• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    塔里木盆地东北部磁性基底深度及构造属性

    匡星涛 宁方馨 肖梦楚 朱晓颖 徐曦

    匡星涛, 宁方馨, 肖梦楚, 朱晓颖, 徐曦, 2023. 塔里木盆地东北部磁性基底深度及构造属性. 地球科学, 48(4): 1351-1365. doi: 10.3799/dqkx.2022.434
    引用本文: 匡星涛, 宁方馨, 肖梦楚, 朱晓颖, 徐曦, 2023. 塔里木盆地东北部磁性基底深度及构造属性. 地球科学, 48(4): 1351-1365. doi: 10.3799/dqkx.2022.434
    Kuang Xingtao, Ning Fangxin, Xiao Mengchu, Zhu Xiaoying, Xu Xi, 2023. Depth and Tectonic Properties of Magnetic Basement in Northeastern Tarim Basin. Earth Science, 48(4): 1351-1365. doi: 10.3799/dqkx.2022.434
    Citation: Kuang Xingtao, Ning Fangxin, Xiao Mengchu, Zhu Xiaoying, Xu Xi, 2023. Depth and Tectonic Properties of Magnetic Basement in Northeastern Tarim Basin. Earth Science, 48(4): 1351-1365. doi: 10.3799/dqkx.2022.434

    塔里木盆地东北部磁性基底深度及构造属性

    doi: 10.3799/dqkx.2022.434
    基金项目: 

    中国地质调查局项目 DD20160065

    中国地质调查局项目 DD20190025

    详细信息
      作者简介:

      匡星涛(1988-),男,工程师,主要从事航空重磁数据处理、解释以及构造地质研究工作. ORCID:0000-0002-9805-9363. E-mail:kuangxingtao@126.com

      通讯作者:

      朱晓颖,E-mail: zhu_xiaoyin@163.com

    • 中图分类号: P318

    Depth and Tectonic Properties of Magnetic Basement in Northeastern Tarim Basin

    • 摘要: 为了探讨塔里木盆地东北部磁性基底深度、性质及其对构造属性的指示意义,基于最新的高精度航磁数据,利用剖面切线法计算了塔里木盆地东北部磁性体最小埋深,并绘制了磁性基底深度图.结果显示,大部分地区的磁性基底深度与勘探地震的沉积盖层底界深度相差不大,表明切线法计算结果具有很高的可信度.但是在塔东隆起北缘,磁性基底起伏较大,与沉积盖层底界深度差异明显.在分析磁性基底深度图的基础上,结合高精度布格重力异常以及地震解释剖面,探讨了塔东隆起和孔雀河斜坡的构造属性.研究认为,塔东隆起北缘显著的长波磁异常梯度带和较低的重力值,剧烈变化的磁性基底深度,以及大量钻遇的古元古代变质花岗岩,均指示塔东隆起可能是塔里木盆地东北部最重要的前寒武纪构造边界.孔雀河斜坡重磁异常呈现明显的负相关性,基于磁性基底、南华系-震旦系沉积厚度等与重磁异常的空间结构关系,以及岩石磁性特征等,认为新元古代的裂谷作用可能降低了基底磁性,而北部凹陷中南部未受裂谷作用影响,依然保留了强磁性特征.

       

    • 图  1  塔里木盆地东部综合地质构造图

      蓝色线框为航磁测量区;黑色虚线为盆地内构造边界;D1.库鲁克塔格;D2.孔雀河斜坡;D3.满加尔凹陷;D4. 英吉苏凹陷;D5塔东隆起;D6.东南凹陷;F1.车尔臣断裂;F2.孔雀河断裂

      Fig.  1.  Comprehensive geological structure map of eastern Tarim basin

      图  2  航磁化极图(a)与上延10 km图(b)

      黑色虚线、D1到D6及F1、F2代号含义见图 1

      Fig.  2.  Aeromagnetic RTP diagram (a) and upward 10 km diagram (b)

      图  3  塔里木盆地东北部显生宙地层底面深度

      Fig.  3.  Phanerozoic stratigraphic depth in the northeastern Tarim basin

      图  4  塔里木盆地东北部震旦系厚度图(a)和南华系厚度图(b)

      Fig.  4.  Thickness maps of Sinian System (a) and Nanhua System (b) in the northeastern Tarim basin

      图  5  塔里木盆地东北部磁性体最小埋深图(a)和磁性基岩深度图(b)

      黄色椭圆为浅层磁性体;黑色虚线、D1到D6及F1、F2代号含义见图 1

      Fig.  5.  Minimum burial depth of magnetic bodie (a) and magnetic basement depth (b) of northeastern Tarim basin

      图  6  综合地球物理剖面

      位置见图 3图 4中的A'A

      Fig.  6.  Comprehensive geophysical profile

      表  1  塔里木盆地东北部及周缘地层磁化率

      Table  1.   Magnetic susceptibility of strata in northeast Tarim basin and its periphery

      时代 岩性 磁化率(10-5 SI)
      测点数 最小值 最大值 平均值
      Q 砂岩、碎石、黄土 635 0 278 47
      N 砂岩、泥岩、砂页岩 112 0 180 33
      E 砂岩、泥岩、砂页岩 52 0 30 8
      K 砂岩 148 0 270 12
      J 砂岩、泥岩、砾岩 930 0 110 15
      C 砂岩、灰岩、泥岩、火山角砾岩、火山碎屑岩 237 0 1 400 40
      D 灰岩、硅质岩、砂岩 105 0 109 5
      S 灰岩、砂岩、硅质岩、火山碎屑岩 77 0 45 8
      O 砂岩、泥岩、灰岩、白云岩 215 0 81 13
      灰岩 17 0 26 1
      Z 砂岩、砾岩、冰碛岩 139 0 75 21
      Pt 片岩、片麻岩、大理岩、板岩、石英岩 1 100 0 17 710 28
      Ar 碳酸岩、金云母岩、片麻岩、透辉石岩、麻粒岩 252 18 25 600 2 294
      下载: 导出CSV

      表  2  塔里木盆地东北部及周缘侵入岩磁化率

      Table  2.   Magnetic susceptibility of intrusive rocks in northeastern Tarim basin and its periphery

      岩性 磁化率(10-5 SI)
      测点数 最小值 最大值 平均值
      片麻状花岗岩、花岗岩、花岗闪长岩、二长花岗岩、混合花岗岩 435 0 1 000 60
      闪长岩、安山岩、闪长玢岩 132 10 4 900 281
      辉绿岩、超基性岩 49 140 27 900 7 065
      下载: 导出CSV
    • [1] Arkani-Hamed, J., 1988. Differential Reduction‐to‐the‐Pole of Regional Magnetic Anomalies. Geophysics, 53(12): 1592-1600. https://doi.org/10.1190/1.1442441
      [2] Barnett, C. T., 1976. Theoretical Modeling of the Magnetic and Gravitational Fields of an Arbitrarily Shaped Three‐Dimensional Body. Geophysics, 41(6): 1353-1364. https://doi.org/10.1190/1.1440685
      [3] Ding, C. H., Shan, X. L., Li, Q., et al., 2008. Geologic Framework and Structural Evolution of Cheerchen Fracture System in Tarim Basin. Global Geology, 27(1): 36-41, 58(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2008.01.007
      [4] Gay, S. P. Jr, 1963. Standard Curves for Interpretation of Magnetic Anomalies over Long Tabular Bodies. Geophysics, 28(2): 161-200. https://doi.org/10.1190/1.1439164
      [5] Gu, P. Y., Ji, W. H., Chen, R. M., et al., 2020. Petrogenesis of Neoarchean Ananba Quartz Diorite Gneiss in Southeastern Margin of Tarim: Implications for Crustal Evolution. Earth Science, 45(9): 3268-3281(in Chinese with English abstract).
      [6] Guo, Z. H., Yu, C. C., Zhou, J. X., 2003. The Tangent Technique of ΔT Profile Magnetic Anomaly in the Low Magnetic Latitude Area. Geophysical and Geochemical Exploration, 27(5): 391-394(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8918.2003.05.016
      [7] Guo, Z. J., Yin, A., Robinson, A., et al., 2005. Geochronology and Geochemistry of Deep-Drill-Core Samples from the Basement of the Central Tarim Basin. Journal of Asian Earth Sciences, 25(1): 45-56. https://doi.org/10.1016/j.jseaes.2004.01.016
      [8] Guo, Z. J., Zhang, Z. C., Liu, S. W., et al., 2003. U-Pb Geochronological Evidence for the Early Precambrian Complex of the Tarim Craton, NW China. Acta Petrologica Sinica, 19(3): 537-542(in Chinese with English abstract).
      [9] Hawkesworth, C. J., Kemp, A. I. S., 2006. Evolution of the Continental Crust. Nature, 443(7113): 811-817. https://doi.org/10.1038/nature05191
      [10] He, B. Z., Jiao, C. L., Huang, T. Z., et al., 2019. Structural Architecture of Neoproterozoic Rifting Depression Groups in the Tarim Basin and Their Formation Dynamics. Scientia Sinica (Terrae), 49(4): 635-655(in Chinese). doi: 10.1360/N072018-00010
      [11] Hu, A. Q., Rogers, G., 1992. The Rocks of 3.3 Billion Years were Discovered for the First Time in the Northern Margin of Tarim. Chinese Science Bulletin, 37(7): 627-630 (in Chinese). doi: 10.1360/csb1992-37-7-627
      [12] Hu, G. Z., Teng, J. W., Ruan, X. M., et al., 2014. Magnetic Anomaly Characteristics and Crystalline Basement Variation of the Qinling Orogenic Belt and Its Adjacent Areas. Chinese Journal of Geophysics, 57(2): 556-571(in Chinese with English abstract).
      [13] Huang, X. Z., Guo, Z. H., Xu, K., 2007. The Development of the Manual Computer Interaction Aeromagnetic Tangent Method System. Geophysical and Geochemical Exploration, 31(6): 572-576(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8918.2007.06.021
      [14] Jia, C. Z., 1997. Structural Characteristics and Oil and Gas in Tarim Basin, China. Petroleum Industry Press, Beijing(in Chinese).
      [15] Jin, Z. J., Zhang, Y. W., Chen, S. P., 2005. Tectonic-Sedimentary Fluctuation Process in Tarim Basin. Science in China (Series D), 35(6): 530-539 (in Chinese).
      [16] Ku, C. C., Sharp, J. A., 1983. Werner Deconvolution for Automated Magnetic Interpretation and Its Refinement Using Marquardt's Inverse Modeling. Geophysics, 48(6): 754-774. https://doi.org/10.1190/1.1441505
      [17] Kuang, X. T., Zhu, X. Y., Ning, F. X., et al., 2022. Aeromagnetic-Imaged Basement Fault Structure of the Eastern Tarim Basin and Its Tectonic Implication. Frontiers in Earth Science, 9: 825498. https://doi.org/10.3389/feart.2021.825498
      [18] Laborde, A., Barrier, L., Simoes, M., et al., 2019. Cenozoic Deformation of the Tarim Basin and Surrounding Ranges (Xinjiang, China): A Regional Overview. Earth-Science Reviews, 197: 102891. https://doi.org/10.1016/j.earscirev.2019.102891
      [19] Li, X. Q., Ding, H. K., Peng, P., et al., 2021. Provenance of Silurian Kepingtage Formation in Tazhong Area, Tarim Basin: Evidence from Detrital Zircon U-Pb Geochronology. Earth Science, 46(8): 2819-2831(in Chinese with English abstract).
      [20] Lin, B., Zhang, X., Xu, X. C., et al., 2015. Features and Effects of Basement Faults on Deposition in the Tarim Basin. Earth-Science Reviews, 145: 43-55. https://doi.org/10.1016/j.earscirev.2015.02.008
      [21] Liu, P. H., Tian, Z. H., Wen, F., et al., 2020. Multiple High-Grade Metamorphic Events of the Jiaobei Terrane, North China Craton: New Evidences from Zircon U-Pb Ages and Trace Elements Compositions of Garnet Amphilbote and Granitic Leucosomes. Earth Science, 45(9): 3196-3216(in Chinese with English abstract).
      [22] Liu, Z., 2013. Tectonic Evolution and Basin-Mountain Coupling Relationship between Kongquehe Slope and Quruqtagh Uplift (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      [23] Long, X. P., Yuan, C., Sun, M., et al., 2011. Reworking of the Tarim Craton by Underplating of Mantle Plume-Derived Magmas: Evidence from Neoproterozoic Granitoids in the Kuluketage Area, NW China. Precambrian Research, 187(1/2): 1-14. https://doi.org/10.1016/j.precamres.2011.02.001
      [24] Lu, S. N., Li, H. K., Zhang, C. L., et al., 2008. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 160(1/2): 94-107. https://doi.org/10.1016/j.precamres.2007.04.025
      [25] Nabighian, M., 1974. Additional Comments on the Analytic Signal of Two-Dimensional Magnetic Bodies with Polygonal Cross-Section. Geophysics, 39(1): 85-92. https://doi.org/10.1190/1.1440416
      [26] Portniaguine, O., Zhdanov, M. S., 2002.3‐D Magnetic Inversion with Data Compression and Image Focusing. Geophysics, 67(5): 1532-1541. https://doi.org/10.1190/1.1512749
      [27] Ren, R., Guan, S. W., Wu, L., et al., 2017. The North-South Differentiation Characteristic and Its Enlightenment on Oil-Gas Exploration of the Neoproterozoic Rift Basin, Tarim Basin. Acta Petrolei Sinica, 38(3): 255-266(in Chinese with English abstract).
      [28] Shi, K. B., Liu, B., Jiang, W. M., et al., 2018. Nanhua-Sinian Tectono-Sedimentary Framework of Tarim Basin, NW China. Oil & Gas Geology, 39(5): 862-877(in Chinese with English abstract).
      [29] Shu, L. S., Deng, X. L., Ma, X. X., 2019. Tectonic Affinity between Central Tianshan Basement and Tarim Block Craton. Earth Science, 44(5): 1584-1601(in Chinese with English abstract).
      [30] Spector, A., Grant, F. S., 1970. Statistical Models for Interpreting Aeromagnetic Data. Geophysics, 35(2): 293-302. https://doi.org/10.1190/1.1440092
      [31] Tian, L., Zhang, H. Q., Liu, J., et al., 2020. Distribution of Nanhua-Sinian Rifts and Proto-Type Basin Evolution in Southwestern Tarim Basin, NW China. Petroleum Exploration and Development, 47(6): 1122-1133(in Chinese with English abstract).
      [32] Tong, J., Zhang, X. J., Zhang, W., et al., 2018. Marine Strata Morphology of the South Yellow Sea Based on High-Resolution Aeromagnetic and Airborne Gravity Data. Marine and Petroleum Geology, 96: 429-440. https://doi.org/10.1016/j.marpetgeo.2018.06.018
      [33] Vacquier, V., Steenland, N. C., Henderson, R. G., et al., 1951. Interpretation of Aeromagnetic Maps. Geological Society of America Memoirs 47, 1-150. https://doi.org/10.1130/mem47-p1
      [34] Wang, B. Q., Wang, Q. H., Han, L. J., et al., 2007. Segmentation Characteristics and Dynamic Mechanism of the Che'erchen Fault in the Southeast Tarim Basin. Oil & Gas Geology, 28(6): 755-761(in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2007.06.008
      [35] Wang, X. L., Gao, X. P., Liu, Y. Q., et al., 2010. Crystal Basement Feature of Tiekelike Fault-Uplift at Southern Margin of Tarim Basin. Northwestern Geology, 43(4): 95-112(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2010.04.012
      [36] Wang, Z. M., Han, C. M., Xiao, W J., et al., 2020. Paleoproterozoic Multiphase Magmatism and Metamorphism Recorded in Metamorphic Basement Rocks of the Northern Altyn Tagh, Southeastern Tarim Craton. Precambrian Research, 346: 105827. https://doi.org/10.1016/j.precamres.2020.105827
      [37] Wu, G. H., Chen, X., Ma, B. S., et al., 2021. The Tectonic Environments of the Late Neoproterozoic-Early Paleozoic and Its Tectono-Sedimentary Response in the Tarim Basin. Acta Petrologica Sinica, 37(8): 2431-2441(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.08.11
      [38] Wu, G. H., Li, H. W., Xu, Y. L., et al., 2012. The Tectonothermal Events, Architecture and Evolution of Tarim Craton Basement Palaeo-Uplifts. Acta Petrologica Sinica, 28(8): 2435-2452(in Chinese with English abstract).
      [39] Wu, L., Guan, S. W., Zhang, S. C., et al., 2018. Neoproterozoic Stratigraphic Framework of the Tarim Craton in NW China: Implications for Rift Evolution. Journal of Asian Earth Sciences, 158: 240-252. https://doi.org/10.1016/j.jseaes.2018.03.003
      [40] Xiong, S. Q., Ding, Y. Y., Li, Z. K., 2014. Characteristics of China Continent Magnetic Basement Depth. Chinese Journal of Geophysics, 57(12): 3981-3993(in Chinese with English abstract). doi: 10.6038/cjg20141211
      [41] Xiong, S. Q, Yang, H., Ding, Y., et al., 2016. Distribution of Igneous Rocks in China Revealed by Aeromagnetic Data. Journal of Asian Earth Sciences, 129: 231-242. https://doi.org/10.1016/j.jseaes.2016.08.016
      [42] Xu, M. J., Wang, L. S., Zhong, K., et al., 2005. Features of Gravitational and Magnetic Fields in the Tarim Basin and Basement Structure Analysis. Geological Journal of China Universities, 11(4): 585-592(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2005.04.015
      [43] Xu, X., Xiong, S. Q., Tanaka, A., et al., 2021a. Thermal Structure beneath the Tarim Craton and Its Tectonic Implications. Frontiers in Earth Science, 9: 700114. https://doi.org/10.3389/feart.2021.700114
      [44] Xu, X., Zuza, A. V., Yin, A., et al., 2021b. Permian Plume-Strengthened Tarim Lithosphere Controls the Cenozoic Deformation Pattern of the Himalayan-Tibetan Orogen. Geology, 49(1): 96-100. https://doi.org/10.1130/g47961.1
      [45] Xu, Z. Q., He, B. Z., Zhang, C. L., et al., 2013. Tectonic Framework and Crustal Evolution of the Precambrian Basement of the Tarim Block in NW China: New Geochronological Evidence from Deep Drilling Samples. Precambrian Research, 235: 150-162. https://doi.org/10.1016/j.precamres.2013.06.001
      [46] Yang, H. J., Wu, G. H., Kusky, T. M., et al., 2018. Paleoproterozoic Assembly of the North and South Tarim Terranes: New Insights from Deep Seismic Profiles and Precambrian Granite Cores. Precambrian Research, 305: 151-165. https://doi.org/10.1016/j.precamres.2017.11.015
      [47] Yang, M., Yu, P., Zhu, G. Y., et al., 2022. Gravity-Magnetic-Magnetotelluric Joint Inversion Method Coupled with Seismic Constraint Information and Its Application: Case Study of the Analysis of Deep Geological Structure in Tarim Basin. Natural Gas Geoscience, 33(1): 168-179(in Chinese with English abstract).
      [48] Yang, W. C., Wang, J. L., Zhong, H. Z., et al., 2012. Analysis of Regional Magnetic Field and Source Structure in Tarim Basin. Chinese Journal of Geophysics, 55(4): 1278-1287(in Chinese with English abstract).
      [49] Zhang, J. X., Gong, J. H., Yu, S. Y., 2012. c. 1.85 Ga HP Granulite-Facies Metamorphism in the Dunhuang Block of the Tarim Craton, NW China: Evidence from U-Pb Zircon Dating of Mafic Granulites. Journal of the Geological Society, 169(5): 511-514. https://doi.org/10.1144/0016-76492011-158
      [50] Zhao, P., He, J. Y., Deng, C. L., et al., 2021. Early Neoproterozoic (870-820 Ma) Amalgamation of the Tarim Craton (Northwestern China) and the Final Assembly of Rodinia. Geology, 49(11): 1277-1282. https://doi.org/10.1130/g48837.1
      [51] Zhu, G. Y., Chen, Z. Y., Chen, W. Y., et al., 2021. Revisiting to the Neoproterozoic Tectonic Evolution of the Tarim Block, NW China. Precambrian Research, 352: 106013. https://doi.org/10.1016/j.precamres.2020.106013
      [52] Zhu, R. X., Zheng, T. Y., 2009. Failure Mechanism of North China Craton and Paleoproterozoic Plate Tectonic System. Chinese Science Bulletin, 54(14): 1950-1961(in Chinese). doi: 10.1360/csb2009-54-14-1950
      [53] Zhu, W. B., Ge, R. F., Wu, H. L., 2018. Paleoproterozoic ca.2.0 Ga Magmatic-Metamorphic Event in the Northern Altyn Tagh Area. Acta Petrologica Sinica, 34(4): 1175-1190 (in Chinese with English abstract).
      [54] 丁长辉, 单玄龙, 李强, 等, 2008. 塔里木盆地车尔臣断裂系地质结构与构造演化. 世界地质, 27(1): 36-41, 58. doi: 10.3969/j.issn.1004-5589.2008.01.007
      [55] 辜平阳, 计文化, 陈锐明, 等, 2020. 塔里木地块东南缘新太古代安南坝石英闪长片麻岩的成因及其对地壳演化的启示. 地球科学, 45(9): 3268-3281. doi: 10.3799/dqkx.2020.140
      [56] 郭召杰, 张志诚, 刘树文, 等, 2003. 塔里木克拉通早前寒武纪基底层序与组合: 颗粒锆石U-Pb年龄新证据. 岩石学报, 19(3): 537-542. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200303019.htm
      [57] 郭志宏, 于长春, 周坚鑫, 2003. 低磁纬度区ΔT剖面磁异常场源深度计算的切线法. 物探与化探, 27(5): 391-394. doi: 10.3969/j.issn.1000-8918.2003.05.016
      [58] 何碧竹, 焦存礼, 黄太柱, 等, 2019. 塔里木盆地新元古代裂陷群结构构造及其形成动力学. 中国科学: 地球科学, 49(4): 635-655. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201904002.htm
      [59] 胡霭琴, 格雷姆·罗杰斯, 1992. 新疆塔里木北缘首次发现33亿年的岩石. 科学通报, 37(7): 627-630. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199207014.htm
      [60] 胡国泽, 滕吉文, 阮小敏, 等, 2014. 秦岭造山带和邻域磁异常特征及结晶基底变异分析. 地球物理学报, 57(2): 556-571. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201402020.htm
      [61] 黄旭钊, 郭志宏, 徐昆, 2007. 交互式航磁异常切线法系统研制. 物探与化探, 31(6): 572-576. doi: 10.3969/j.issn.1000-8918.2007.06.021
      [62] 贾承造, 1997. 中国塔里木盆地构造特征与油气. 北京: 石油工业出版社.
      [63] 金之钧, 张一伟, 陈书平, 2005. 塔里木盆地构造-沉积波动过程. 中国科学(D辑: 地球科学), 35(6): 530-539. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200506005.htm
      [64] 李祥权, 丁洪坤, 彭鹏, 等, 2021. 塔里木盆地塔中志留系柯坪塔格组物源示踪: 碎屑锆石U-Pb年代学证据. 地球科学, 46(8): 2819-2831. doi: 10.3799/dqkx.2020.197
      [65] 刘平华, 田忠华, 文飞, 等, 2020. 华北克拉通胶北地体多期高级变质事件: 来自石榴斜长角闪岩与花岗质浅色体锆石U-Pb定年与稀土元素的新证据. 地球科学, 45(9): 3196-3216. doi: 10.3799/dqkx.2020.228
      [66] 刘阵, 2013. 孔雀河斜坡与库鲁克塔格断隆的耦合关系及构造演化(博士学位论文). 北京: 中国地质大学.
      [67] 任荣, 管树巍, 吴林, 等, 2017. 塔里木新元古代裂谷盆地南北分异及油气勘探启示. 石油学报, 38(3): 255-266. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703002.htm
      [68] 石开波, 刘波, 姜伟民, 等, 2018. 塔里木盆地南华纪-震旦纪构造-沉积格局. 石油与天然气地质, 39(5): 862-877. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805003.htm
      [69] 舒良树, 邓兴梁, 马绪宣, 2019. 中天山基底与塔里木克拉通的构造亲缘性. 地球科学, 44(5): 1584-1601. doi: 10.3799/dqkx.2019.977
      [70] 田雷, 张虎权, 刘军, 等, 2020. 塔里木盆地西南部南华纪—震旦纪裂谷分布及原型盆地演化. 石油勘探与开发, 47(6): 1122-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006008.htm
      [71] 王步清, 王清华, 韩利军, 等, 2007. 塔里木盆地东南部车尔臣断裂的分段特征及动力学机制. 石油与天然气地质, 28(6): 755-761. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200706009.htm
      [72] 王向利, 高小平, 刘幼骐, 等, 2010. 塔里木盆地南缘铁克里克断隆结晶基底特征. 西北地质, 43(4): 95-112. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201004015.htm
      [73] 邬光辉, 陈鑫, 马兵山, 等, 2021. 塔里木盆地晚新元古代-早古生代板块构造环境及其构造-沉积响应. 岩石学报, 37(8): 2431-2441. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202108011.htm
      [74] 邬光辉, 李浩武, 徐彦龙, 等, 2012. 塔里木克拉通基底古隆起构造-热事件及其结构与演化. 岩石学报, 28(8): 2435-2452. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208013.htm
      [75] 熊盛青, 丁燕云, 李占奎, 2014. 中国陆域磁性基底深度及其特征. 地球物理学报, 57(12): 3981-3993. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201412012.htm
      [76] 徐鸣洁, 王良书, 钟锴, 等, 2005. 塔里木盆地重磁场特征与基底结构分析. 高校地质学报, 11(4): 585-592. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200504015.htm
      [77] 杨敏, 于鹏, 朱光有, 等, 2022. 耦合地震约束信息的重磁电联合反演方法及其应用: 以塔里木盆地深层地质结构解析为例. 天然气地球科学, 33(1): 168-179. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202201014.htm
      [78] 杨文采, 王家林, 钟慧智, 等, 2012. 塔里木盆地航磁场分析与磁源体结构. 地球物理学报, 55(4): 1278-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201204024.htm
      [79] 朱日祥, 郑天愉, 2009. 华北克拉通破坏机制与古元古代板块构造体系. 科学通报, 54(14): 1950-1961. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200914003.htm
      [80] 朱文斌, 葛荣峰, 吴海林, 2018. 北阿尔金地区古元古代ca.2.0 Ga岩浆-变质事件. 岩石学报, 34(4): 1175-1190. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804019.htm
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  97
    • HTML全文浏览量:  59
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-05-31
    • 刊出日期:  2023-04-25

    目录

      /

      返回文章
      返回