• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于滑坡致灾强度预测的建筑物易损性定量评价

    曾韬睿 殷坤龙 桂蕾 金必晶 刘谢攀 刘真意 郭子正 蒋宏伟 邬礼扬

    曾韬睿, 殷坤龙, 桂蕾, 金必晶, 刘谢攀, 刘真意, 郭子正, 蒋宏伟, 邬礼扬, 2023. 基于滑坡致灾强度预测的建筑物易损性定量评价. 地球科学, 48(5): 1807-1824. doi: 10.3799/dqkx.2022.429
    引用本文: 曾韬睿, 殷坤龙, 桂蕾, 金必晶, 刘谢攀, 刘真意, 郭子正, 蒋宏伟, 邬礼扬, 2023. 基于滑坡致灾强度预测的建筑物易损性定量评价. 地球科学, 48(5): 1807-1824. doi: 10.3799/dqkx.2022.429
    Zeng Taorui, Yin Kunlong, Gui Lei, Jin Bijing, Liu Xiepan, Liu Zhenyi, Guo Zizheng, Jiang Hongwei, Wu Liyang, 2023. Quantitative Vulnerability Analysis of Buildings Based on Landslide Intensity Prediction. Earth Science, 48(5): 1807-1824. doi: 10.3799/dqkx.2022.429
    Citation: Zeng Taorui, Yin Kunlong, Gui Lei, Jin Bijing, Liu Xiepan, Liu Zhenyi, Guo Zizheng, Jiang Hongwei, Wu Liyang, 2023. Quantitative Vulnerability Analysis of Buildings Based on Landslide Intensity Prediction. Earth Science, 48(5): 1807-1824. doi: 10.3799/dqkx.2022.429

    基于滑坡致灾强度预测的建筑物易损性定量评价

    doi: 10.3799/dqkx.2022.429
    基金项目: 

    国家自然科学基金资助项目 41877525

    国家自然科学基金资助项目 41601563

    详细信息
      作者简介:

      曾韬睿(1995-),男,博士研究生,主要从事滑坡灾害风险评价与管理研究.ORCID:0000-0002-1241-3238.E-mail:zengtaorui@cug.edu.cn

      通讯作者:

      桂蕾,E-mail:lei.gui@cug.edu.cn

    • 中图分类号: P642.22

    Quantitative Vulnerability Analysis of Buildings Based on Landslide Intensity Prediction

    • 摘要: 针对目前建筑物易损性定量评价中缺乏滑坡致灾强度预测研究,创新性地提出了一种基于InSAR技术的致灾强度经验曲线与ABAQUS二次开发的空间化位移预测相结合的建筑物易损性定量评价方法.以三峡库区石龙门滑坡为例,利用PS-InSAR解译的2017-2020年间滑坡年平均位移,通过函数反演获取了滑坡累积位移‒致灾强度经验曲线;使用ABAQUS编写荷载和孔隙水压力子程序模拟了极端工况下(库水位下降+强降雨)的滑坡累积位移,用于建筑物易损性预测计算.建筑物抗灾能力由PSO-Fuzzy AHP模型加权赋值8个指标构成,与滑坡致灾强度两部分相结合即可定量评价建筑物易损性.研究结果表明:(1)本文提出的抗灾能力评价体系能够很好表征三峡库区农村建筑物的结构特征,具备较高的评价精度;(2)基于PS-InSAR得到的上限致灾强度曲线为Ipu = 0.065 × Dtot0.236,具备更高的预测精度,有效减少了假阴性误报;(3)通过ABAQUS模拟的极端工况致灾强度随着降雨量增加而增加,预测的房屋易损性等级随之提高,并且成功预警了前期调查有明显变形的房屋.可见提出的致灾强度预测方法和易损性评价模型具有很高的空间辨识度和预警精度,通过滑坡强度信息能够开展实时建筑物易损性制图.

       

    • 图  1  石龙门滑坡地理位置

      a.在万州区位置;b.滑坡全貌航拍图

      Fig.  1.  Location of the study area

      图  2  石龙门滑坡平面图(a)、建筑物裂缝(b1‒b4)、滑坡前缘滑塌(c1‒c2)、地表裂缝(c3)、滑坡前缘广场裂缝特征(d‒e)

      Fig.  2.  Topographical map (a), cracks on building facades (b1‒b4), some small collapses (c1‒c2) and a ground fissure (c3), deformation characteristics of public land in Shilongmen landslide (d‒e)

      图  3  建筑物易损性评价流程

      Fig.  3.  Flow chart of the applied methodology for the vulnerability analysis of buildings

      图  4  建筑物观测易损性值(a)、建筑物抗灾能力计算值(b)、2020年PS-InSAR解译位移点(c)、2017-2020四年建筑物平均位移(d)

      Fig.  4.  Observed vulnerability value of buildings (a), calculated value of building resistance indicators (b), PS-InSAR interpretation displacement in 2020 (c) and average displacement of buildings in 2017‒2020 (d)

      图  5  致灾强度与地表总位移的拟合模型(a)、Ipu易损性值(b)、Ipm易损性值(c)、Ipd易损性值(d)

      Fig.  5.  Posterior intensity values and intensity model versus total ground displacement (a), vulnerability value of Ipu (b), vulnerability value of Ipm (c) and vulnerability value of Ipd (d)

      图  6  库水位年变动情况(a)和Pearson Ⅲ分布重现期降雨量(b)

      Fig.  6.  Annual variation of reservoir water level (a) and extreme rainfall obtained from a Pearson type Ⅲ distribution (b)

      图  7  石龙门滑坡工程地质剖面

      Fig.  7.  Engineering geological profiles of the Shilongmen landslide

      图  8  模型运算结果

      a.初始孔隙水压力分布(kPa);b.等效塑性应变;c.位移矢量图;d.10年重现期降雨工况x方向位移;e.10年重现期降雨工况y方向位移;f.10年重现期降雨工况z方向位移;g.10年重现期降雨工况总位移;h.50年重现期降雨工况总位移;i. 100年重现期降雨工况总位移

      Fig.  8.  Model calculation results

      图  9  10年重现期降雨工况总位移(a)、10年重现期降雨工况易损性值(b)、50年重现期降雨工况总位移(c)、50年重现期降雨工况易损性值(d)、100年重现期降雨工况总位移(e)、100年重现期降雨工况易损性值(f)

      Fig.  9.  Total displacement under 10, 50, 100-year return period rainfall scenarios (a, c, e) and vulnerability under 10, 50, 100-year return period rainfall scenarios (b, d, f)

      表  1  数据收集

      Table  1.   Data collection

      数据 尺度 来源 目的
      工程地质图 1∶1 000 重庆地质勘探局及实验室试验 三维数值模拟及致灾强度计算
      地形图 1∶2 000
      岩土体水力力学参数 /
      地勘报告 / 重庆市地勘局 建筑物抗灾能力评价体系建设
      谷歌影像 0.3 m分辨率
      无人机影像 4 000×3 000像素 无人机航拍
      野外调查(裂缝、承灾体现状、照片和岩土取样) / 野外调查
      Sentinel-1A雷达影像111景 / ASF data search 致灾强度经验曲线反演
      下载: 导出CSV

      表  2  建筑物现场观测易损性分类法(Del Soldato, 2017)

      Table  2.   Classification of observable field vulnerability affecting buildings (Del Soldato, 2017)

      损失程度 裂缝宽度(CW, mm) 裂缝描述 地表损伤 观测易损性
      无损伤 - 完好无损 0.0
      可忽略的损伤 ≤1 细裂缝,通常位于不影响结构抗力的内墙或饰面中,从外面看不见. 0.2
      轻微损伤 1 < CW≤5 基础没有变形,建筑物内的墙壁和隔墙有几处轻微裂缝,很难从外部发现. 道路、混凝土路面等坚硬表面上的薄裂缝.植被覆盖的地面上没有可见的破裂. 0.4
      可承受的损伤 5 < CW≤15或存在多个CW > 3 可能影响结构强度的墙体裂缝,墙体脱节,门窗变形,排出和供水管道破裂. 从外部能够发现. 道路和结构的轻微损坏,出现裂缝、变形、分离或相对沉降. 0.6
      严重损伤 15 < CW≤25 在承重结构中存在扩展裂缝,砖块错动,地板倾斜,墙壁不垂直.门窗变形过大,无法使用,墙壁明显倾斜或凸起. 地面隆起或凹陷,在土壤和草地中出现多组的张拉裂缝.沉降可能导致墙体倾斜、结构、供水管道和电缆断裂. 0.8
      极度严重损伤 > 25 地板局部塌陷和承重结构存在多组贯通裂缝.墙体不垂直,结构严重变形,地板和墙壁严重开裂,门窗破损.建筑物可能发生倾倒,部分附属结构倒塌. 多组地面开裂,出现陡坎、地面隆起和沉陷.沉降会导致结构和道路出现裂缝、倾倒和变形. 1.0
      下载: 导出CSV

      表  3  建筑物抗性指标模糊判断矩阵

      Table  3.   The fuzzy judgment matrix of building resistance indicators

      ID BM MS RSD FD FT RB FL ANG
      BM (1, 1, 1) (3, 4, 5) (4, 5, 6) (2, 3, 4) (2, 3, 4) (1, 2, 3) (3, 4, 5) (1, 1, 1)
      MS (1/5, 1/4, 1/3) (1, 1, 1) (1, 1, 1) (1/3, 1/2, 1) (1/4, 1/3, 1/2) (1/4, 1/3, 1/2) (1, 1, 1) (1/4, 1/3, 1/2)
      RSD (1/6, 1/5, 1/4) (1, 1, 1) (1, 1, 1) (1/4, 1/3, 1/2) (1/4, 1/3, 1/2) (1/5, 1/4, 1/3) (1/3, 1/2, 1) (1/5, 1/4, 1/3)
      FD (1/4, 1/3, 1/2) (1, 2, 3) (2, 3, 4) (1, 1, 1) (1, 1, 1) (1/4, 1/3, 1/2) (1, 1, 1) (1/4, 1/3, 1/2)
      FT (1/4, 1/3, 1/2) (2, 3, 4) (2, 3, 4) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 2, 3) (1/3, 1/2, 1)
      RB (1/3, 1/2, 1) (2, 3, 4) (3, 4, 5) (2, 3, 4) (1, 1, 1) (1, 1, 1) (2, 3, 4) (1, 1, 1)
      FL (1/5, 1/4, 1/3) (1, 1, 1) (1, 2, 3) (1, 1, 1) (1/3, 1/2, 1) (1/4, 1/3, 1/2) (1, 1, 1) (1/4, 1/3, 1/2)
      ANG (1, 1, 1) (2, 3, 4) (3, 4, 5) (2, 3, 4) (1, 2, 3) (1, 1, 1) (2, 3, 4) (1, 1, 1)
      注:建筑材料(BM)、翻修状态(MS)、使用年限与设计年限比值(RSD)、基础深度(FD)、基础类型(FT)、是否存在地圈梁(RB)、楼层数(FL)、主滑方向与建筑物轴向的夹角(ANG).
      下载: 导出CSV

      表  4  指标赋值及权重

      Table  4.   The value and weight of building resistance indicators

      指标 分类 Ri取值 权重
      建筑结构 木质结构 0.10 0.258
      砖石结构 0.30
      砖混结构 0.50
      钢筋混凝土结构 0.70
      钢结构 1.00
      翻修状态 无变形 1.00 0.063
      轻微损伤 0.75
      中度损失 0.50
      严重损伤 0.25
      使用年限与设计年限比值 < 0.1 1.00 0.046
      [0.1, 0.4) 0.80
      [0.4, 0.6) 0.70
      [0.6, 0.8) 0.50
      [0.8, 1.0) 0.30
      [1.0, 1.2) 0.10
      ≥1.2 0.05
      基础深度(m) [0, 0.5) 0.30 0.081
      [0.5, 1.0) 0.50
      [1.0, 2.0) 0.80
      ≥2.0 1.00
      基础类型 毛石 0.30 0.100
      毛石+泥土 0.60
      毛石+混凝土 1.00
      是否存在地圈梁 存在 1.00 0.175
      不存在 0.00
      楼层数 单层 0.30 0.074
      双层 0.60
      三层及以上 1.00
      主滑方向与建筑物轴向的夹角 [0, 5) 0.20 0.202
      [5, 15) 0.40
      [15, 30) 0.60
      [30, 45) 1.00
      下载: 导出CSV

      表  5  3种指标反演易损性等级比较

      Table  5.   Comparison vulnerability levels retrieved by three indicators

      易损性等级 极低
      现场观测易损性 0 2 7 9
      Ipu 0 1 6 11
      Ipm 0 5 9 4
      Ipd 3 12 3 0
      下载: 导出CSV

      表  6  计算参数

      Table  6.   Material parameters

      名称 干密度(KN/m3) 弹性模量(MPa) 泊松比 孔隙比 渗透系数(m/h) 粘聚力(kPa) 内摩擦角(°)
      堆积土 18.99 30 0.3 0.35 0.068 18 20
      基岩 27.90 2.7e4 0.25 0.01 1e-7 1e3 30
      下载: 导出CSV

      表  7  重点房屋不同工况下易损性变化

      Table  7.   Vulnerability changes of key houses under different scenarios

      房屋代号 抗灾能力R 前期累计位移(mm) 10年预测位移(mm) 50年预测位移(mm) 100年预测位移(mm) 10年易损性等级 50年易损性等级 100年易损性等级
      b1 0.446 205.81 115.82 245.13 365.20
      b2 0.388 300.71 110.32 265.48 321.42 极高 极高 极高
      b3 0.430 251.67 112.65 248.72 288.55
      b4 0.428 443.01 141.21 276.66 352.32 极高 极高
      b5 0.669 0 66.89 211.15 249.58 极低
      b6 0.758 0 64.33 185.25 226.35 极低 极低 极低
      b7 0.451 0 165.21 311.25 365.52
      b8 0.416 0 85.21 225.21 265.21
      下载: 导出CSV
    • Agliata, R., Bortone, A., Mollo, L., 2021. Indicator-Based Approach for the Assessment of Intrinsic Physical Vulnerability of the Built Environment to Hydro- Meteorological Hazards: Review of Indicators and Example of Parameters Selection for a Sample Area. International Journal of Disaster Risk Reduction, 58: 102199. doi: 10.1016/j.ijdrr.2021.102199
      Bera, S., Guru, B., Oommen, T., 2020. Indicator-Based Approach for Assigning Physical Vulnerability of the Houses to Landslide Hazard in the Himalayan Region of India. International Journal of Disaster Risk Reduction, 50: 101891. doi: 10.1016/j.ijdrr.2020.101891
      Bianchini, S., Pratesi, F., Nolesini, T., et al., 2015. Building Deformation Assessment by Means of Persistent Scatterer Interferometry Analysis on a Landslide- Affected Area: The Volterra (Italy) Case Study. Remote Sensing, 7(4): 4678-4701. doi: 10.3390/rs70404678
      Cascini, L., Fornaro, G., Peduto, D., 2010. Advanced Low- and Full-Resolution DInSAR Map Generation for Slow-Moving Landslide Analysis at Different Scales. Engineering Geology, 112(1-4): 29-42. doi: 10.1016/j.enggeo.2010.01.003
      Cruden, D. M., Varnes, D. J., 1996. Landslide Types and Processes. In: Landslide Investigation and Mitigation. National Academy Press, Washington, 36-75.
      Dai, C., Li, W., Wang, D., et al., 2021. Active Landslide Detection Based on Sentinel-1 Data and InSAR Technology in Zhouqu County, Gansu Province, Northwest China. Journal of Earth Science, 32(5): 1092-1103. doi: 10.1007/s12583-020-1380-0
      Del Soldato, M., Bianchini, S., Calcaterra, D., et al., 2017. A New Approach for Landslide-Induced Damage Assessment. Geomatics, Natural Hazards and Risk, 8(2): 1524-1537. doi: 10.1080/19475705.2017.1347896
      Du, J., 2012. Risk Assessment of Individual Landslide (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Fell, R., Corominas, J., Bonnard, C., et al., 2008. Guidelines for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning. Engineering Geology, 102(3-4): 85-98. doi: 10.1016/j.enggeo.2008.03.022
      Ferretti, A., Prati, C., Rocca, F., 2000. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2202-2212. doi: 10.1109/36.868878
      Guo, Z., Chen, L., Yin, K., et al., 2020. Quantitative Risk Assessment of Slow-Moving Landslides from the Viewpoint of Decision-Making: A Case Study of the Three Gorges Reservoir in China. Engineering Geology, 273: 105667. doi: 10.1016/j.enggeo.2020.105667
      Guo, Z. Z., Yin, K. L., Tang, Y., et al., 2017. Stability Evaluation and Prediction of Maliulin Landslide under Reservoir Water Level Decline and Rainfall. Geological Science and Technology Information, 36(4): 260-265, 270 (in Chinese with English abstract). http://www.researchgate.net/publication/324390103_Stability_Evaluation_and_Prediction_of_Maliulin_Landslide_under_Reservoir_Water_Decline_and_Rainfall
      Huang, F., Huang, J., Jiang, S., et al., 2017. Landslide Displacement Prediction Based on Multivariate Chaotic Model and Extreme Learning Machine. Engineering Geology, 218: 173-186. doi: 10.1016/j.enggeo.2017.01.016
      Huang, F. M., Cao, Y., Fan, X. M., et al., 2021a. Effects of Different Landslide Boundaries and Their Spatial Shapes on the Uncertainty of Landslide Susceptibility Prediction. Chinese Journal of Rock Mechanics and Engineering, 40(S02): 3227-3240 (in Chinese with English abstract).
      Huang, F. M., Chen, J. W., Tang, Z. P., et al., 2021b. Uncertainties of Landslide Susceptibility Prediction Due to Different Spatial Resolutions and Different Proportions of Training and Testing Datasets. Chinese Journal of Rock Mechanics and Engineering, 40(6): 1155-1169 (in Chinese with English abstract).
      Huang, F. M., Chen, B., Mao, D. X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696-1710 (in Chinese with English abstract).
      Huang, F. M., Chen, J. W., Fan, X. M., et al., 2022a. Logistic Regression Fitting of Rainfall-Induced Landslide Occurrence Probability and Continuous Landslide Hazard Prediction Modelling. Earth Science, 47(12): 4609-4628 (in Chinese with English abstract).
      Huang, F. M., Hu, S. Y., Yan, X. Y., et al., 2022b. Landslide Susceptibility Prediction and Identification of Its Main Environmental Factors Based on Machine Learning Models. Bulletin of Geological Science and Technology, 41(2): 79-90 (in Chinese with English abstract).
      Huang, F. M., Li, J. F., Wang, J. Y., et al., 2022c. Modelling Rules of Landslide Susceptibility Prediction Considering the Suitability of Linear Environmental Factors and Different Machine Learning Models. Bulletin of Geological Science and Technology, 41(2): 44-59 (in Chinese with English abstract).
      Huang, F. M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 45(12): 4535-4549 (in Chinese with English abstract).
      Huang, F. M., Yin, K. L., Jiang, S. H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156-167 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=YSLX201801016&dbcode=CJFD&year=2018&dflag=pdfdown
      Javanbarg, M. B., Scawthorn, C., Kiyono, J., et al., 2012. Fuzzy AHP-Based Multicriteria Decision Making Systems Using Particle Swarm Optimization. Expert Systems with Applications, 39(1): 960-966. doi: 10.1016/j.eswa.2011.07.095
      Kalia, A., 2018. Classification of Landslide Activity on a Regional Scale Using Persistent Scatterer Interferometry at the Moselle Valley (Germany). Remote Sensing, 10(12): 1880. doi: 10.3390/rs10121880
      Li, Z., Nadim, F., Huang, H., et al., 2010. Quantitative Vulnerability Estimation for Scenario-Based Landslide Hazards. Landslides, 7(2): 125-134. doi: 10.1007/s10346-009-0190-3
      Lin, X. S., 2001. The Study of Landslide Related to Rainfall. Journal of Geological Hazards and Environment Preservation, 12(3): 1-7 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-4362.2001.03.001
      Notti, D., Herrera, G., Bianchini, S., et al., 2014. A Methodology for Improving Landslide PSI Data Analysis. International Journal of Remote Sensing, 35(6): 2186-2214. https://doi.org/10.1080/01431161.2014.889864
      Papathoma-Köhle, M., Neuhäuser, B., Ratzinger, K., et al., 2007. Elements at Risk as a Framework for Assessing the Vulnerability of Communities to Landslides. Natural Hazards and Earth System Sciences, 7(6): 765-779. doi: 10.5194/nhess-7-765-2007
      Peduto, D., Ferlisi, S., Nicodemo, G., et al., 2017. Empirical Fragility and Vulnerability Curves for Buildings Exposed to Slow-Moving Landslides at Medium and Large Scales. Landslides, 14(6): 1993-2007. doi: 10.1007/s10346-017-0826-7
      Peduto, D., Nicodemo, G., Caraffa, M., et al., 2018. Quantitative Analysis of Consequences to Masonry Buildings Interacting with Slow-Moving Landslide Mechanisms: A Case Study. Landslides, 15(10): 2017-2030. doi: 10.1007/s10346-018-1014-0
      Peduto, D., Oricchio, L., Nicodemo, G., et al., 2021. Investigating the Kinematics of the Unstable Slope of Barbera de la Conca (Catalonia, Spain) and the Effects on the Exposed Facilities by GBSAR and Multi-Source Conventional Monitoring. Landslides, 18(1): 457-469. doi: 10.1007/s10346-020-01500-9
      Peng, L., Xu, S., Hou, J., et al., 2015. Quantitative Risk Analysis for Landslides: The Case of the Three Gorges Area, China. Landslides, 12(5): 943-960. doi: 10.1007/s10346-014-0518-5
      Pereira, S., Santos, P. P., Zêzere, J. L., et al., 2020. A Landslide Risk Index for Municipal Land Use Planning in Portugal. The Science of the Total Environment, 735: 139463. doi: 10.1016/j.scitotenv.2020.139463
      Silva, V., Brzev, S., Scawthorn, C., et al., 2022. A Building Classification System for Multi-Hazard Risk Assessment. International Journal of Disaster Risk Science, (2): 161-177. doi: 10.1007/s13753-022-00400-x?utm_source=xmol&utm_content=meta
      Singh, A., Kanungo, D. P., Pal, S., 2019. Physical Vulnerability Assessment of Buildings Exposed to Landslides in India. Natural Hazards, 96(2): 753-790. doi: 10.1007/s11069-018-03568-y
      Subasinghe, C. N., Kawasaki, A., 2021. Assessment of Physical Vulnerability of Buildings and Socio- Economic Vulnerability of Residents to Rainfall Induced Cut Slope Failures: A Case Study in Central Highlands, Sri Lanka. International Journal of Disaster Risk Reduction, 65: 102550. doi: 10.1016/j.ijdrr.2021.102550
      Uzielli, M., Catani, F., Tofani, V., et al., 2015. Risk Analysis for the Ancona Landslide—Ⅱ: Estimation of Risk to Buildings. Landslides, 12(1): 83-100. doi: 10.1007/s10346-014-0477-x
      Wu, Y., Liu, D. S., Lu, X., et al., 2011. Vulnerability Assessment Model for Hazard Bearing Body and Landslide Risk Index. Rock and Soil Mechanics, 32(8): 2487-2492, 2499 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.08.039
      Wu, Y., Miao, F., Li, L., et al., 2017. Time-Varying Reliability Analysis of Huangtupo Riverside No. 2 Landslide in the Three Gorges Reservoir Based on Water-Soil Coupling. Engineering Geology, 226: 267-276. http://www.sciencedirect.com/science/article/pii/S0013795217309468
      Zeng, T., Jiang, H., Liu, Q., et al., 2022. Landslide Displacement Prediction Based on Variational Mode Decomposition and MIC-GWO-LSTM Model. Stochastic Environmental Research and Risk Assessment, 36: 1353-1372. doi: 10.1007/s00477-021-02145-3
      Zhang, Y. S., Liu, X. Y., Yao, X., 2020. InSAR-Based Method for Early Recognition of Ancient Landslide Reactivation in Dadu River, China. Journal of Hydraulic Engineering, 51(5): 545-555 (in Chinese with English abstract).
      Zhang, Z., Qian, M., Wei, S., et al., 2018. Failure Mechanism of the Qianjiangping Slope in Three Gorges Reservoir Area, China. Geofluids, (5): 1-12. http://www.onacademic.com/detail/journal_1000040884440310_b6c7.html
      Zhou, C. , 2018. Landslide Identification and Prediction with the Application of Time Series InSAR (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zhou, C., Cao, Y., Yin, K., et al., 2022. Characteristic Comparison of Seepage-Driven and Buoyancy-Driven Landslides in Three Gorges Reservoir Area, China. Engineering Geology, 301: 106590. doi: 10.1016/j.enggeo.2022.106590
      杜娟, 2012. 单体滑坡灾害风险评价研究(博士学位论文). 武汉: 中国地质大学.
      郭子正, 殷坤龙, 唐扬, 等, 2017. 库水位下降及降雨作用下麻柳林滑坡稳定性评价与预测. 地质科技情报, 36(4): 260-265, 270. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704035.htm
      黄发明, 曹昱, 范宣梅, 等, 2021a. 不同滑坡边界及其空间形状对滑坡易发性预测不确定性的影响规律. 岩石力学与工程学报, 40(S02): 3227-3240. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2023.htm
      黄发明, 陈佳武, 唐志鹏, 等, 2021b. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性. 岩石力学与工程学报, 40(6): 1155-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htm
      黄发明, 陈彬, 毛达雄, 等, 2023. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性. 地球科学, 48(5): 1696-1710. doi: 10.3799/dqkx.2022.247
      黄发明, 陈佳武, 范宣梅, 等, 2022a. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模. 地球科学, 47(12): 4609-4628. doi: 10.3799/dqkx.2021.164
      黄发明, 胡松雁, 闫学涯, 等, 2022b. 基于机器学习的滑坡易发性预测建模及其主控因子识别. 地质科技通报, 41(2): 79-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202202008.htm
      黄发明, 李金凤, 王俊宇, 等, 2022c. 考虑线状环境因子适宜性和不同机器学习模型的滑坡易发性预测建模规律. 地质科技通报, 41(2): 44-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202202005.htm
      黄发明, 叶舟, 姚池, 等, 2020. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 45(12): 4535-4549. doi: 10.3799/dqkx.2020.247
      黄发明, 殷坤龙, 蒋水华, 等, 2018. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
      林孝松, 2001. 滑坡与降雨研究. 地质灾害与环境保护, 12(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB202102002.htm
      吴越, 刘东升, 陆新, 等, 2011. 承灾体易损性评估模型与滑坡灾害风险度指标. 岩土力学, 32(8): 2487-2492, 2499. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201108040.htm
      张永双, 刘筱怡, 姚鑫, 2020. 基于InSAR技术的古滑坡复活早期识别方法研究: 以大渡河流域为例. 水利学报, 51(5): 545-555. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202005005.htm
      周超, 2018. 集成时间序列InSAR技术的滑坡早期识别与预测研究(博士学位论文). 武汉: 中国地质大学.
    • 加载中
    图(9) / 表(7)
    计量
    • 文章访问数:  1460
    • HTML全文浏览量:  756
    • PDF下载量:  116
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-09-23
    • 网络出版日期:  2023-06-06
    • 刊出日期:  2023-05-25

    目录

      /

      返回文章
      返回