Study on Dynamic Response of Debris Flow Impact on Check Dam with Sediments
-
摘要: 拦挡坝有效库容和泥石流冲击力是泥石流实体拦挡坝设计的重要指标,现有实体拦挡坝在泥石流反复冲击作用下淤积甚至填满,会对坝体调控能力产生重要影响.为此,基于理论分析和物理模型试验,开展坝后淤积条件下泥石流冲击实体拦挡坝动力响应研究,推导坝后淤积条件下泥石流速度衰减率、坝体拦挡率的无量纲计算公式,并建立考虑空间分布特性的坝后淤积条件下泥石流冲击力计算模型.结果表明:泥石流速度衰减率和坝体拦挡率与淤积体高度/淤积长度比值和泥石流相对容重呈正相关;泥石流冲击力静动荷载组合计算模型能较好反映坝后淤积条件下泥石流冲击力的组成和分布特征.上述研究可为泥石流实体拦挡坝工程设计提供理论及技术支持.Abstract: Effective reservoir capacity of retaining dam and impact force of debris flow are important indexes for the design of entity check dam of debris flow. Deposits or even fills in the existing entity check dam under repeated impact of debris flows, have great influence on the control ability of dam body. In this paper, based on theoretical analysis and physical model test, dynamic response of debris flow impinging entity check dam under the condition of silting behind dam is studied, dimensionless calculation formulas of velocity attenuation rate and retaining rate of dam body under the condition of silting behind dam are derived, and calculation model of impact force of debris flow under the condition of silting behind dam considering spatial distribution characteristics is established. The results show that the velocity attenuation rate and dam retaining rate of debris flow are positively correlated with the ratio of silt height to silt length and the relative density of debris flow. The combined calculation model of impact force and static and dynamic load of debris flow can better reflect the composition and distribution of impact force of debris flow under the condition of silting behind the dam. This study can provide theoretical and technical support for the design of solid debris flow retaining dam engineering.
-
表 1 试验控制变量
Table 1. Control variables of experiment
试验组数 坝后淤积程度 泥石流容重(kN/m3) 试验沟槽坡度(°) 1~9 空库 14、16、18 20、23、26 10~18 半库 14、16、18 20、23、26 19~27 满库 14、16、18 20、23、26 表 2 影响因子量纲信息
Table 2. Dimensional information of impact factors
变量 符号 量纲 坝前泥石流流速 v0 [L][T]‒1 坝前泥石流流深 hm [L] 泥石流容重 γm [M][T]‒2[L]‒2 泥石流固相容重 γs [M][T]‒2[L]‒2 淤积体长度 ld [L] 淤积体高度 hd [L] 沟道纵坡坡度 θ 1 重力加速度 g [L][T]‒2 -
Albaba, A., Lambert, S., Faug, T., 2018. Dry Granular Avalanche Impact Force on a Rigid Wall: Analytic Shock Solution Versus Discrete Element Simulations. Physical Review E, 97(5): 052903. https://doi.org/10.1103/physreve.97.052903 Armanini, A., Rossi, G., Larcher, M., 2020. Dynamic Impact of a Water and Sediments Surge Against a Rigid Wall. Journal of Hydraulic Research, 58(2): 314-325. https://doi.org/10.1080/00221686.2019.1579113 Ashwood, W., Hungr, O., 2016. Estimating Total Resisting Force in Flexible Barrier Impacted by a Granular Avalanche Using Physical and Numerical Modeling. Canadian Geotechnical Journal, 53(10): 1700-1717. https://doi.org/10.1139/cgj⁃2015⁃0481 Chai, B., Tao, Y. Y., Du, J., et al., 2020. Hazard Assessment of Debris Flow Triggered by Outburst of Jialong Glacial Lake in Nyalam County, Tibet. Earth Science, 45(12): 4630-4639 (in Chinese with English abstract) Chen, H. Y., Cui, P., Chen, J. G., et al., 2016. Effects of Spillway Types on Debris Flow Trajectory and Scour Behind a Sabo Dam. Journal of Mountain Science, 13(2): 203-212. https://doi.org/10.1007/s11629⁃015⁃3607⁃6 Chen, H. Y., Liu, J. F., Zhao, W. Y., et al., 2016. A Review and Prospect: The Study on the Closed⁃Type Check Dams. Journal of Disaster Prevention and Mitigation Engineering, 36(2): 323-330 (in Chinese with English abstract) Choi, C. E., Au⁃Yeung, S. C. H., Ng, C. W. W., et al., 2015. Flume Investigation of Landslide Granular Debris and Water Runup Mechanisms. Géotechnique Letters, 5(1): 28-32. https://doi.org/10.1680/geolett.14.00080 Cui, P., Zeng, C., Lei, Y., 2015. Experimental Analysis on the Impact Force of Viscous Debris Flow. Earth Surface Processes and Landforms, 40(12): 1644-1655. https://doi.org/10.1002/esp.3744 Faug, T., Caccamo, P., Chanut, B., 2012. A Scaling Law for Impact Force of a Granular Avalanche Flowing Past a Wall. Geophysical Research Letters, 39(23): L23401. https://doi.org/10.1029/2012gl054112 Hong, Y., Wang, J. P., Li, D. Q., et al., 2015. Statistical and Probabilistic Analyses of Impact Pressure and Discharge of Debris Flow from 139 Events during 1961 and 2000 at Jiangjia Ravine, China. Engineering Geology, 187: 122-134. https://doi.org/10.1016/j.enggeo.2014.12.011 Hu, K. H., Ge, Y. G., Cui, P., et al., 2010. Preliminary Analysis of Extra⁃Large⁃Scale Debris Flow Disaster in Zhouqu County of Gansu Province. Journal of Mountain Science, 28(5): 628-634 (in Chinese with English abstract) Hungr, O., 2008. Simplified Models of Spreading Flow of Dry Granular Material. Canadian Geotechnical Journal, 45(8): 1156-1168. https://doi.org/10.1139/t08⁃059 Jiang, Y. J., Towhata, I., 2013. Experimental Study of Dry Granular Flow and Impact Behavior Against a Rigid Retaining Wall. Rock Mechanics and Rock Engineering, 46(4): 713-729. https://doi.org/10.1007/s00603⁃012⁃0293⁃3 Kwan, J. S. H., Koo, R. C. H., Ng, C. W. W., 2015. Landslide Mobility Analysis for Design of Multiple Debris⁃Resisting Barriers. Canadian Geotechnical Journal, 52(9): 1345-1359. https://doi.org/10.1139/cgj⁃2014⁃0152 Kwan, J. S. H., Sze, E. H. Y., Lam, C., 2019. Finite Element Analysis for Rockfall and Debris Flow Mitigation Works. Canadian Geotechnical Journal, 56(9): 1225-1250. https://doi.org/10.1139/cgj⁃2017⁃0628 Law, R. P. H., Choi, C. E., Ng, C. W. W., 2016. Discrete⁃Element Investigation of Influence of Granular Debris Flow Baffles on Rigid Barrier Impact. Canadian Geotechnical Journal, 53(1): 179-185. https://doi.org/10.1139/cgj⁃2014⁃0394 Li, X. Y., Zhao, J. D., 2018. A Unified CFD⁃DEM Approach for Modeling of Debris Flow Impacts on Flexible Barriers. International Journal for Numerical and Analytical Methods in Geomechanics, 42(14): 1643-1670. https://doi.org/10.1002/nag.2806 Li, Y., Cui, Y. F., Li, Z. H., et al., 2022. Evolution of Glacier Debris Flow and Its Monitoring System along Sichuan⁃Tibet Traffic Corridor. Earth Science, 47(6): 1969-1984 (in Chinese with English abstract) Liu, D. C., You, Y., Liu, J. F., et al., 2019. Spatial⁃Temporal Distribution of Debris Flow Impact Pressure on Rigid Barrier. Journal of Mountain Science, 16(4): 793-805. https://doi.org/10.1007/s11629⁃018⁃5316⁃4 Liu, J. F., You, Y., 2011. Experimental Study on Back Siltation in the Outlet of Viscous Debris Flow Channel. Journal of Mountain Science, 29(2): 226-233 (in Chinese with English abstract) Liu, X. R., Wei, X. P., Chen, Y. J., et al., 2021. Numerical Simulation of Impact Resistance of Debris Flow Dam: A Case Study of the Debris Flow Dam in Sanyanyu Gully, Zhouqu County, Gansu Province. The Chinese Journal of Geological Hazard and Control, 32(2): 78-83 (in Chinese with English abstract) Ng, C. W. W., Majeed, U., Choi, C. E., et al., 2021. New Impact Equation Using Barrier Froude Number for the Design of Dual Rigid Barriers Against Debris Flows. Landslides, 18(6): 2309-2321. https://doi.org/10.1007/s10346⁃021⁃01631⁃7 Ng, C. W. W., Song, D., Choi, C. E., et al., 2017. Impact Mechanisms of Granular and Viscous Flows on Rigid and Flexible Barriers. Canadian Geotechnical Journal, 54(2): 188-206. https://doi.org/10.1139/cgj⁃2016⁃0128 Peng, M., Ma, C. Y., Chen, H. X., et al., 2021. Experimental Study on Breaching Mechanisms of Landslide Dams Composed of Different Materials under Surge Waves. Engineering Geology, 291: 106242. https://doi.org/10.1016/j.enggeo.2021.106242 Shi, H. B., Hu, X. W., Wen, Q., et al., 2021. Debris Flow Development Characteristics and Dynamic Process Numerical Simulation of Xiali 2# Gully on the Proposed Sichuan⁃Tibet Railway. Journal of Geological Hazards and Environment Preservation, 32(3): 39-46 (in Chinese with English abstract) Tiberghien, D., Laigle, D., Naaim, M., et al., 2007. Experimental Investigations of Interaction between Mudflow and an Obstacle. International Conference on Debris⁃Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Chengdu. Wendeler, C., Volkwein, A., McArdell, B. W., et al., 2019. Load Model for Designing Flexible Steel Barriers for Debris Flow Mitigation. Canadian Geotechnical Journal, 56(6): 893-910. https://doi.org/10.1139/cgj⁃2016⁃0157 Xiao, S. Y., Su, L. J., Jiang, Y. J., et al., 2019. Estimating the Maximum Impact Force of Dry Granular Flow Based on Pileup Characteristics. Journal of Mountain Science, 16(10): 2435-2452. https://doi.org/10.1007/s11629⁃019⁃5428⁃5 Xie, T., Xu, X. L., Chen, H. K., 2017. Review and Trends on Debris Dam Research. The Chinese Journal of Geological Hazard and Control, 28(2): 137-145 (in Chinese with English abstract) Zhang, F. S., Wang, T., Liu, F., et al., 2020. Modeling of Fluid⁃Particle Interaction by Coupling the Discrete Element Method with a Dynamic Fluid Mesh: Implications to Suffusion in Gap⁃Graded Soils. Computers and Geotechnics, 124: 103617. https://doi.org/10.1016/j.compgeo.2020.103617 Zhang, R. X., Su, D., Fan, X. Y., et al., 2022. Influence of Site Conditions on the Motion and Impact Effect of Rock Avalanches. Journal of Vibration and Shock, 41(2): 229-239 (in Chinese with English abstract) Zhou, C., Chang, M., Xu, L., et al., 2023. Failure Modes and Dynamic Characteristics of the Landslide Dams in Strong Earthquake Area. Earth Science, 48(8): 3115-3126 (in Chinese with English abstract) 柴波, 陶阳阳, 杜娟, 等, 2020. 西藏聂拉木县嘉龙湖冰湖溃决型泥石流危险性评价. 地球科学, 45(12): 4630-4639. doi: 10.3799/dqkx.2020.294 陈华勇, 柳金峰, 赵万玉, 等, 2016. 非透过性泥石流拦砂坝研究现状及展望. 防灾减灾工程学报, 36(2): 323-330. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201602025.htm 胡凯衡, 葛永刚, 崔鹏, 等, 2010. 对甘肃舟曲特大泥石流灾害的初步认识. 山地学报, 28(5): 628-634. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201005020.htm 李尧, 崔一飞, 李振洪, 等, 2022. 川藏交通廊道林波段冰川泥石流发育动态演化分析及监测预警方案. 地球科学, 47(6): 1969-1984. doi: 10.3799/dqkx.2021.194 柳金峰, 游勇, 2011. 粘性泥石流沟口回淤实验研究. 山地学报, 29(2): 226-233. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201102012.htm 刘兴荣, 魏新平, 陈豫津, 等, 2021. 基于增量加载法的泥石流拦挡坝抗冲击力数值模拟: 以甘肃舟曲三眼峪沟泥石流拦挡坝为例. 中国地质灾害与防治学报, 32(2): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202102011.htm 史洪滨, 胡卸文, 文强, 等, 2021. 拟建川藏铁路夏里2#沟泥石流发育特征及动力学过程数值模拟. 地质灾害与环境保护, 32(3): 39-46. 谢涛, 徐小林, 陈洪凯, 2017. 泥石流拦挡坝研究现状及发展趋势. 中国地质灾害与防治学报, 28(2): 137-145. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201702019.htm 张睿骁, 苏栋, 樊晓一, 等, 2022. 场地条件对滑坡‒碎屑流运动冲击特征的影响研究. 振动与冲击, 41(2): 229-239. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202202028.htm 周超, 常鸣, 徐璐, 等, 2023. 强震区沟道堰塞体失稳模式及其动力学特征. 地球科学, 48(8): 3115-3126. doi: 10.3799/dqkx.2021.127