. Sp. Nov., and Desulfurivibrio Alkaliphilus Gen. Nov. Sp. Nov. : Two Novel Representatives of Reductive Sulfur Cycle from Soda Lakes. Extremophiles, 12(3): 431-439. https://doi.org/10.1007/s00792-008-0148-8
      Tang, K. H., Barry, K., Chertkov, O., et al., 2011. Complete Genome Sequence of the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus Aurantiacus. BMC Genomics, 12(1): 1-21. https://doi.org/10.1186/1471-2164-12-334
      Teece, B. L., George, S. C., Djokic, T., et al., 2020. Biomolecules from Fossilized Hot Spring Sinters: Implications for the Search for Life on Mars. Astrobiology, 20(4): 537-551. https://doi.org/10.1089/ast.2018.2018
      Thiel, J., Byrne, J. M., Kappler, A., et al., 2019. Pyrite Formation from FeS and H2S Is Mediated through Microbial Redox Activity. Proceedings of the National Academy of Sciences, 116(14): 6897-6902. https://doi.org/10.1073/pnas.1814412116
      Thorup, C., Schramm, A., Findlay, A. J., et al., 2017. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio Alkaliphilus by Sulfide Oxidation with Nitrate. mBio, 8(4). https://doi.org/10.1128/mbio.00671-17
      Thurston, R. S., Mandernack, K. W., Shanks, W. C. Ⅲ, 2010. Laboratory Chalcopyrite Oxidation by Acidithiobacillus Ferrooxidans: Oxygen and Sulfur Isotope Fractionation. Chemical Geology, 269(3/4): 252-261. https://doi.org/10.1016/j.chemgeo.2009.10.001
      Tice, M. M., Lowe, D. R., 2004. Photosynthetic Microbial Mats in the 3, 416-Myr-Old Ocean. Nature, 431(7008): 549-552. https://doi.org/10.1038/nature02888
      van der Meer, M. T. J., Schouten, S., Damsté, J. S. S., et al., 2007. Impact of Carbon Metabolism On 13C Signatures of Cyanobacteria and Green Non-Sulfur-Like Bacteria Inhabiting a Microbial Mat from an Alkaline Siliceous Hot Spring in Yellowstone National Park (USA). Environmental Microbiology, 9(2): 482-491. https://doi.org/10.1111/j.1462-2920.2006.01165.x
      Van Der Meer, M. T. J., Schouten, S., de Leeuw, J. W., et al., 2000. Autotrophy of Green Non-Sulphur Bacteria in Hot Spring Microbial Mats: Biological Explanations for Isotopically Heavy Organic Carbon in the Geological Record. Environmental Microbiology, 2(4): 428-435. https://doi.org/10.1046/j.1462-2920.2000.00124.x
      Van Gemerden, H., 1984. The Sulfide Affinity of Phototrophic Bacteria in Relation to the Location of Elemental Sulfur. Archives of Microbiology, 139(4): 289-294. https://doi.org/10.1007/bf00408368
      van Gemerden, H., 1986. Production of Elemental Sulfur by Green and Purple Sulfur Bacteria. Archives of Microbiology, 146(1): 52-56. https://doi.org/10.1007/bf00690158
      Visscher, P. T., Ende, F. P., Schaub, B. E. M., et al., 1992. Competition between Anoxygenic Phototrophic Bacteria and Colorless Sulfur Bacteria in a Microbial Mat. FEMS Microbiology Letters, 101(1): 51-58. https://doi.org/10.1111/j.1574-6968.1992.tb05761.x
      Walsh, M. M., Lowe, D. R., 1985. Filamentous Microfossils from the 3, 500-Myr-Old Onverwacht Group, Barberton Mountain Land, South Africa. Nature, 314(6011): 530-532. https://doi.org/10.1038/314530a0
      Weltzer, M. L., Miller, S. R., 2013. Ecological Divergence of a Novel Group of Chloroflexus Strains along a Geothermal Gradient. Applied and Environmental Microbiology, 79(4): 1353-1358. https://doi.org/10.1128/aem.02753-12
      Westall, F., Foucher, F., Bost, N., et al., 2015. Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life. Astrobiology, 15(11): 998-1029. https://doi.org/10.1089/ast.2015.1374
      Wing, B. A., Halevy, I., 2014. Intracellular Metabolite Levels Shape Sulfur Isotope Fractionation during Microbial Sulfate Respiration. Proceedings of the National Academy of Sciences, 111(51): 18116-18125. https://doi.org/10.1073/pnas.1407502111
      Wu, Y. F., Guan, H. X., Xu, L. F., et al., 2022. Characteristics and Significance of Biomarkers Related to AOM in Surface Sediments of the Haima Cold Seep in the Northern South China Sea. Earth Science, 47(8): 3005-3015 (in Chinese with English abstract).
      Xian, W. D., Salam, N., Li, M. M., et al., 2020. Network-Directed Efficient Isolation of Previously Uncultivated Chloroflexi and Related Bacteria in Hot Spring Microbial Mats. npj Biofilms and Microbiomes, 6(1): 20. https://doi.org/10.1038/s41522-020-0131-4
      Xian, W. D., Zhang, X. T., Li W. J., 2020. Research Status and Prospect on Bacterial Phylum Chloroflexi. Acta Microbiologica Sinica, 60(9): 1801-1820 (in Chinese with English abstract).
      Xie, S. C., Yang, H., Luo, G. M., et al., 2012. Geomicrobial Functional Groups: A Window on the Interaction between Life and Environments. Chinese Science Bulletin, 57(1): 2-19. https://doi.org/10.1007/s11434-011-4860-x
      Xiong, J. and Bauer, C. E., 2002. Complex Evolution of Photosynthesis. Annual Review of Plant Biology, 53: 503-521. doi: 10.1146/annurev.arplant.53.100301.135212
      Xiong, J., Fischer, W. M., Inoue, K., et al., 2000. Molecular Evidence for the Early Evolution of Photosynthesis. Science, 289(5485): 1724-1730. https://doi.org/10.1126/science.289.5485.1724
      Zarzycki, J., Brecht, V., Müller, M., et al., 2009. Identifying the Missing Steps of the Autotrophic 3-Hydroxypropionate CO2 Fixation Cycle in Chloroflexus Aurantiacus. Proceedings of the National Academy of Sciences, 106(50): 21317-21322. https://doi.org/10.1073/pnas.0908356106
      Zeng, Y. B., Ward, D. M., Brassell, S. C., et al., 1992a. Biogeochemistry of Hot Spring Environments: 2. Lipid Compositions of Yellowstone (Wyoming, U. S. A.) Cyanobacterial and Chloroflexus Mats. Chemical Geology, 95(3): 327-345.
      Zeng, Y. B., Ward, D. M., Brassell, S. C., et al., 1992b. Biogeochemistry of Hot Spring Environments: 3. Apolar and Polar Lipids in the Biologically Active Layers of a Cyanobacterial Mat. Chemical Geology, 95(3): 347-360.
      Zerkle, A. L., Farquhar, J., Johnston, D. T., et al., 2009. Fractionation of Multiple Sulfur Isotopes during Phototrophic Oxidation of Sulfide and Elemental Sulfur by a Green Sulfur Bacterium. Geochimica et Cosmochimica Acta, 73(2): 291-306. https://doi.org/10.1016/j.gca.2008.10.027
      Zhang, G. J., Zhang, X. L., Li, D. D., et al., 2015. Widespread Shoaling of Sulfidic Waters Linked to the End-Guadalupian (Permian) Mass Extinction. Geology, 43(12): 1091-1094. https://doi.org/10.1130/g37284.1
      Zhelezinskaia, I., Kaufman, A. J., Farquhar, J., et al., 2014. Large Sulfur Isotope Fractionations Associated with Neoarchean Microbial Sulfate Reduction. Science, 346(6210): 742-744. https://doi.org/10.1126/science.1256211
      Zheng, R., Cai, R., Wang, C., et al., 2022. Characterization of the First Cultured Representative of "Candidatus Thermofonsia" Clade 2 within Chloroflexi Reveals Its Phototrophic Lifestyle. mBio, 13(2): e00287-00222. https://doi.org/10.1128/mbio.00287-22
      李猛, 王钊飞, 姚志亮, 2021. 华北克拉通南缘古元古代晚期汝阳群微体化石及其古环境意义: 来自微细构造和生物标志化合物的证据. 地球科学, 46(11): 4072-4083. doi: 10.3799/dqkx.2021.006
      刘阳, 姜丽晶, 邵宗泽, 2018. 硫氧化细菌的种类及硫氧化途径的研究进展. 微生物学报, 58(2): 191-201. https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201802002.htm
      吴一帆, 管红香, 许兰芳, 等, 2022. 南海北部海马冷泉区表层沉积物的AOM生物标志化合物特征及意义. 地球科学, 47(8): 3005-3015. doi: 10.3799/dqkx.2021.202
      鲜文东, 张潇橦, 李文均, 2020. 绿弯菌的研究现状及展望. 微生物学报, 60(9): 1801-1820. https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB202009005.htm
    • 加载中
    图(3) / 表(1)
    计量
    • 文章访问数:  502
    • HTML全文浏览量:  489
    • PDF下载量:  66
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-15
    • 刊出日期:  2023-08-25

    目录

      /

      返回文章
      返回