• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    内蒙古巴音戈壁盆地塔木素碱矿Na-碳酸盐成因模式

    戴朝成 钟炽涛 刘晓东 向龙 许亚鑫

    戴朝成, 钟炽涛, 刘晓东, 向龙, 许亚鑫, 2024. 内蒙古巴音戈壁盆地塔木素碱矿Na-碳酸盐成因模式. 地球科学, 49(4): 1207-1223. doi: 10.3799/dqkx.2022.447
    引用本文: 戴朝成, 钟炽涛, 刘晓东, 向龙, 许亚鑫, 2024. 内蒙古巴音戈壁盆地塔木素碱矿Na-碳酸盐成因模式. 地球科学, 49(4): 1207-1223. doi: 10.3799/dqkx.2022.447
    Dai Chaocheng, Zhong Chitao, Liu Xiaodong, Xiang Long, Xu Yaxin, 2024. Genetic Model of Na-Cabonate in Tamusu Trona Deposit, Bayingobi Basin, Inner Mongolia. Earth Science, 49(4): 1207-1223. doi: 10.3799/dqkx.2022.447
    Citation: Dai Chaocheng, Zhong Chitao, Liu Xiaodong, Xiang Long, Xu Yaxin, 2024. Genetic Model of Na-Cabonate in Tamusu Trona Deposit, Bayingobi Basin, Inner Mongolia. Earth Science, 49(4): 1207-1223. doi: 10.3799/dqkx.2022.447

    内蒙古巴音戈壁盆地塔木素碱矿Na-碳酸盐成因模式

    doi: 10.3799/dqkx.2022.447
    基金项目: 

    国家自然科学基金 42302044

    国防科技工业局项目 科工二司[2014]1587号

    中国铀业有限公司-东华理工大学核资源与环境国家重点实验室联合创新基金 2022NRE-LH-01

    详细信息
      作者简介:

      戴朝成(1980-),男,副教授,博士,从事地层学研究.ORCID:0000-0003-2139-9914. E-mail:daichaocheng@qq.com

    • 中图分类号: P611

    Genetic Model of Na-Cabonate in Tamusu Trona Deposit, Bayingobi Basin, Inner Mongolia

    • 摘要: 内蒙古巴音戈壁盆地哈日凹陷下白垩统巴音戈壁组沉积时期为典型的碳酸盐型碱湖,盆地咸化过程中发育大量的Na-碳酸盐类矿物.通过对巴音戈壁组碱矿层中似层状、斑点状和脉状Na-碳酸盐矿物开展了电子探针、X衍射、碳氧同位素和激光拉曼光谱等分析,结果表明碱矿层中Na-碳酸盐矿物主要为天然碱、苏打石、碳钠钙石、碳钠镁石和磷碳镁钠石.除Na-碳酸盐外,岩石中含少量黄铁矿、钠型菱沸石、硅硼钠石和钠长石等热液矿物.碳、氧同位素研究结果表明巴音戈壁盆地下白垩统碱矿层形成于封闭的碱湖环境,碳酸盐矿物形成温度为34~80 ℃(平均值57 ℃),受热水喷流沉积作用和蒸发作用双重控制,碱矿层中硅酸盐矿物首先形成,然后形成白云石和方解石,在Ca2+、Mg2+消耗殆尽后,天然碱和苏打石发生沉淀,由于热水带来充足的Na+,前期形成白云石和方解石发生交代作用形成碳钠钙石和碳钠镁石.在矿物学和地球化学综合分析基础上,建立了热水喷流和蒸发沉积双重控制下的碱湖Na-碳酸盐岩沉积模式,以期为碱矿勘查提供新的思路.

       

    • 图  1  哈日凹陷区位及构造单元划分(a)、构造剖面(b)及地层柱状图(据陈志鹏和任战利, 2018)(c)

      Fig.  1.  Location and structural unit division of Hari sag (a), structural section (b) and stratigraphic histogram(after Chen and Ren, 2018) (c)

      图  2  巴音戈壁组碱矿层柱状图

      a. zky001井巴音戈壁组二段柱状图;b. 图a局部放大岩性柱;c.图b钻井岩心照片

      Fig.  2.  Histogram of alkali ore bed in Bayingobi Formation

      图  3  巴音戈壁盆地塔木素碱矿中Na-碳酸盐矿物特征

      Fig.  3.  Characteristics of Na-carbonate minerals in the Tamusu Trona deposit in the Bayingobi basin

      图  4  巴音戈壁盆地塔木素碱矿中常见矿物

      a. 硅硼钠石,zky03井,572 m,正交偏光;b. 硼砂,zky203井,433.71 m,单偏光;c. 针状黄铁矿,zky03井,574 m,BSE图像;d. 碳钠钙石和天然碱,zk203井,447 m,岩心照片;e. 碳钠钙石生长过程中造成纹层软沉积变形,碳钠镁石交代碳钠钙石,zky001井,433 m,正交偏光;f. 碳钠镁石沿矿物边部和解理交代碳钠钙石,zky001井,433 m,正交偏光

      Fig.  4.  Common minerals in the Tamusu Trona deposit in the Bayingobi Basin

      图  5  巴音戈壁组全岩岩心样品X衍射分析

      a. 样品zk40-W(471m);b. 样品zky203-W(433m);c. 样品zky001-W(433m);d. 样品zk40-B、zky203-B和zky001-B,其中样编号-W是指岩心中白色部位矿物,样品编号-B是指岩心中暗色部位矿物

      Fig.  5.  X-ray diffraction analysis of the whole core sample of the Bayingobi Formation

      图  6  碳酸盐碳、氧同位素与不同湖泊开放程度对比分析

      刘传联等(2001)王春连等(2013)伊海生等(2007)

      Fig.  6.  Carbon and oxygen isotopes of carbonate and openness comparative analysis in different lakes

      图  7  巴音戈壁组火山岩平面分布

      Fig.  7.  Plane distribution of volcanic rocks of the Bayingobi Formation

      图  8  Na-碳酸盐成因模式示意图

      Fig.  8.  Schematic diagram of the genetic model of Na-carbonate

      表  1  巴音戈壁盆地碱矿层矿物电子探针定量分析数据(%)

      Table  1.   EPMA quantitative analysis data of trona deposit minerals in Bayingobi basin

      序号 样品编号 Cl CaO FeO F SiO2 MgO SO3 P2O5 Na2O B2O3 合计(%) 矿物名称
      1 zk40-1-1 0.499 3.799 0.185 / 0.147 0.006 0.067 1.074 1.362 / 7.026 碳钠钙石
      3 zk40-2-1 0.018 / / 0.004 0.006 0.008 0.013 / 21.517 2.341 23.901 苏打石
      4 zk40-2-2 0.016 / 0.005 0.042 0.007 0.014 0.010 0.012 14.637 / 14.721 苏打石
      6 zk40-3-2 0.015 0.015 0.027 0.029 0.014 0.011 0.025 0.002 9.576 / 9.699 苏打石
      7 zk40-4-1 0.002 0.065 0.083 0.022 0.101 0.025 0.020 0.020 29.750 2.948 33.027 苏打石
      8 zk40-4-2 0.007 0.036 0.022 0.097 0.025 / 0.021 / 7.791 2.839 10.795 苏打石
      9 zk40-5-1 / / 0.039 0.013 0.012 0.017 / / 10.249 / 10.325 苏打石
      10 zk40-5-2 0.008 0.015 / 0.064 0.008 0.011 0.020 0.010 15.387 2.965 18.459 苏打石
      11 zk40-6-1 0.040 0.053 0.011 0.028 0.012 / 0.033 0.034 8.919 2.761 11.870 苏打石
      12 zk40-6-2 0.005 / 0.028 0.049 0.002 / 0.015 / 29.754 1.433 31.264 苏打石
      13 zk40-7-1 0.006 0.021 0.044 0.017 0.009 / 0.015 0.005 27.257 / 27.366 苏打石
      14 zk40-7-2 0.008 / / 0.096 0.014 0.002 0.004 0.021 16.968 8.735 25.806 苏打石
      15 zky001-1-1 0.002 42.108 0.028 / / / / 0.035 21.228 / 63.401 碳钠钙石
      16 zky001-1-2 0.016 49.370 / / / / / 0.019 10.847 4.186 64.434 碳钠钙石
      18 zky001-1-4 0.009 45.686 0.017 / / / / 0.054 10.738 / 56.502 碳钠钙石
      19 zky001-2-1 0.014 49.429 / / / / / 0.004 8.203 1.150 58.797 碳钠钙石
      20 zky001-2-2 0.083 30.861 0.686 / 5.510 0.006 0.040 0.021 14.797 / 51.985 碳钠钙石
      21 zky001-2-3 / 49.723 0.034 / / 0.010 0.004 / 9.137 / 58.908 碳钠钙石
      22 zky001-2-4 0.008 49.086 / / / / 0.009 0.007 10.734 / 59.842 碳钠钙石
      23 zky001-3-1 / 38.699 / / / / 0.013 / 14.226 / 52.938 碳钠钙石
      24 zky001-3-2 / 43.068 / / / / 0.014 0.002 12.825 / 55.909 碳钠钙石
      25 zky001-4-1 / 48.122 / / / 0.010 0.018 0.054 9.015 / 57.219 碳钠钙石
      26 zky001-4-2 0.004 44.877 0.017 / / / / 0.013 12.111 / 57.021 碳钠钙石
      27 zky001-5-1 0.004 40.985 0.011 / / / / 0.298 11.504 1.939 54.740 碳钠钙石
      28 zky001-5-2 / 45.006 0.028 / / / / 0.028 11.895 1.289 58.246 碳钠钙石
      29 zky001-5-3 0.017 46.880 0.045 / / / / 0.024 11.445 2.374 60.781 碳钠钙石
      30 zky001-5-4 0.010 45.249 0.051 / / 0.028 / 0.013 11.414 / 56.763 碳钠钙石
      31 zky001-6-1 0.128 33.311 0.119 / 0.141 0.024 0.063 0.046 9.207 / 43.010 碳钠钙石
      32 zky001-6-2 0.021 43.974 0.011 / / / / 0.042 14.206 0.642 58.891 碳钠钙石
      33 zky001-6-3 0.008 46.507 / / / / 0.002 0.002 13.688 3.495 63.700 碳钠钙石
      34 zky001-6-4 0.026 47.114 0.080 / / 0.012 0.009 0.009 13.368 3.233 63.845 碳钠钙石
      35 zky001-6-5 / 46.193 0.131 / / / 0.002 / 13.667 0.313 60.306 碳钠钙石
      36 zky001-7-1 0.010 0.045 / / 59.460 / 0.034 0.017 1.239 / 60.803 钠长石
      37 zky001-7-2 0.110 0.026 / / 58.950 0.022 0.019 0.037 1.098 / 60.237 钠长石
      38 zky001-7-3 0.033 0.083 0.057 / 55.161 / 0.003 0.085 1.178 / 56.593 钠长石
      39 zky001-8-1 0.022 46.325 / / / 0.002 / 0.044 12.040 1.208 59.636 碳钠钙石
      40 zky001-8-2 / 45.292 0.057 / / 0.018 0.002 / 12.062 / 57.431 碳钠钙石
      41 zky001-9-1 0.036 45.919 0.011 / / / 0.011 0.022 10.690 1.835 58.516 碳钠钙石
      42 zky001-9-2 0.003 39.520 / / / 0.036 / / 12.449 / 52.007 碳钠钙石
      43 zky001-9-3 / 40.567 / / / 0.002 0.006 0.031 11.306 / 51.912 碳钠钙石
      44 zky001-9-4 / 45.076 / / / / / 0.035 10.249 1.607 56.967 碳钠钙石
      45 zky03(574)-1 0.002 3.718 0.091 / 58.814 0.010 0.011 0.030 10.414 / 73.090 钠菱沸石
      46 zky03(574)-2 / 0.070 0.119 / 64.745 0.010 0.014 / 12.729 / 77.687 钠菱沸石
      47 zky03(574)-3 0.006 2.888 0.102 / 60.940 0.020 0.004 / 10.875 / 74.834 钠菱沸石
      48 zky03(574)-4 / 11.115 20.778 / 38.533 6.959 0.036 / 1.553 4.874 83.848 黄铁矿
      49 zky03(574)-5 0.010 0.064 0.193 / 60.852 / / / 1.322 / 62.439 钠长石
      50 zky03(572)-1-1 0.081 36.923 0.161 / 0.567 0.036 / 0.011 12.647 / 50.408 碳钠钙石
      51 zky03(572)-2-1 0.010 38.526 0.028 0.276 / / 0.028 / 16.523 3.226 58.499 碳钠钙石
      52 zky03(572)-2-2 0.011 49.438 0.006 / / / / / 5.836 / 55.289 方解石
      53 zky03(572)-3-1 0.022 0.918 0.067 / 62.659 0.005 0.096 0.014 11.937 5.495 81.208 硅硼钠石
      54 zky03(572)-4-1 0.001 37.614 0.011 0.107 / 0.014 0.010 / 17.933 / 55.645 碳钠钙石
      55 zky03(572)-4-2 0.028 49.992 0.084 / / 0.015 / 0.042 6.728 / 56.883 碳钠钙石
      56 zky03(572)-5-1 0.013 61.140 0.237 0.001 / 0.141 0.023 0.048 0.082 3.267 64.949 方解石
      57 zky03(572)-5-2 0.001 46.290 0.022 0.238 / 0.004 0.014 0.019 11.566 / 58.054 碳钠钙石
      58 zky03(572)-5-3 0.005 44.361 0.028 0.137 / / / / 18.290 / 62.762 碳钠钙石
      59 zky03(572)-6-1 / 46.007 0.039 0.045 / 8.728 / 7.521 15.235 / 77.556 磷碳镁钠石
      60 zky03(572)-6-2 0.015 49.681 / / 0.013 / / 0.026 7.971 / 57.703 碳钠钙石
      61 zky03(572)-7-1 0.012 50.520 / 0.286 / / / 0.332 9.973 / 61.000 碳钠钙石
      62 zky03(572)-7-2 0.001 51.302 / 0.175 / / 0.016 / 17.74 4.512 73.672 碳钠钙石
      63 zky03(572)-7-3 0.007 46.875 / 0.113 / 0.011 / 8.156 2.527 57.639 碳钠钙石
      64 zky03(572)-8-1 / 49.038 0.113 / 0.093 0.184 0.010 / 7.834 / 57.272 碳钠钙石
      65 zky03(572)-8-2 0.001 50.770 0.124 / / 0.021 0.070 0.006 6.360 / 57.352 碳钠钙石
      66 zky03(572)-8-3 / 49.560 0.084 0.182 / / / / 17.029 / 66.778 碳钠钙石
      下载: 导出CSV

      表  2  巴音戈壁盆地碱矿层碳氧同位素分析测试结果

      Table  2.   Carbon and oxygen isotope analysis and test results of trona deposit in Bayingobi basin

      样品号 层位 岩性/矿物 深度(m) δ13CVPDB(‰) δ18OVPDB(‰) Z
      Z-8 巴音戈壁组 白云质泥岩 341.0 3.08 -9.56 128.84
      Z-2 白云质泥岩 387.0 7.22 -5.83 139.19
      Z-3 白云质泥岩 403.0 -2.63 -2.47 120.67
      Z-9 白云质泥岩 407.0 1.83 -9.68 126.22
      Z-4 白云质泥岩 433.0 0.28 -9.27 123.25
      Z-5 白云质泥岩 433.7 5.09 -4.62 135.42
      Z-6 白云质泥岩 471.8 3.72 -8.04 130.90
      Z-7 白云质泥岩 574.0 3.35 -8.75 129.79
      Z-11 苏打石 387.0 1.72 -10.25 125.72
      Z-18 苏打石 407.0 2.78 -3.73 131.13
      Z-17 苏打石、天然碱 341.0 2.22 -2.86 130.43
      Z-1 天然碱 337.0 8.88 -5.38 142.80
      Z-12 天然碱 403.0 1.20 -9.93 124.81
      Z-13 天然碱 433.0 4.44 -0.91 135.94
      Z-14 天然碱 433.7 4.31 -0.78 135.73
      Z-15 碳钠钙石 471.8 3.77 -1.80 134.11
      Z-16 碳钠钙石 574.0 2.66 -3.34 131.08
      min -2.63 -10.25 120.67
      max 8.88 -0.78 142.81
      average 3.17 -5.72 130.95
      注:Z=2.048(δ13CVPDB+50)+0.498(δ18OVPDB+50) (Keith and Weber, 1964); t=16.9-4.38(δ18OVPDB, C18OVPDB, P)+0.10(δ18OVPDB, C18OVPDB, P)2, 其中,δ13CVPDB为样品的δ13C值, 单位为‰;δ18OVPDB, C为样品的δ18O值, 单位为‰;δ18OV-PDB, P为古水体的δ18O值, 单位为‰,温度t的单位为℃.
      下载: 导出CSV
    • Cao, J., Lei, D. W., Li, Y. W., et al., 2015. Ancient High-Quality Alkaline Lacustrine Source Rocks Discovered in the Lower Permian Fengcheng Formation, Junggar Basin. Acta Petrolei Sinica, 36(7): 781-790 (in Chinese with English abstract).
      Chen, Z. P., Ren, Z. L., Yu, C. Y., et al., 2018. Characteristics and Genetic Analysis of Hydrothermal Sediment of Lower Cretaceous in Hari Depression, Yin'e Basin. Earth Science, 43(6): 1941-1956 (in Chinese with English abstract).
      Eugster, H. P., Smith, G. I., 1965. Mineral Equilibria in the Searles Lake Evaporites, California. Journal of Petrology, 6(3): 473-522. https://doi.org/10.1093/petrology/6.3.473
      García-Veigas, J., Gündoğan, İ., Helvacı, C., 2013. A Genetic Model for Na-Carbonate Mineral Precipitation in the Miocene Beypazarı Trona Deposit, Ankara Province, Turkey. Sedimentary Geology, 294: 315-327. https://doi.org/10.1016/j.sedgeo.2013.06.011
      Guo, P., Wen, H., Gibert, L., et al., 2021. Deposition and Diagenesis of the Early Permian Volcanic-Related Alkaline Playa-Lake Dolomitic Shales, NW Junggar Basin, NW China. Marine and Petroleum Geology, 123: 104780. https://doi.org/10.1016/j.marpetgeo.2020.104780
      Hammond, A. P., Carroll, A. R., Parrish, E. C., et al., 2019. The Aspen Paleoriver: Linking Eocene Magmatism to the World's Largest Na-Carbonate Evaporite (Wyoming, USA). Geology, 47(11): 1020-1024. https://doi.org/10.1130/g46419.1
      Helvacı, C., 2019. Turkish Trona Deposits: Geological Setting, Genesis and Overview of the Deposits. Modern Approaches in Solid Earth Sciences. Springer International Publishing, Cham. 599-633. https://doi.org/10.1007/978-3-030-02950-0_12
      Hendy, C. H., 1971. The Isotopic Geochemistry of Speleothems—I. The Calculation of the Effects of Different Modes of Formation on the Isotopic Composition of Speleothems and Their Applicability as Palaeoclimatic Indicators. Geochimica et Cosmochimica Acta, 35(8): 801-824. https://doi.org/10.1016/0016-7037(71)90127-X
      Hou, Z. Q., Mo, X. X., 1996. The Present and Future Investigation of the Modern Seafloor Hydrothermal Processes and Mineralization. Earth Science Frontiers, 3(4): 263-273 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1996.04.015
      İncı, U., Helvaci, C., Yağmurlu, F., 1988. Stratigraphy of Beypazarı Neogene Basin, Central Anatolia, Turkey. Newsletters on Stratigraphy, 18(3): 165-182. https://doi.org/10.1127/nos/18/1988/165
      Jagniecki, E. A., Jenkins, D. M., Lowenstein, T. K., et al., 2013. Experimental Study of Shortite (Na2Ca2(CO3)3) Formation and Application to the Burial History of the Wilkins Peak Member, Green River Basin, Wyoming, USA. Geochimica et Cosmochimica Acta, 115: 31-45. https://doi.org/10.1016/j.gca.2013.04.005
      Jiang, Y. Q., Wen, H. G., Qi, L. Q., et al., 2012. Salt Minerals and Their Genesis of the Permian Fengcheng Formation in Urho Area, Junggar Basin. Journal of Mineralogy and Petrology, 32(2): 105-114 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-6872.2012.02.014
      Keith, M. L., Weber, J. N., 1964. Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochimica et Cosmochimica Acta, 28(10/11): 1787-1816. https://doi.org/10.1016/0016-7037(64)90022-5
      Li, Y. L., Miao, W. L., Zhang, X. Y., et al., 2021. Hydrochemical Characteristics and Salt-Formation Elements Sources of Li-Rich Brines in Kushui Lake, West Kunlun. Earth Science, 46(11): 4161-4174 (in Chinese with English abstract).
      Liu, A., Chen, L., Chen, X. H., et al., 2021. Carbon and Oxygen Isotopic Characteristics of Devonian in Central Hunan Depression and Its Paleoenvironmental Significance. Earth Science, 46(4): 1269-1281 (in Chinese with English abstract).
      Liu, C. L., Zhao, Q. H., Wang, P. X., 2001. Correlation between Carbon and Oxygen Isotopic Ratios of Lacustrine Carbonates and Types of Oil-Producing Paleolakes. Geochimica, 30(4): 363-367 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2001.04.009
      Liu, Q., 2017. Composition and Geologic Significance of Carbon and Oxygen Isotopes in Hydrocarbon Source Rocks, Dongying Sag, Bohai Bay Basin. Petroleum Geology and Experiment, 39(2): 247-252 (in Chinese with English abstract).
      Liu, Z. B., Xing, F. C., Hu, H. R., et al., 2021. Multiple Genesis of Dolomite in Lower Ordovician Tongzi Formation in Sichuan Basin. Earth Science, 46(2): 583-599 (in Chinese with English abstract).
      Lu, F. Y., An, Z. S., 2010. Climatic and Environmental Significance of Ostracod Abundance and Their Shell Oxygen Isotope from Lake Qinghai Surface Sediments. Marine Geology & Quaternary Geology, 30(5): 119-128 (in Chinese with English abstract).
      O'Neil, J. R., Clayton, R. N., Mayeda, T. K., 1969. Oxygen Isotope Fractionation in Divalent Metal Carbonates. The Journal of Chemical Physics, 51(12): 5547-5558. https://doi.org/10.1063/1.1671982
      Qu, C. S., Qiu, L. W., Yang, Y. Q., et al., 2017. Carbon and Oxygen Isotope Compositions of Carbonatic Rock from Permian Lucaogou Formation in the Jimsar Sag, NW China and Their Paleolimnological Significance. Acta Geologica Sinica, 91(3): 605-616 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.03.008
      Renaut, R. W., Owen, R. B., Jones, B., et al., 2013. Impact of Lake-Level Changes on the Formation of Thermogene Travertine in Continental Rifts: Evidence from Lake Bogoria, Kenya Rift Valley. Sedimentology, 60(2): 428-468. https://doi.org/10.1111/j.1365-3091.2012.01347.x
      Renaut, R. W., Tiercelin, J. J., 1994. Lake Bogoria, Kenya Rift Valley—A Sedimentological Overview. Sedimentology and Geochemistry of Modern and Ancient Saline Lakes. SEPM (Society for Sedimentary Geology), Tulsa: 101-123. https://doi.org/10.2110/pec.94.50.0101
      Smith, M. E., Carroll, A. R., Singer, B. S., 2008. Synoptic Reconstruction of a Major Ancient Lake System: Eocene Green River Formation, Western United States. Geological Society of America Bulletin, 120(1/2): 54-84. https://doi.org/10.1130/b26073.1
      Surdam, R. C., Parker, R. D., 1972. Authigenic Aluminosilicate Minerals in the Tuffaceous Rocks of the Green River Formation, Wyoming. Geological Society of America Bulletin, 83(3): 689. https://doi.org/10.1130/0016-7606(1972)83[689: aamitt]2.0.co;2 doi: 10.1130/0016-7606(1972)83[689:aamitt]2.0.co;2
      Talbot, M. R., 1990. A Review of the Palaeohydrological Interpretation of Carbon and Oxygen Isotopic Ratios in Primary Lacustrine Carbonates. Chemical Geology: Isotope Geoscience Section, 80(4): 261-279. https://doi.org/10.1016/0168-9622(90)90009-2
      Tong, Q. L., Ye, F. W., Qin, M. K., 2023. U-Pb Chronology of Detrital Zircons from Lower Cretaceous in Xinniwusu Sag, Bayingobi Basin and Its Geological Significance. Earth Science, 48(10): 3613-3630(in Chinese with English abstract).
      Wang, C. L., Liu, C. L., Xu, H. M., et al., 2013. Carbon and Oxygen Isotopes Characteristics of Palaeocene Saline Lake Facies Carbonates in Jiangling Depression and Their Environmental Significance. Acta Geoscientia Sinica, 34(5): 567-576 (in Chinese with English abstract).
      Wang, J. P., Zhang, Y. X., Yang, Q. T., et al., 1991. The Geological Characteristics and Origin of the Anpeng Alkali Deposit. Geological Review, 37(1): 42-50 (in Chinese with English abstract).
      Wang, L. B., Hou, G. F., Bian, B. L., et al., 2020. The Role of Modern Alkaline Lakes in Explaining the Sedimentary Environment of the Fengcheng Formation, Mahu Depression. Acta Sedimentologica Sinica, 38(5): 913-922 (in Chinese with English abstract).
      Wen, D. G., Zeng, J. H., 1997. Geochemical Modeling of the Formation of Biyang Alkali Deposit. Earth Science, 22(1): 69-73 (in Chinese with English abstract).
      Wen, H. G., Zheng, R. C., Qing, H. R., et al., 2014. Cretaceous Lacustrine Hydrothermal Primary Dolomite in the Qingxi Sag, Jiuquan Basin on the Northern Margin of the Qinghai-Tibet Plateau. Scientia Sinica (Terrae), 44(4): 591-604 (in Chinese). doi: 10.1360/zd-2014-44-4-591
      Xiang, L., Liu, X. D., Liu, P. H., et al., 2019. Genesis and Characteristics of Lacustrine Hydrothermal-Sedimentary Rock of the Lower Cretaceous in Yingejing Sag of Bayan Gebi Basin, Inner Mongolia. Journal of Palaeogeography, 21(5): 709-726 (in Chinese with English abstract).
      Xu, Y. X., Dai, C. C., Liu, X. D., et al., 2022. Geochemical Characteristics and Genesis of Lower Cretaceous Hydrothermal Sedimentary Rocks in Bayingebi Basin. Geological Review, 68(1): 122-137 (in Chinese with English abstract).
      Yi, H. S., Lin, J. H., Zhou, K. K., et al., 2007. Carbon and Oxygen Isotope Characteristics and Palaeoenvironmental Implication of the Cenozoic Lacustrine Carbonate Rocks in Northern Qinghai-Tibetan Plateau. Journal of Palaeogeography, 9(3): 303-312 (in Chinese with English abstract).
      Zhao, Y., Guo, P., Lu, Z. Y., et al., 2020. Genesis of Reedmergnerite in the Lower Permian Fengcheng Formation of the Junggar Basin, NE China. Acta Sedimentologica Sinica, 38(5): 966-979 (in Chinese with English abstract).
      Zheng, R. C., Wen, H. G., Li, Y., et al., 2018. Compositions and Texture of Lacustrine Exhalative Rocks from the Lower Cretaceous Xiagou Formation in Qingxi Sag of Jiuxi Basin, Gansu. Journal of Palaeogeography, 20(1): 1-18 (in Chinese with English abstract).
      Zhong, D. K., Yang, Z., Sun, H. T., et al., 2018. Petrological Characteristics of Hydrothermal-Sedimentary Rocks: A Case Study of the Lower Cretaceous Tengger Formation in the Baiyinchagan Sag of Erlian Basin, Inner Mongolia. Journal of Palaeogeography, 20(1): 19-32 (in Chinese with English abstract).
      Zuo, J. X., Zhu, X. J., Chen, Y. L., et al., 2023. Carbon Isotope from Shallow Marine System in North China: Implications for Stratigraphical Correlation and Sea-Level Changes in Cambrian. Journal of Earth Science, 34(6): 1777-1792. https://doi.org/10.1007/s12583-021-1463-6
      曹剑, 雷德文, 李玉文, 等, 2015. 古老碱湖优质烃源岩: 准噶尔盆地下二叠统风城组. 石油学报, 36(7): 781-790. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201906002.htm
      陈志鹏, 任战利, 于春勇, 等, 2018. 银额盆地哈日凹陷下白垩统热水沉积岩特征及成因. 地球科学, 43(6): 1941-1956. doi: 10.3799/dqkx.2018.527
      侯增谦, 莫宣学, 1996. 现代海底热液成矿作用研究现状及发展方向. 地学前缘, 3(4): 263-273. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY604.014.htm
      蒋宜勤, 文华国, 祁利祺, 等, 2012. 准噶尔盆地乌尔禾地区二叠系风城组盐类矿物和成因分析. 矿物岩石, 32(2): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201202015.htm
      李玉龙, 苗卫良, 张西营, 等, 2021. 西昆仑地区苦水湖富锂盐湖水化学特征及成盐元素来源. 地球科学, 46(11): 4161-4174. doi: 10.3799/dqkx.2020.370
      刘安, 陈林, 陈孝红, 等, 2021. 湘中坳陷泥盆系碳氧同位素特征及其古环境意义. 地球科学, 46(4): 1269-1281. doi: 10.3799/dqkx.2020.362
      刘传联, 赵泉鸿, 汪品先, 2001. 湖相碳酸盐氧碳同位素的相关性与生油古湖泊类型. 地球化学, 30(4): 363-367. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200104008.htm
      刘庆, 2017. 渤海湾盆地东营凹陷烃源岩碳氧同位素组成及地质意义. 石油实验地质, 39(2): 247-252. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201702014.htm
      刘志波, 邢凤存, 胡华蕊, 等, 2021. 四川盆地下奥陶统桐梓组白云岩多元成因. 地球科学, 46(2): 583-599. doi: 10.3799/dqkx.2020.026
      卢凤艳, 安芷生, 2010. 青海湖表层沉积物介形虫丰度及其壳体氧同位素的气候环境意义. 海洋地质与第四纪地质, 30(5): 119-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201005019.htm
      曲长胜, 邱隆伟, 杨勇强, 等, 2017. 吉木萨尔凹陷芦草沟组碳酸盐岩碳氧同位素特征及其古湖泊学意义. 地质学报, 91(3): 605-616. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201703008.htm
      童勤龙, 叶发旺, 秦明宽, 2023. 巴音戈壁盆地新尼乌苏凹陷下白垩统碎屑锆石U-Pb年代学及其地质意义. 地球科学, 48(10): 3613-3630. doi: 10.3799/dqkx.2021.198
      王春连, 刘成林, 徐海明, 等, 2013. 江陵凹陷古新世盐湖沉积碳酸盐碳氧同位素组成及其环境意义. 地球学报, 34(5): 567-576. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201305007.htm
      王吉平, 张幼勋, 杨清堂, 等, 1991. 论河南安棚碱矿地质特征及其成因. 地质论评, 37(1): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199101004.htm
      王力宝, 厚刚福, 卞保力, 等, 2020. 现代碱湖对玛湖凹陷风城组沉积环境的启示. 沉积学报, 38(5): 913-922. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202005002.htm
      文冬光, 曾建华, 1997. 泌阳碱矿形成的地球化学模拟研究. 地球科学, 22(1): 69-73. http://www.earth-science.net/article/id/466
      文华国, 郑荣才, Qing, H. R., 等, 2014. 青藏高原北缘酒泉盆地青西凹陷白垩系湖相热水沉积原生白云岩. 中国科学(地球科学), 44(4): 591-604. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201603010.htm
      向龙, 刘晓东, 刘平辉, 等, 2019. 内蒙古巴音戈壁盆地因格井坳陷下白垩统湖相热水沉积岩特征及成因. 古地理学报, 21(5): 709-726. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201905002.htm
      许亚鑫, 戴朝成, 刘晓东, 等, 2022. 巴音戈壁盆地下白垩统热水沉积岩地球化学特征及成因探讨. 地质论评, 68(1): 122-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202201008.htm
      伊海生, 林金辉, 周恳恳, 等, 2007. 青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意义. 古地理学报, 9(3): 303-312. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200703009.htm
      赵研, 郭佩, 鲁子野, 等, 2020. 准噶尔盆地下二叠统风城组硅硼钠石发育特征及其富集成因探讨. 沉积学报, 38(5): 966-979. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202005007.htm
      郑荣才, 文华国, 李云, 等, 2018. 甘肃酒西盆地青西凹陷下白垩统下沟组湖相喷流岩物质组分与结构构造. 古地理学报, 20(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201801001.htm
      钟大康, 杨喆, 孙海涛, 等, 2018. 热水沉积岩岩石学特征: 以内蒙古二连盆地白音查干凹陷下白垩统腾格尔组为例. 古地理学报, 20(1): 19-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201905001.htm
    • 加载中
    图(8) / 表(2)
    计量
    • 文章访问数:  327
    • HTML全文浏览量:  110
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-07-18
    • 网络出版日期:  2024-04-30
    • 刊出日期:  2024-04-25

    目录

      /

      返回文章
      返回