• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    坝后淤积条件下泥石流冲击拦挡坝动力响应研究

    王东坡 廖承兴 瞿华南 闫帅星

    王东坡, 廖承兴, 瞿华南, 闫帅星, 2024. 坝后淤积条件下泥石流冲击拦挡坝动力响应研究. 地球科学, 49(3): 1017-1027. doi: 10.3799/dqkx.2022.424
    引用本文: 王东坡, 廖承兴, 瞿华南, 闫帅星, 2024. 坝后淤积条件下泥石流冲击拦挡坝动力响应研究. 地球科学, 49(3): 1017-1027. doi: 10.3799/dqkx.2022.424
    Wang Dongpo, Liao Chengxing, Qu Huanan, Yan Shuaixing, 2024. Study on Dynamic Response of Debris Flow Impact on Check Dam with Sediments. Earth Science, 49(3): 1017-1027. doi: 10.3799/dqkx.2022.424
    Citation: Wang Dongpo, Liao Chengxing, Qu Huanan, Yan Shuaixing, 2024. Study on Dynamic Response of Debris Flow Impact on Check Dam with Sediments. Earth Science, 49(3): 1017-1027. doi: 10.3799/dqkx.2022.424

    坝后淤积条件下泥石流冲击拦挡坝动力响应研究

    doi: 10.3799/dqkx.2022.424
    基金项目: 

    国家自然科学基金项目 42207232

    四川省交通科技项目 2021⁃A⁃04

    四川省科技计划项目任务书 2023YFS0444

    详细信息
      作者简介:

      王东坡(1984-),男,博士,教授,主要从事地质灾害冲击动力学方面研究.ORCID:0000-0002-6172-4753. E-mail:wangdongpo@cdut.edu.cn

    • 中图分类号: P642

    Study on Dynamic Response of Debris Flow Impact on Check Dam with Sediments

    • 摘要: 拦挡坝有效库容和泥石流冲击力是泥石流实体拦挡坝设计的重要指标,现有实体拦挡坝在泥石流反复冲击作用下淤积甚至填满,会对坝体调控能力产生重要影响.为此,基于理论分析和物理模型试验,开展坝后淤积条件下泥石流冲击实体拦挡坝动力响应研究,推导坝后淤积条件下泥石流速度衰减率、坝体拦挡率的无量纲计算公式,并建立考虑空间分布特性的坝后淤积条件下泥石流冲击力计算模型.结果表明:泥石流速度衰减率和坝体拦挡率与淤积体高度/淤积长度比值和泥石流相对容重呈正相关;泥石流冲击力静动荷载组合计算模型能较好反映坝后淤积条件下泥石流冲击力的组成和分布特征.上述研究可为泥石流实体拦挡坝工程设计提供理论及技术支持.

       

    • 图  1  物理模型试验装置

      Fig.  1.  Physical model equipment

      图  2  试验设计布局

      Fig.  2.  Layout of test design

      图  3  泥石流颗粒级配曲线

      Fig.  3.  Particle size distribution curve

      图  4  不同坝后淤积下泥石流冲击拦挡坝过程

      Fig.  4.  Debris flow impact barrier dam under different sediments behind dam

      图  5  调控能力对比

      Fig.  5.  Comparison of regulation and control ability

      图  6  冲击力时程曲线

      Fig.  6.  Time history curves of impact force

      图  7  泥石流最大冲击力及分布关系

      Fig.  7.  Maximum impact force and distribution of debris flow

      图  8  堆积压力与最大冲击力关系

      Fig.  8.  Relationship between accumulation pressure and maximum impact force

      图  9  不同坝后淤积泥石流冲击拦挡坝力学模型

      Fig.  9.  Schematic diagram of debris flow impact check dam with different sediments behind dam

      图  10  泥石流冲击力试验值与理论值对比

      Fig.  10.  Comparison between test value and theoretical value of impact force of debris flow

      表  1  试验控制变量

      Table  1.   Control variables of experiment

      试验组数 坝后淤积程度 泥石流容重(kN/m3 试验沟槽坡度(°)
      1~9 空库 14、16、18 20、23、26
      10~18 半库 14、16、18 20、23、26
      19~27 满库 14、16、18 20、23、26
      下载: 导出CSV

      表  2  影响因子量纲信息

      Table  2.   Dimensional information of impact factors

      变量 符号 量纲
      坝前泥石流流速 v0 [L][T]‒1
      坝前泥石流流深 hm [L]
      泥石流容重 γm [M][T]‒2[L]‒2
      泥石流固相容重 γs [M][T]‒2[L]‒2
      淤积体长度 ld [L]
      淤积体高度 hd [L]
      沟道纵坡坡度 θ 1
      重力加速度 g [L][T]‒2
      下载: 导出CSV
    • Albaba, A., Lambert, S., Faug, T., 2018. Dry Granular Avalanche Impact Force on a Rigid Wall: Analytic Shock Solution Versus Discrete Element Simulations. Physical Review E, 97(5): 052903. https://doi.org/10.1103/physreve.97.052903
      Armanini, A., Rossi, G., Larcher, M., 2020. Dynamic Impact of a Water and Sediments Surge Against a Rigid Wall. Journal of Hydraulic Research, 58(2): 314-325. https://doi.org/10.1080/00221686.2019.1579113
      Ashwood, W., Hungr, O., 2016. Estimating Total Resisting Force in Flexible Barrier Impacted by a Granular Avalanche Using Physical and Numerical Modeling. Canadian Geotechnical Journal, 53(10): 1700-1717. https://doi.org/10.1139/cgj⁃2015⁃0481
      Chai, B., Tao, Y. Y., Du, J., et al., 2020. Hazard Assessment of Debris Flow Triggered by Outburst of Jialong Glacial Lake in Nyalam County, Tibet. Earth Science, 45(12): 4630-4639 (in Chinese with English abstract)
      Chen, H. Y., Cui, P., Chen, J. G., et al., 2016. Effects of Spillway Types on Debris Flow Trajectory and Scour Behind a Sabo Dam. Journal of Mountain Science, 13(2): 203-212. https://doi.org/10.1007/s11629⁃015⁃3607⁃6
      Chen, H. Y., Liu, J. F., Zhao, W. Y., et al., 2016. A Review and Prospect: The Study on the Closed⁃Type Check Dams. Journal of Disaster Prevention and Mitigation Engineering, 36(2): 323-330 (in Chinese with English abstract)
      Choi, C. E., Au⁃Yeung, S. C. H., Ng, C. W. W., et al., 2015. Flume Investigation of Landslide Granular Debris and Water Runup Mechanisms. Géotechnique Letters, 5(1): 28-32. https://doi.org/10.1680/geolett.14.00080
      Cui, P., Zeng, C., Lei, Y., 2015. Experimental Analysis on the Impact Force of Viscous Debris Flow. Earth Surface Processes and Landforms, 40(12): 1644-1655. https://doi.org/10.1002/esp.3744
      Faug, T., Caccamo, P., Chanut, B., 2012. A Scaling Law for Impact Force of a Granular Avalanche Flowing Past a Wall. Geophysical Research Letters, 39(23): L23401. https://doi.org/10.1029/2012gl054112
      Hong, Y., Wang, J. P., Li, D. Q., et al., 2015. Statistical and Probabilistic Analyses of Impact Pressure and Discharge of Debris Flow from 139 Events during 1961 and 2000 at Jiangjia Ravine, China. Engineering Geology, 187: 122-134. https://doi.org/10.1016/j.enggeo.2014.12.011
      Hu, K. H., Ge, Y. G., Cui, P., et al., 2010. Preliminary Analysis of Extra⁃Large⁃Scale Debris Flow Disaster in Zhouqu County of Gansu Province. Journal of Mountain Science, 28(5): 628-634 (in Chinese with English abstract)
      Hungr, O., 2008. Simplified Models of Spreading Flow of Dry Granular Material. Canadian Geotechnical Journal, 45(8): 1156-1168. https://doi.org/10.1139/t08⁃059
      Jiang, Y. J., Towhata, I., 2013. Experimental Study of Dry Granular Flow and Impact Behavior Against a Rigid Retaining Wall. Rock Mechanics and Rock Engineering, 46(4): 713-729. https://doi.org/10.1007/s00603⁃012⁃0293⁃3
      Kwan, J. S. H., Koo, R. C. H., Ng, C. W. W., 2015. Landslide Mobility Analysis for Design of Multiple Debris⁃Resisting Barriers. Canadian Geotechnical Journal, 52(9): 1345-1359. https://doi.org/10.1139/cgj⁃2014⁃0152
      Kwan, J. S. H., Sze, E. H. Y., Lam, C., 2019. Finite Element Analysis for Rockfall and Debris Flow Mitigation Works. Canadian Geotechnical Journal, 56(9): 1225-1250. https://doi.org/10.1139/cgj⁃2017⁃0628
      Law, R. P. H., Choi, C. E., Ng, C. W. W., 2016. Discrete⁃Element Investigation of Influence of Granular Debris Flow Baffles on Rigid Barrier Impact. Canadian Geotechnical Journal, 53(1): 179-185. https://doi.org/10.1139/cgj⁃2014⁃0394
      Li, X. Y., Zhao, J. D., 2018. A Unified CFD⁃DEM Approach for Modeling of Debris Flow Impacts on Flexible Barriers. International Journal for Numerical and Analytical Methods in Geomechanics, 42(14): 1643-1670. https://doi.org/10.1002/nag.2806
      Li, Y., Cui, Y. F., Li, Z. H., et al., 2022. Evolution of Glacier Debris Flow and Its Monitoring System along Sichuan⁃Tibet Traffic Corridor. Earth Science, 47(6): 1969-1984 (in Chinese with English abstract)
      Liu, D. C., You, Y., Liu, J. F., et al., 2019. Spatial⁃Temporal Distribution of Debris Flow Impact Pressure on Rigid Barrier. Journal of Mountain Science, 16(4): 793-805. https://doi.org/10.1007/s11629⁃018⁃5316⁃4
      Liu, J. F., You, Y., 2011. Experimental Study on Back Siltation in the Outlet of Viscous Debris Flow Channel. Journal of Mountain Science, 29(2): 226-233 (in Chinese with English abstract)
      Liu, X. R., Wei, X. P., Chen, Y. J., et al., 2021. Numerical Simulation of Impact Resistance of Debris Flow Dam: A Case Study of the Debris Flow Dam in Sanyanyu Gully, Zhouqu County, Gansu Province. The Chinese Journal of Geological Hazard and Control, 32(2): 78-83 (in Chinese with English abstract)
      Ng, C. W. W., Majeed, U., Choi, C. E., et al., 2021. New Impact Equation Using Barrier Froude Number for the Design of Dual Rigid Barriers Against Debris Flows. Landslides, 18(6): 2309-2321. https://doi.org/10.1007/s10346⁃021⁃01631⁃7
      Ng, C. W. W., Song, D., Choi, C. E., et al., 2017. Impact Mechanisms of Granular and Viscous Flows on Rigid and Flexible Barriers. Canadian Geotechnical Journal, 54(2): 188-206. https://doi.org/10.1139/cgj⁃2016⁃0128
      Peng, M., Ma, C. Y., Chen, H. X., et al., 2021. Experimental Study on Breaching Mechanisms of Landslide Dams Composed of Different Materials under Surge Waves. Engineering Geology, 291: 106242. https://doi.org/10.1016/j.enggeo.2021.106242
      Shi, H. B., Hu, X. W., Wen, Q., et al., 2021. Debris Flow Development Characteristics and Dynamic Process Numerical Simulation of Xiali 2# Gully on the Proposed Sichuan⁃Tibet Railway. Journal of Geological Hazards and Environment Preservation, 32(3): 39-46 (in Chinese with English abstract)
      Tiberghien, D., Laigle, D., Naaim, M., et al., 2007. Experimental Investigations of Interaction between Mudflow and an Obstacle. International Conference on Debris⁃Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Chengdu.
      Wendeler, C., Volkwein, A., McArdell, B. W., et al., 2019. Load Model for Designing Flexible Steel Barriers for Debris Flow Mitigation. Canadian Geotechnical Journal, 56(6): 893-910. https://doi.org/10.1139/cgj⁃2016⁃0157
      Xiao, S. Y., Su, L. J., Jiang, Y. J., et al., 2019. Estimating the Maximum Impact Force of Dry Granular Flow Based on Pileup Characteristics. Journal of Mountain Science, 16(10): 2435-2452. https://doi.org/10.1007/s11629⁃019⁃5428⁃5
      Xie, T., Xu, X. L., Chen, H. K., 2017. Review and Trends on Debris Dam Research. The Chinese Journal of Geological Hazard and Control, 28(2): 137-145 (in Chinese with English abstract)
      Zhang, F. S., Wang, T., Liu, F., et al., 2020. Modeling of Fluid⁃Particle Interaction by Coupling the Discrete Element Method with a Dynamic Fluid Mesh: Implications to Suffusion in Gap⁃Graded Soils. Computers and Geotechnics, 124: 103617. https://doi.org/10.1016/j.compgeo.2020.103617
      Zhang, R. X., Su, D., Fan, X. Y., et al., 2022. Influence of Site Conditions on the Motion and Impact Effect of Rock Avalanches. Journal of Vibration and Shock, 41(2): 229-239 (in Chinese with English abstract)
      Zhou, C., Chang, M., Xu, L., et al., 2023. Failure Modes and Dynamic Characteristics of the Landslide Dams in Strong Earthquake Area. Earth Science, 48(8): 3115-3126 (in Chinese with English abstract)
      柴波, 陶阳阳, 杜娟, 等, 2020. 西藏聂拉木县嘉龙湖冰湖溃决型泥石流危险性评价. 地球科学, 45(12): 4630-4639. doi: 10.3799/dqkx.2020.294
      陈华勇, 柳金峰, 赵万玉, 等, 2016. 非透过性泥石流拦砂坝研究现状及展望. 防灾减灾工程学报, 36(2): 323-330. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201602025.htm
      胡凯衡, 葛永刚, 崔鹏, 等, 2010. 对甘肃舟曲特大泥石流灾害的初步认识. 山地学报, 28(5): 628-634. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201005020.htm
      李尧, 崔一飞, 李振洪, 等, 2022. 川藏交通廊道林波段冰川泥石流发育动态演化分析及监测预警方案. 地球科学, 47(6): 1969-1984. doi: 10.3799/dqkx.2021.194
      柳金峰, 游勇, 2011. 粘性泥石流沟口回淤实验研究. 山地学报, 29(2): 226-233. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201102012.htm
      刘兴荣, 魏新平, 陈豫津, 等, 2021. 基于增量加载法的泥石流拦挡坝抗冲击力数值模拟: 以甘肃舟曲三眼峪沟泥石流拦挡坝为例. 中国地质灾害与防治学报, 32(2): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202102011.htm
      史洪滨, 胡卸文, 文强, 等, 2021. 拟建川藏铁路夏里2#沟泥石流发育特征及动力学过程数值模拟. 地质灾害与环境保护, 32(3): 39-46.
      谢涛, 徐小林, 陈洪凯, 2017. 泥石流拦挡坝研究现状及发展趋势. 中国地质灾害与防治学报, 28(2): 137-145. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201702019.htm
      张睿骁, 苏栋, 樊晓一, 等, 2022. 场地条件对滑坡‒碎屑流运动冲击特征的影响研究. 振动与冲击, 41(2): 229-239. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202202028.htm
      周超, 常鸣, 徐璐, 等, 2023. 强震区沟道堰塞体失稳模式及其动力学特征. 地球科学, 48(8): 3115-3126. doi: 10.3799/dqkx.2021.127
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  409
    • HTML全文浏览量:  139
    • PDF下载量:  41
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-07-14
    • 网络出版日期:  2024-04-12
    • 刊出日期:  2024-03-25

    目录

      /

      返回文章
      返回