Progresses in Study of Mercury Isotopic Compositions in the Ocean
-
摘要: 海洋作为地球上最重要的汞储库之一,在调节全球汞循环中起着关键作用.近年来,汞同位素在研究海洋汞生物地球化学循环方面展现出明显优势,不但能示踪现代海洋汞污染来源及转化过程,还可重建古环境、古气候.总结了不同类型海洋样品汞同位素检测方法,系统归纳了其汞同位素数据,并重点阐述了海洋汞同位素分馏机制.总体上,目前海洋汞同位素数据还很有限,海洋汞循环关键过程的同位素分馏效应及潜在机理研究相对缺乏,精确源解析困难,难以对全球汞关键过程和循环通量进行准确验证和制约.未来还需要深入研究汞同位素分馏机理,进一步明确海洋中汞的来源、迁移及转化,为完善全球汞循环及精准防控海洋汞污染提供基础数据和理论支持.Abstract: Ocean, one of the most important reservoirs of mercury (Hg) on earth, plays a critical role in mediating the global Hg cycling. Recently, Hg isotope approach has shown significant advantages in studying the biogeochemical cycling of oceanic Hg, as it could be used not only to trace marine Hg sources and transformation processes, but also to reconstruct the paleoenvironment and paleoclimate. In this paper, it summarizes analytical methods for accurately measuring Hg isotopes in different marine samples, reported Hg isotopic compositions in seawater, marine sediments and biological samples of different regions worldwide, and elaborates the potential migration and transformation processes that fractionate Hg isotopes in the ocean.Overall, due to the fact that limited data are available for Hg isotopes in the ocean, and the studies on the potential mechanisms and processes fractionating Hg isotopes are still relatively scarce, the systematics of Hg in marine environment and thus the global Hg cycling model still could not be accurately established using Hg isotopes.In the future, it is still necessary to well investigate Hg isotope fractionation during potential biogeochemical processes such as the bioaccumulation and sedimentation, and to deeply decipher the source, migration and transformation of marine Hg using stable isotope approach, in order to provide basic data and theoretical support for improving the global Hg cycling and fairly preventing and controlling marine Hg pollution.
-
Key words:
- seawater /
- marine sediment /
- marine biota /
- Hg stable isotope /
- Hg concentration /
- Hg speciation /
- oceanography
-
图 2 海水、海洋沉积物、海洋颗粒物以及海洋生物样品的δ202Hg vs. Δ199Hg
海洋沉积物据Balogh et al.(2015),Bonsignore et al.(2015, 2020),Yin et al.(2015, 2018),Gleason et al.(2017),Meng et al.(2019, 2020, 2021),Sun et al.(2020b),Jung et al.(2022);海洋生物据Gehrke et al.(2009),Point et al.(2011),Blum et al.(2013, 2020),Balogh et al.(2015),Masbou et al.(2015),Yin et al.(2016),Madigan et al.(2018),Masbou et al.(2018),Motta et al.(2019, 2020),Bonsignore et al.(2020),Orani et al.(2020),Sun et al.(2020a),Renedo et al.(2021),Jung et al.(2022);海水据Štrok et al.(2014, 2015),Meng et al.(2020),Jiskra et al.(2021),Liu et al.(2021c);海洋颗粒物据Motta et al.(2019),Jiskra et al.(2021),Qiu et al.(2021)
Fig. 2. δ202Hg versus Δ199Hg for seawaters, marine sediments, marine particulate matters and marine biotas
图 4 实验室观察到的汞同位素分馏过程及其特征概述(Δ199Hg vs. δ202Hg)
箭头的方向指示每个反应中反应物或者产物的同位素分馏方向,箭头的颜色代表不同的反应(其中同种颜色的多个箭头则代表同一种反应在不同实验条件下得到的不同结果),具体如下:红色箭头表示液相Hg(Ⅱ)光化学还原反应物的同位素分馏特征(Bergquist and Blum, 2007;Zheng and Hintelmann, 2009;Rose et al., 2015);绿色箭头表示液相甲基汞光化学降解反应物的同位素分馏特征(Bergquist and Blum, 2007;Rose et al., 2015);深蓝色实线箭头表示氯自由基主导的气态Hg(0)光氧化反应物的同位素分馏特征(Sun et al., 2016);深蓝色虚线箭头表示溴自由基主导的气态Hg(0)光氧化反应物的同位素分馏特征(Sun et al., 2016);浅蓝色箭头表示微生物介导的Hg(Ⅱ)还原或甲基汞降解(Kritee et al., 2007, 2009),生物或者非生物甲基化(Rodríguez-González et al., 2009;Malinovsky and Vanhaecke, 2011;Jiménez-Moreno et al., 2013;Perrot et al., 2015),Hg(Ⅱ)吸附到针铁矿(Jiskra et al., 2012),Hg(Ⅱ)与巯基配位体络合(Wiederhold et al., 2010),HgS和HgO沉淀(Smith et al., 2015),Hg(0)挥发(Zheng et al., 2007)和Hg(0)扩散(Koster Van Groos et al., 2014)等一系列过程中反应物的同位素分馏特征;粉色箭头表示硫醇或腐殖酸存在下的液相Hg(0)暗氧化平衡分馏中产物的同位素分馏特征(Zheng et al., 2019);深紫色箭头表示汞硫醇配体氙灯还原中反应物的同位素分馏特征(Zheng and Hintelmann, 2010a);橙色箭头表示雪中Hg(Ⅱ)光化学还原中反应物的同位素分馏特征(Sherman et al., 2010);浅紫色箭头表示硫醇或腐殖酸存在下的液相Hg(0)暗氧化动力学分馏中产物的同位素分馏特征(Zheng et al., 2019)
Fig. 4. Overview of the general patterns in mercury isotope fractionation that have been observed experimentally (Δ199Hg versus δ202Hg)
表 1 全球不同海域海水中总汞(THg)和甲基汞(MeHg)浓度数据
Table 1. THg and MeHg concentrations in seawaters from different regions of the world
海域 THg(pM) MeHg(pM) 参考文献 表层 中层 深层 总体 表层 中层 深层 总体 开阔大洋 大西洋 0.52±0.11
(n=6)0.54±0.15
(n=7)0.68±0.17
(n=9)0.59±0.17
(n=22)0.04±0.01
(n=6)0.19±0.13
(n=9)0.37±0.07
(n=9)0.23±0.16
(n=22)Jiskra et al., 2021 大西洋 1.51±0.82
(n=26)1.51±0.82
(n=26)Soerensen et al., 2013 热带太平洋 0.35±0.30
(n=70)0.90±0.29
(n=74)1.12±0.33
(n=88)0.82±0.44
(n=232)0.19±0.13
(n=56)0.41±0.32
(n=60)0.26±0.27
(n=66)0.29±0.27
(n=182)Munson et al., 2015 北冰洋中部 1.31±1.34
(n=22)0.81±0.24
(n=29)0.85±0.36
(n=32)0.96±0.76
(n=83)0.11±0.11
(n=22)0.17±0.12
(n=29)0.10±0.09
(n=32)0.12±0.10
(n=83)Heimbürger et al., 2015 南大洋 1.15±0.22
(n=10)1.35±0.39
(n=14)1.33±0.45
(n=71)0.44±0.17
(n=31)0.52±0.11
(n=19)0.29±0.21
(n=241)Cossa et al., 2011 地中海 0.86±0.09
(n=5)1.03±0.06
(n=6)0.99
(n=1)0.96±0.11
(n=12)0.17±0.10
(n=5)0.4±0.04
(n=6)0.29
(n=1)0.29±0.14
(n=12)Jiskra et al., 2021 地中海西部 2.56±1.67
(n=43)2.45±0.93
(n=17)2.20±0.17
(n=5)2.50±1.25
(n=65)Cossa et al., 1997 北大西洋 2.40±1.60
(n=27)Mason et al., 1998 北太平洋 0.64±0.26 1.10±0.31 1.15±0.86 Laurier et al., 2004 近海 中国渤海 5.80±2.74
(n=58)0.27±0.03 Wang et al., 2020 中国渤海 2.21±0.53
(n=4)Liu et al., 2021c 中国黄海 6.63±4.08
(n=23)Wang et al., 2020 中国东海 19.65±5.11
(n=351)1.00±0.55
(n=351)Liu et al., 2020 中国东海 7.22±3.08
(n=38)Wang et al., 2016 中国南海 6.15±1.73
(n=35)0.58±0.23
(n=33)Fu et al., 2010 东日本海 0.49±0.08 1.2±0.20 1.10±0.08 0.03±0.02 0.44±0.10 0.53±0.09 Yang et al., 2017 注:为便于比较,表中一些数据从原始浓度(ng/L)转换为摩尔单位(pM). 汇总数据中,海洋分层情况为海洋表层(0~200 m)、海洋中层(200~1 000 m)、海洋深层(1 000 m以下). 表中数据为THg±1SD或MeHg±1SD,n为样品个数. 表 2 全球不同海域沉积物中的THg和MeHg浓度(ng/g)
Table 2. THg and MeHg concentrations in marine sediments from different regions of the world (ng/g)
研究区域 样品量n THg范围 THg平均值 MeHg范围 MeHg平均值 MeHg/THg 参考文献 大洋海域 西北太平洋 50 19.0~158.0 77.0 Sattarova and Aksentov, 2018 西北太平洋深海 466 8.0~170.0 68.8 Aksentov and Sattarova, 2020 北大西洋 233 1.9~112.1 18.2 Kita et al., 2016 西地中海深海 86 9.0~100.0 47.1 Cossa et al., 2021 北冰洋 35 22.0~169.0 72.2 Gleason et al., 2017 地中海 56 12.0~447.3 54.1 0.09~3.71 1.09 2% Ogrinc et al., 2007 大西洋中部 22 0.54~78.8 42.3 0.01~1.24 0.62 1.1% Hollweg et al., 2010 近海 中国近海 611 1.10~398.0 35.2 Meng et al., 2014; Jeong et al., 2021 韩国近海 53 12.0~98.0 42.4 Jeong et al., 2021 东西伯利亚海 35 13.0~92.0 36.0 Aksentov et al., 2021 北大西洋边缘海 49 8.00~1 351 106.5 Vieira et al., 2021 卡塔尔海岸线 11 8.00~34.3 21.6 Hassan et al., 2019 波罗的海 91 1.20~341.8 84.0 Kwasigroch et al., 2021 南大洋边缘海 188 12.6~86.6 41.6 Zaferani et al., 2018 中国渤海和黄海 83 4.70~100.6 27.3 0.01~0.71 0.16 0.6% Yu et al., 2021 中国东海 35 53.0~157.0 79.4 0.20~1.10 0.72 1.1% 刘畅等, 2018 东北大西洋比斯开湾 24 18~973 243.2 0.07~2.03 0.70 0.4% Azaroff et al., 2019 亚得里亚海 22 680~9 950 4 350 0.47~7.85 3.48 0.08% Acquavita et al., 2012 拉普捷夫海 18 30.9~96.1 51.2 0.03~3.14 0.53 0.7% Liem-Nguyen et al., 2022 波罗的海 47 4.0~294.0 106.8 0.02~2.36 0.45 0.48% Siedlewicz et al., 2020 表 3 全球不同海域海洋生物中的THg和MeHg浓度(ng/g)
Table 3. THg and MeHg concentrations in marine biotas from different regions of the world (ng/g)
区域 样品类型 样品数n THg范围 THg平均值 MeHg范围 MeHg平均值 MeHg/THg 参考文献 南大洋 鱼类 83 100~1 940 500 Queirós et al., 2020 南大洋* 鱼类 194/74 58~476 167 33~512 144 86% Seco et al., 2020 西北地中海 鱼类 48 210~4 420 1 162 Koenig et al., 2013 太平洋 鱼类 300 50~790 384 Meador et al., 2005 印度洋 鱼类 187 210~3 970 Kojadinovic et al., 2007 大西洋(加纳近海) 鱼类 56 4~122 Voegborlo and Akagi, 2007 东北大西洋沿岸 鱼类 706 50~7 473 988 Chouvelon et al., 2012 东北大西洋 鱼类 53 30~6 350 1 609 20~4 780 1 257 76% Romero-Romero et al., 2022 大西洋(亚述儿群岛) 鱼类 70 190~1 440 900 Afonso et al., 2007 韩国马山湾 底栖生物 399/89 6~1 290 135 1~1 290 131 65% Hilgendag et al., 2022 加拿大坎伯兰湾 底栖生物 71 20~3 170 763 McMeans et al., 2015 大西洋岸 哺乳动物 344/344 50~3 440 862 50~3 160 819 94% Wagemann et al., 1998 南大洋公海 海鸟 110 180~15 160 2 474 180~11 570 2 220 88% Renedo et al., 2020 西北冰洋 哺乳动物 69/19 400~119 320 21 080 570~3 380 1 560 14% Masbou et al., 2018 北太平洋阿拉斯加湾 哺乳动物 53/18 87~13 900 2 786 30~370 134 9% Masbou et al., 2015 中国南海 鱼类 166/96 11.9~1 772 152 6.22~358 105 69% Liu et al., 2014 中国渤海 鱼类 67 2.05~344 63.8 Liu et al., 2013 中国渤海 鱼类 55 9~270 60 7~131 25 42% Qu et al., 2022 中国东海 鱼类 148 20~660 260 10~590 180 74% Cheng et al., 2009 注:*测定的是有机汞浓度, 而非甲基汞浓度. 表 4 海洋汞输入源和输出源的通量和同位素组成(Δ199Hg和δ202Hg)
Table 4. Fluxes and isotope compositions (Δ199Hg and δ202Hg) of Hg input sources and output sources in the ocean
类别 通量
(t/y)通量范围
(t/y)Δ199Hg
(‰)Δ199Hg±1SD
(‰)δ202Hg±1SD
(‰)数据量
(n)输入源 河流输入1, i 1 000 893~1224 ‒0.29 ‒0.29±0.12 ‒1.82±0.39 156 热液输入2, ⅱ 100 < 600 0.00 0.00±0.00 0.00±0.00 大气Hg(Ⅱ)沉降2, ⅲ 1 500 912~1 900 0.41 0.41±0.34 ‒0.43±0.77 172 大气Hg(0)沉降2, ⅲ 2 200 1 900~2 888 ‒0.19 ‒0.19±0.10 0.37±0.65 220 F输入 4 800 F输入×Δ199Hg输入 ‒93 输出源 埋藏于沿海沉积物1, ⅳ 730 410~1 100 0.06 0.06±0.11 ‒1.19±0.43 546 埋藏于深海沉积物2, ⅴ 600 200~600 0.10 0.10±0.10 ‒0.99±0.39 92 埋藏于海沟3, ⅵ 164 101~227 0.24 0.24±0.07 ‒1.19±0.43 19 海洋Hg(0)逃逸2, ⅶ 3 400 2 900~4 000 ‒0.07 ‒0.07±0.10 0.44±0.02 61 F输出 4 894 F输出×Δ199Hg输出 ‒94.84 注:通量数据:1据 Liu et al. (2021b) ;2据Outridge et al. (2018) ;3据Liu et al. (2021a) . 同位素数据:i据Yin et al. (2018) ;ⅱ据Smith et al. (2008) ,Sherman et al. (2009) 和Kim et al.(2022) ;ⅲ据Jiskra et al. (2021) ;ⅳ据Balogh et al.(2015) ,Bonsignore et al.(2015 , 2020),Yin et al.(2015 , 2018),Gleason et al.(2017) ,Meng et al.(2019 , 2020, 2021),Sun et al.(2020b) 和Jung et al.(2022) ;ⅴ据Jiskra et al.(2021) ;ⅵ据Liu et al.(2021a) ;ⅶ据Zheng et al.(2007) . -
Achá, D., Hintelmann, H., Yee, J., 2011. Importance of Sulfate Reducing Bacteria in Mercury Methylation and Demethylation in Periphyton from Bolivian Amazon Region. Chemosphere, 82(6): 911-916. https://doi.org/10.1016/j.chemosphere.2010.10.050 Acquavita, A., Covelli, S., Emili, A., et al., 2012. Mercury in the Sediments of the Marano and Grado Lagoon (Northern Adriatic Sea): Sources, Distribution and Speciation. Estuarine, Coastal and Shelf Science, 113: 20-31. https://doi.org/10.1016/j.ecss.2012.02.012 Afonso, C., Lourenço, H. M., Dias, A., et al., 2007. Contaminant Metals in Black Scabbard Fish (Aphanopus Carbo) Caught off Madeira and the Azores. Food Chemistry, 101(1): 120-125. https://doi.org/10.1016/j.foodchem.2006.01.030 Aksentov, K. I., Sattarova, V. V., 2020. Mercury Geochemistry of Deep-Sea Sediment Cores from the Kuril Area, Northwest Pacific. Progress in Oceanography, 180: 102235. https://doi.org/10.1016/j.pocean.2019.102235 Aksentov, K. I., Astakhov, A. S., Ivanov, M. V., et al., 2021. Assessment of Mercury Levels in Modern Sediments of the East Siberian Sea. Marine Pollution Bulletin, 168: 112426. https://doi.org/10.1016/j.marpolbul.2021.112426 Amos, H. M., Jacob, D. J., Kocman, D., et al., 2014. Global Biogeochemical Implications of Mercury Discharges from Rivers and Sediment Burial. Environmental Science & Technology, 48(16): 9514-9522. https://doi.org/10.1021/es502134t Amyot, M., Gill, G. A., Morel, F. M. M., 1997. Production and Loss of Dissolved Gaseous Mercury in Coastal Seawater. Environmental Science & Technology, 31(12): 3606-3611. https://doi.org/10.1021/es9703685 Anbar, A. D., Rouxel, O., 2007. Metal Stable Isotopes in Paleoceanography. Annual Review of Earth and Planetary Sciences, 35: 717-746. https://doi.org/10.1146/annurev.earth.34.031405.125029 Azaroff, A., Tessier, E., Deborde, J., et al., 2019. Mercury and Methylmercury Concentrations, Sources and Distribution in Submarine Canyon Sediments (Capbreton, SW France): Implications for the Net Methylmercury Production. Science of the Total Environment, 673: 511-521. https://doi.org/10.1016/j.scitotenv.2019.04.111 Balogh, S. J., Tsui, M. T. K., Blum, J. D., et al., 2015. Tracking the Fate of Mercury in the Fish and Bottom Sediments of Minamata Bay, Japan, Using Stable Mercury Isotopes. Environmental Science & Technology, 49(9): 5399-5406. https://doi.org/10.1021/acs.est.5b00631 Barkay, T., Poulain, A. J., 2007. Mercury (Micro)Biogeochemistry in Polar Environments. FEMS Microbiology Ecology, 59(2): 232-241. https://doi.org/10.1111/j.1574-6941.2006.00246.x Beldowski, J., Pempkowiak, J., 2009. Mercury Concentration and Solid Phase Speciation Changes in the Course of Early Diagenesis in Marine Coastal Sediments (Southern Baltic Sea). Marine and Freshwater Research, 60. (7): 745-757. https://doi.org/10.1071/MF08060 Bergquist, B. A., Blum, J. D., 2007. Mass-Dependent and -Independent Fractionation of Hg Isotopes by Photoreduction in Aquatic Systems. Science, 318(5849): 417-420. https://doi.org/10.1126/science.1148050 Bergquist, B. A., Blum, J. D., 2009. The Odds and Evens of Mercury Isotopes: Applications of Mass-Dependent and Mass-Independent Isotope Fractionation. Elements, 5(6): 353-357. https://doi.org/10.2113/gselements.5.6.353 Biswas, A., Blum, J. D., Bergquist, B. A., et al., 2008. Natural Mercury Isotope Variation in Coal Deposits and Organic Soils. Environmental Science & Technology, 42(22): 8303-8309. https://doi.org/10.1021/es801444b Black, F. J., Paytan, A., Knee, K. L., et al., 2009. Submarine Groundwater Discharge of Total Mercury and Monomethylmercury to Central California Coastal Waters. Environmental Science & Technology, 43(15): 5652-5659. https://doi.org/10.1021/es900539c Bloom, N. S., Preus, E., Katon, J., et al., 2003. Selective Extractions to Assess the Biogeochemically Relevant Fractionation of Inorganic Mercury in Sediments and Soils. Analytica Chimica Acta, 479(2): 233-248. https://doi.org/10.1016/S0003-2670(02)01550-7 Blum, J. D., 2012. Applications of Stable Mercury Isotopes to Biogeochemistry. Springer, Berlin, 229-245. https://doi.org/10.1007/978-3-642-10637-8_12 Blum, J. D., Drazen, J. C., Johnson, M. W., et al., 2020. Mercury Isotopes Identify near-Surface Marine Mercury in Deep-Sea Trench Biota. PNAS, 117(47): 29292-29298. https://doi.org/10.1073/pnas.2012773117 Blum, J. D., Johnson, M. W., 2017. Recent Developments in Mercury Stable Isotope Analysis. Reviews in Mineralogy and Geochemistry, 82(1): 733-757. https://doi.org/10.2138/rmg.2017.82.17 Blum, J. D., Popp, B. N., Drazen, J. C., et al., 2013. Methylmercury Production below the Mixed Layer in the North Pacific Ocean. Nature Geoscience, 6(10): 879-884. https://doi.org/10.1038/ngeo1918 Blum, J. D., Sherman, L. S., Johnson, M. W., 2014. Mercury Isotopes in Earth and Environmental Sciences. Annual Review of Earth and Planetary Sciences, 42(1): 249-269. https://doi.org/10.1146/annurev-earth-050212-124107 Blum, J. E., Bartha, R., 1980. Effect of Salinity on Methylation of Mercury. Bulletin of Environmental Contamination and Toxicology, 25(1): 404-408. https://doi.org/10.1007/BF01985546 Bone, S. E., Charette, M. A., Lamborg, C. H., et al., 2007. Has Submarine Groundwater Discharge been Overlooked as a Source of Mercury to Coastal Waters? Environmental Science & Technology, 41(9): 3090-3095. https://doi.org/10.1021/es0622453 Bonsignore, M., Manta, D. S., Barsanti, M., et al., 2020. Mercury Isotope Signatures in Sediments and Marine Organisms as Tracers of Historical Industrial Pollution. Chemosphere, 258: 127435. https://doi.org/10.1016/j.chemosphere.2020.127435 Bonsignore, M., Tamburrino, S., Oliveri, E., et al., 2015. Tracing Mercury Pathways in Augusta Bay (Southern Italy) by Total Concentration and Isotope Determination. Environmental Pollution, 205: 178-185. https://doi.org/10.1016/j.envpol.2015.05.033 Bowman, K. L., Hammerschmidt, C. R., Lamborg, C. H., et al., 2015. Mercury in the North Atlantic Ocean: The U. S. Geotraces Zonal and Meridional Sections. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 116: 251-261. https://doi.org/10.1016/j.dsr2.2014.07.004 Braune, B., Chételat, J., Amyot, M., et al., 2015. Mercury in the Marine Environment of the Canadian Arctic: Review of Recent Findings. Science of the Total Environment, 509-510: 67-90. https://doi.org/10.1016/j.scitotenv.2014.05.133 Brocza, F. M., Biester, H., Richard, J. H., et al., 2019. Mercury Isotope Fractionation in the Subsurface of a Hg(Ⅱ) Chloride-Contaminated Industrial Legacy Site. Environmental Science & Technology, 53(13): 7296-7305. https://doi.org/10.1021/acs.est.9b00619 Buck, C. S., Hammerschmidt, C. R., Bowman, K. L., et al., 2015. Flux of Total Mercury and Methylmercury to the Northern Gulf of Mexico from U. S. Estuaries. Environmental Science & Technology, 49(24): 13992-13999. https://doi.org/10.1021/acs.est.5b03538 Burger, J., Gochfeld, M., 2013. Selenium and Mercury Molar Ratios in Commercial Fish from New Jersey and Illinois: Variation within Species and Relevance to Risk Communication. Food and Chemical Toxicology, 57: 235-245. https://doi.org/10.1016/j.fct.2013.03.021 Celo, V., Lean, D. R., Scott, S. L., 2006. Abiotic Methylation of Mercury in the Aquatic Environment. Science of the Total Environment, 368(1): 126-137. https://doi.org/10.1016/j.scitotenv.2005.09.043 Chakraborty, P., Raghunadh Babu, P. V., Vudamala, K., et al., 2014. Mercury Speciation in Coastal Sediments from the Central East Coast of India by Modified BCR Method. Marine Pollution Bulletin, 81(1): 282-288. https://doi.org/10.1016/j.marpolbul.2013.12.054 Chakraborty, P., Vudamala, K., Coulibaly, M., et al., 2015. Reduction of Mercury (Ⅱ) by Humic Substances—Influence of pH, Salinity of Aquatic System. Environmental Science and Pollution Research, 22(14): 10529-10538. https://doi.org/10.1007/s11356-015-4258-4 Chandan, P., Ghosh, S., Bergquist, B. A., 2015. Mercury Isotope Fractionation during Aqueous Photoreduction of Monomethylmercury in the Presence of Dissolved Organic Matter. Environmental Science & Technology, 49(1): 259-267. https://doi.org/10.1021/es5034553 Chen, J., Pehkonen, S. O., Lin, C. J., 2003. Degradation of Monomethylmercury Chloride by Hydroxyl Radicals in Simulated Natural Waters. Water Research, 37(10): 2496-2504. https://doi.org/10.1016/S0043-1354(03)00039-3 Chen, J. B., Hintelmann, H., Feng, X. B., et al., 2012. Unusual Fractionation of Both Odd and Even Mercury Isotopes in Precipitation from Peterborough, on, Canada. Geochimica et Cosmochimica Acta, 90: 33-46. https://doi.org/10.1016/j.gca.2012.05.005 Cheng, J. P., Gao, L. L., Zhao, W. C., et al., 2009. Mercury Levels in Fisherman and Their Household Members in Zhoushan, China: Impact of Public Health. Science of the Total Environment, 407(8): 2625-2630. https://doi.org/10.1016/j.scitotenv.2009.01.032 Chouvelon, T., Cresson, P., Bouchoucha, M., et al., 2018. Oligotrophy as a Major Driver of Mercury Bioaccumulation in Medium- to High-Trophic Level Consumers: A Marine Ecosystem-Comparative Study. Environmental Pollution, 233: 844-854. https://doi.org/10.1016/j.envpol.2017.11.015 Chouvelon, T., Spitz, J., Caurant, F., et al., 2012. Enhanced Bioaccumulation of Mercury in Deep-Sea Fauna from the Bay of Biscay (North-East Atlantic) in Relation to Trophic Positions Identified by Analysis of Carbon and Nitrogen Stable Isotopes. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 65: 113-124. https://doi.org/10.1016/j.dsr.2012.02.010 Ci, Z. J., Wang, C. J., Wang, Z. W., et al., 2015. Elemental Mercury (Hg(0)) in Air and Surface Waters of the Yellow Sea during Late Spring and Late Fall 2012: Concentration, Spatial-Temporal Distribution and Air/Sea Flux. Chemosphere, 119: 199-208. https://doi.org/10.1016/j.chemosphere.2014.05.064 Ci, Z. J., Zhang, X. S., Yin, Y. G., et al., 2016. Mercury Redox Chemistry in Waters of the Eastern Asian Seas: From Polluted Coast to Clean Open Ocean. Environmental Science & Technology, 50(5): 2371-2380. https://doi.org/10.1021/acs.est.5b05372 Compeau, G. C., Bartha, R., 1987. Effect of Salinity on Mercury-Methylating Activity of Sulfate-Reducing Bacteria in Estuarine Sediments. Applied and Environmental Microbiology, 53(2): 261-265. https://doi.org/10.1128/aem.53.2.261-265.1987 Correa, L., Rea, L. D., Bentzen, R., et al., 2014. Assessment of Mercury and Selenium Tissular Concentrations and Total Mercury Body Burden in 6 Steller Sea Lion Pups from the Aleutian Islands. Marine Pollution Bulletin, 82(1-2): 175-182. https://doi.org/10.1016/j.marpolbul.2014.02.022 Cossa, D., Averty, B., Pirrone, N., 2009. The Origin of Methylmercury in Open Mediterranean Waters. Limnology and Oceanography, 54(3): 837-844. https://doi.org/10.4319/lo.2009.54.3.0837 Cossa, D., Heimburger, L. E., Lannuzel, D., et al., 2011. Mercury in the Southern Ocean. Geochimica et Cosmochimica Acta, 75(14): 4037-4052. https://doi.org/10.1016/j.gca.2011.05.001 Cossa, D., Knoery, J., Bănaru, D., et al., 2022. Mediterranean Mercury Assessment 2022: An Updated Budget, Health Consequences, and Research Perspectives. Environmental Science & Technology, 56(7): 3840-3862. https://doi.org/10.1021/acs.est.1c03044 Cossa, D., Martin, J. M., Takayanagi, K., et al., 1997. The Distribution and Cycling of Mercury Species in the Western Mediterranean. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 44(3-4): 721-740. https://doi.org/10.1016/S0967-0645(96)00097-5 Cossa, D., Mucci, A., Guédron, S., et al., 2021. Mercury Accumulation in the Sediment of the Western Mediterranean Abyssal Plain: A Reliable Archive of the Late Holocene. Geochimica et Cosmochimica Acta, 309: 1-15. https://doi.org/10.1016/j.gca.2021.06.014 Covelli, S., Faganeli, J., Horvat, M., et al., 1999. Porewater Distribution and Benthic Flux Measurements of Mercury and Methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Estuarine, Coastal and Shelf Science, 48(4): 415-428. https://doi.org/10.1006/ecss.1999.0466 Cox, M. E., McMurtry, G. M., 1981. Vertical Distribution of Mercury in Sediments from the East Pacific Rise. Nature, 289(5800): 789-792. https://doi.org/10.1038/289789a0 Criss, R. E., 1999. Principles of Stable Isotope Distribution. Oxford University Press, New York, 264. https://doi.org/10.1093/oso/9780195117752.001.0001. Crowther, E. R., Demers, J. D., Blum, J. D., et al., 2021. Use of Sequential Extraction and Mercury Stable Isotope Analysis to Assess Remobilization of Sediment-Bound Legacy Mercury. Environmental Science: Processes & Impacts, 23(5): 756-775. https://doi.org/10.1039/D1EM00019E Demers, J. D., Blum, J. D., Brooks, S. C., et al., 2018. Hg Isotopes Reveal in-Stream Processing and Legacy Inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA. Environmental Science: Processes & Impacts, 20(4): 686-707. https://doi.org/10.1039/C7EM00538E Depew, D. C., Basu, N., Burgess, N. M., et al., 2012. Toxicity of Dietary Methylmercury to Fish: Derivation of Ecologically Meaningful Threshold Concentrations. Environmental Toxicology and Chemistry, 31(7): 1536-1547. https://doi.org/10.1002/etc.1859 Donovan, P. M., Blum, J. D., Yee, D., et al., 2013. An Isotopic Record of Mercury in San Francisco Bay Sediment. Chemical Geology, 349-350: 87-98. https://doi.org/10.1016/j.chemgeo.2013.04.017 Engle, M. A., Gustin, M. S., Goff, F., et al., 2006. Atmospheric Mercury Emissions from Substrates and Fumaroles Associated with Three Hydrothermal Systems in the Western United States. Journal of Geophysical Research: Atmospheres, 111(D17). https://doi.org/10.1029/2005JD006563 Estrade, N., Carignan, J., Sonke, J. E., et al., 2009. Mercury Isotope Fractionation during Liquid-Vapor Evaporation Experiments. Geochimica et Cosmochimica Acta, 73(10): 2693-2711. https://doi.org/10.1016/j.gca.2009.01.024 Feng, X. B., Yin, R. S., Yu, B., et al., 2015. A Review of Hg Isotope Geochemistry. Earth Science Frontiers, 22(5): 124-135 (in Chinese with English abstract). Foucher, D., Hintelmann, H., 2006. High-Precision Measurement of Mercury Isotope Ratios in Sediments Using Cold-Vapor Generation Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Analytical and Bioanalytical Chemistry, 384(7): 1470-1478. https://doi.org/10.1007/s00216-006-0373-x Foucher, D., Hintelmann, H., Al, T. A., et al., 2013. Mercury Isotope Fractionation in Waters and Sediments of the Murray Brook Mine Watershed (New Brunswick, Canada): Tracing Mercury Contamination and Transformation. Chemical Geology, 336: 87-95. https://doi.org/10.1016/j.chemgeo.2012.04.014 Fu, L. W., Yu, F., Huan, Z., et al., 2020. Aqua Regia Digestion cannot Completely Extract Hg from Biochar: A Synchrotron-Based Study. Environmental Pollution, 265: 115002. https://doi.org/10.1016/j.envpol.2020.115002 Fu, X. W., Feng, X. B., Zhang, G., et al., 2010. Mercury in the Marine Boundary Layer and Seawater of the South China Sea: Concentrations, Sea/Air Flux, and Implication for Land Outflow. Journal of Geophysical Research: Atmospheres, 115(D6): D06303. https://doi.org/10.1029/2009jd012958 Gantner, N., Hintelmann, H., Zheng, W., et al., 2009. Variations in Stable Isotope Fractionation of Hg in Food Webs of Arctic Lakes. Environmental Science & Technology, 43(24): 9148-9154. https://doi.org/10.1021/es901771r Gårdfeldt, K., Sommar, J., Ferrara, R., et al., 2003. Evasion of Mercury from Coastal and Open Waters of the Atlantic Ocean and the Mediterranean Sea. Atmospheric Environment, 37(1): 73-84. https://doi.org/10.1016/S1352-2310(03)00238-3 Gehrke, G. E., Blum, J. D., Meyers, P. A., 2009. The Geochemical Behavior and Isotopic Composition of Hg in a Mid-Pleistocene Western Mediterranean Sapropel. Geochimica et Cosmochimica Acta, 73(6): 1651-1665. https://doi.org/10.1016/j.gca.2008.12.012 Gehrke, G. E., Blum, J. D., Slotton, D. G., et al., 2011. Mercury Isotopes Link Mercury in San Francisco Bay Forage Fish to Surface Sediments. Environmental Science & Technology, 45(4): 1264-1270. https://doi.org/10.1021/es103053y Ghosh, S., Schauble, E. A., Lacrampe Couloume, G., et al., 2013. Estimation of Nuclear Volume Dependent Fractionation of Mercury Isotopes in Equilibrium Liquid-Vapor Evaporation Experiments. Chemical Geology, 336: 5-12. https://doi.org/10.1016/j.chemgeo.2012.01.008 Gilmour, C. C., Henry, E. A., Mitchell, R., 1992. Sulfate Stimulation of Mercury Methylation in Freshwater Sediments. Environmental Science & Technology, 26(11): 2281-2287. https://doi.org/10.1021/es00035a029 Gilmour, C. C., Podar, M., Bullock, A. L., et al., 2013. Mercury Methylation by Novel Microorganisms from New Environments. Environmental Science & Technology, 47(20): 11810-11820. https://doi.org/10.1021/es403075t Gionfriddo, C. M., Tate, M. T., Wick, R. R., et al., 2016. Microbial Mercury Methylation in Antarctic Sea Ice. Nature Microbiology, 1(10): 16127. https://doi.org/10.1038/nmicrobiol.2016.127 Gleason, J. D., Blum, J. D., Moore, T. C., et al., 2017. Sources and Cycling of Mercury in the Paleo Arctic Ocean from Hg Stable Isotope Variations in Eocene and Quaternary Sediments. Geochimica et Cosmochimica Acta, 197(16): 245-262. https://doi.org/10.1016/j.gca.2016.10.033 Gobeil, C., MacDonald, R. W., Smith, J. N., 1999. Mercury Profiles in Sediments of the Arctic Ocean Basins. Environmental Science & Technology, 33(23): 4194-4198. https://doi.org/10.1021/es990471p Gratz, L. E., Keeler, G. J., Blum, J. D., et al., 2010. Isotopic Composition and Fractionation of Mercury in Great Lakes Precipitation and Ambient Air. Environmental Science & Technology, 44(20): 7764-7770. https://doi.org/10.1021/es100383w Green-Ruiz, C., 2009. Effect of Salinity and Temperature on the Adsorption of Hg(Ⅱ) from Aqueous Solutions by a Ca-Montmorillonite. Environmental Technology, 30(1): 63-68. https://doi.org/10.1080/09593330802503859 Grigg, A. R. C., Kretzschmar, R., Gilli, R. S., et al., 2018. Mercury Isotope Signatures of Digests and Sequential Extracts from Industrially Contaminated Soils and Sediments. Science of the Total Environment, 636(22): 1344-1354. https://doi.org/10.1016/j.scitotenv.2018.04.261 Gu, B. H., Bian, Y. R., Miller, C. L., et al., 2011. Mercury Reduction and Complexation by Natural Organic Matter in Anoxic Environments. PNAS, 108(4): 1479-1483. https://doi.org/10.1073/pnas.1008747108 Gworek, B., Bemowska-Kałabun, O., Kijeńska, M., et al., 2016. Mercury in Marine and Oceanic Waters—A Review. Water, Air, & Soil Pollution, 227(10): 371. https://doi.org/10.1007/s11270-016-3060-3 Hassan, H., Elezz, A. A., Abuasali, M., et al., 2019. Baseline Concentrations of Mercury Species within Sediments from Qatar's Coastal Marine Zone. Marine Pollution Bulletin, 142: 595-602. https://doi.org/10.1016/j.marpolbul.2019.04.022 Heimbürger, L. E., Sonke, J. E., Cossa, D., et al., 2015. Shallow Methylmercury Production in the Marginal Sea Ice Zone of the Central Arctic Ocean. Scientific Reports, 5: 10318. https://doi.org/10.1038/srep10318 Heyes, A., Mason, R. P., Kim, E. H., et al., 2006. Mercury Methylation in Estuaries: Insights from Using Measuring Rates Using Stable Mercury Isotopes. Marine Chemistry, 102(1-2): 134-147. https://doi.org/10.1016/j.marchem.2005.09.018 Hilgendag, I. R., Swanson, H. K., Lewis, C. W., et al., 2022. Mercury Biomagnification in Benthic, Pelagic, and Benthopelagic Food Webs in an Arctic Marine Ecosystem. Science of the Total Environment, 841: 156424. https://doi.org/10.1016/j.scitotenv.2022.156424 Hintelmann, H., Zheng, W., 2011. Tracking Geochemical Transformations and Transport of Mercury through Isotope Fractionation. In: Liu, G. L., Cai, Y., O'Driscoll, N., eds., Environmental Chemistry and Toxicology of Mercury. John Wiley & Sons Inc., Hoboken, 293-327. https://doi.org/10.1002/9781118146644.ch9 Hollweg, T. A., Gilmour, C. C., Mason, R. P., 2009. Methylmercury Production in Sediments of Chesapeake Bay and the Mid-Atlantic Continental Margin. Marine Chemistry, 114(3-4): 86-101. https://doi.org/10.1016/j.marchem.2009.04.004 Hollweg, T. A., Gilmour, C. C., Mason, R. P., 2010. Mercury and Methylmercury Cycling in Sediments of the Mid-Atlantic Continental Shelf and Slope. Limnology and Oceanography, 55(6): 2703-2722. https://doi.org/10.4319/lo.2010.55.6.2703 Ikemoto, T., Kunito, T., Tanaka, H., et al., 2004. Detoxification Mechanism of Heavy Metals in Marine Mammals and Seabirds: Interaction of Selenium with Mercury, Silver, Copper, Zinc, and Cadmium in Liver. Archives of Environmental Contamination and Toxicology, 47(3): 402-413. https://doi.org/10.1007/s00244-004-3188-9 Janssen, S. E., Schaefer, J. K., Barkay, T., et al., 2016. Fractionation of Mercury Stable Isotopes during Microbial Methylmercury Production by Iron- and Sulfate- Reducing Bacteria. Environmental Science & Technology, 50(15): 8077-8083. https://doi.org/10.1021/acs.est.6b00854 Jeong, D. H., Jeong, W., Baeg, S., et al., 2021. Datasets on the Spatial Distribution of Mercury and Its Controlling Factors in the Yellow Sea. Data Brief, 35: 106792. https://doi.org/10.1016/j.dib.2021.106792 Jeremiason, J. D., Portner, J. C., Aiken, G. R., et al., 2015. Photoreduction of Hg(Ⅱ) and Photodemethylation of Methylmercury: The Key Role of Thiol Sites on Dissolved Organic Matter. Environmental Science: Processes & Impacts, 17(11): 1892-1903. https://doi.org/10.1039/C5EM00305A Jiang, T., Skyllberg, U., Björn, E., et al., 2017. Characteristics of Dissolved Organic Matter (DOM) and Relationship with Dissolved Mercury in Xiaoqing River-Laizhou Bay Estuary, Bohai Sea, China. Environmental Pollution, 223(6): 19-30. https://doi.org/10.1016/j.envpol.2016.12.006 Jiménez-Moreno, M., Perrot, V., Epov, V. N., et al., 2013. Chemical Kinetic Isotope Fractionation of Mercury during Abiotic Methylation of Hg(Ⅱ) by Methylcobalamin in Aqueous Chloride Media. Chemical Geology, 336: 26-36. https://doi.org/10.1016/j.chemgeo.2012.08.029 Jin, H. F., Liebezeit, G., 2013. Distribution of Total Mercury in Coastal Sediments from Jade Bay and Its Catchment, Lower Saxony, Germany. Journal of Soils and Sediments, 13(2): 441-449. https://doi.org/10.1007/s11368-012-0626-6 Jiskra, M., Heimbürger-Boavida, L. E., Desgranges, M. M., et al., 2021. Mercury Stable Isotopes Constrain Atmospheric Sources to the Ocean. Nature, 597(7878): 678-682. https://doi.org/10.1038/s41586-021-03859-8 Jiskra, M., Wiederhold, J. G., Bourdon, B., et al., 2012. Solution Speciation Controls Mercury Isotope Fractionation of Hg(Ⅱ) Sorption to Goethite. Environmental Science & Technology, 46(12): 6654-6662. https://doi.org/10.1021/es3008112 Jung, S., Kwon, S. Y., Li, M. L., et al., 2022. Elucidating Sources of Mercury in the West Coast of Korea and the Chinese Marginal Seas Using Mercury Stable Isotopes. Science of the Total Environment, 814: 152598. https://doi.org/10.1016/j.scitotenv.2021.152598 Kannan, K., Falandysz, J., 1998. Speciation and Concentrations of Mercury in Certain Coastal Marine Sediments. Water, Air, and Soil Pollution, 103(1-4): 129-136. https://doi.org/10.1023/A:1004967112178 Kim, E., Noh, S., Lee, Y. G., et al., 2014. Mercury and Methylmercury Flux Estimation and Sediment Distribution in an Industrialized Urban Bay. Marine Chemistry, 158: 59-68. https://doi.org/10.1016/j.marchem.2013.11.004 Kim, H., Lee, K., Lim, D. I., et al., 2019. Increase in Anthropogenic Mercury in Marginal Sea Sediments of the Northwest Pacific Ocean. Science of the Total Environment, 654: 801-810. https://doi.org/10.1016/j.scitotenv.2018.11.076 Kim, J., Lim, D., Jeong, D., et al., 2022. Mercury (Hg) Geochemistry of Mid-Ocean Ridge Sediments on the Central Indian Ridge: Chemical Forms and Isotopic Composition. Chemical Geology, 604: 120942. https://doi.org/10.1016/j.chemgeo.2022.120942 Kirk, J. L., Lehnherr, I., Andersson, M., et al., 2012. Mercury in Arctic Marine Ecosystems: Sources, Pathways and Exposure. Environmental Research, 119: 64-87. https://doi.org/10.1016/j.envres.2012.08.012 Kita, I., Yamashita, T., Chiyonobu, S., et al., 2016. Mercury Content in Atlantic Sediments as a New Indicator of the Enlargement and Reduction of Northern Hemisphere Ice Sheets. Journal of Quaternary Science, 31(3): 167-177. https://doi.org/10.1002/jqs.2854 Koenig, S., Solé, M., Fernández-Gómez, C., et al., 2013. New Insights into Mercury Bioaccumulation in Deep-Sea Organisms from the NW Mediterranean and Their Human Health Implications. Science of the Total Environment, 442: 329-335. https://doi.org/10.1016/j.scitotenv.2012.10.036 Kojadinovic, J., Potier, M., Le Corre, M., et al., 2007. Bioaccumulation of Trace Elements in Pelagic Fish from the Western Indian Ocean. Environmental Pollution, 146(2): 548-566. https://doi.org/10.1016/j.envpol.2006.07.015 Koster Van Groos, P. G., Esser, B. K., Williams, R. W., et al., 2014. Isotope Effect of Mercury Diffusion in Air. Environmental Science & Technology, 48(1): 227-233. https://doi.org/10.1021/es4033666 Kritee, K., Barkay, T., Blum, J. D., 2009. Mass Dependent Stable Isotope Fractionation of Mercury during Mer Mediated Microbial Degradation of Monomethylmercury. Geochimica et Cosmochimica Acta, 73(5): 1285-1296. https://doi.org/10.1016/j.gca.2008.11.038 Kritee, K., Blum, J. D., Barkay, T., 2008. Mercury Stable Isotope Fractionation during Reduction of Hg(Ⅱ) by Different Microbial Pathways. Environmental Science & Technology, 42(24): 9171-9177. https://doi.org/10.1021/es801591k Kritee, K., Blum, J. D., Johnson, M. W., et al., 2007. Mercury Stable Isotope Fractionation during Reduction of Hg(Ⅱ) to Hg(0) by Mercury Resistant Microorganisms. Environmental Science & Technology, 41(6): 1889-1895. https://doi.org/10.1021/es062019t Kritee, K., Motta, L. C., Blum, J. D., et al., 2018. Photomicrobial Visible Light-Induced Magnetic Mass Independent Fractionation of Mercury in a Marine Microalga. ACS Earth and Space Chemistry, 2(5): 432-440. https://doi.org/10.1021/acsearthspacechem.7b00056 Kwasigroch, U., Bełdowska, M., Jędruch, A., et al., 2021. Distribution and Bioavailability of Mercury in the Surface Sediments of the Baltic Sea. Environmental Science and Pollution Research, 28(27): 35690-35708. https://doi.org/10.1007/s11356-021-13023-4 Kwon, S. Y., Blum, J. D., Yin, R., et al., 2020. Mercury Stable Isotopes for Monitoring the Effectiveness of the Minamata Convention on Mercury. Earth-Science Reviews, 203: 103111. https://doi.org/10.1016/j.earscirev.2020.103111 Lalonde, J. D., Amyot, M., Kraepiel, A. M. L., et al., 2001. Photooxidation of Hg(0) in Artificial and Natural Waters. Environmental Science & Technology, 35(7): 1367-1372. https://doi.org/10.1021/es001408z Lalonde, J. D., Amyot, M., Orvoine, J., et al., 2004. Photoinduced Oxidation of Hg0(Aq) in the Waters from the St. Lawrence Estuary. Environmental Science & Technology, 38(2): 508-514. https://doi.org/10.1021/es034394g Lamborg, C. H., Hammerschmidt, C. R., Bowman, K. L., 2016. An Examination of the Role of Particles in Oceanic Mercury Cycling. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2081): 20150297. https://doi.org/10.1098/rsta.2015.0297 Laporte, J. M., Truchot, J. P., Ribeyre, F., et al., 1997. Combined Effects of Water pH and Salinity on the Bioaccumulation of Inorganic Mercury and Methylmercury in the Shore Crab Carcinus Maenas. Marine Pollution Bulletin, 34(11): 880-893. https://doi.org/10.1016/ S0025-326X(97)00059-3 doi: 10.1016/S0025-326X(97)00059-3 Laurier, F. J. G., Cossa, D., Beucher, C., et al., 2007. The Impact of Groundwater Discharges on Mercury Partitioning, Speciation and Bioavailability to Mussels in a Coastal Zone. Marine Chemistry, 104(3-4): 143-155. https://doi.org/10.1016/j.marchem.2006.10.010 Laurier, F. J. G., Mason, R. P., Gill, G. A., et al., 2004. Mercury Distributions in the North Pacific Ocean—20 Years of Observations. Marine Chemistry, 90(1-4): 3-19. https://doi.org/10.1016/j.marchem.2004.02.025 Lee, S. H., Suh, J. K., Lee, S. H., et al., 2005. Determination of Mercury in Tuna Fish Tissue Using Isotope Dilution-Inductively Coupled Plasma Mass Spectrometry. Microchemical Journal, 80(2): 233-236. https://doi.org/10.1016/j.microc.2004.07.007 Lehnherr, I., 2014. Methylmercury Biogeochemistry: A Review with Special Reference to Arctic Aquatic Ecosystems. Environmental Reviews, 22(3): 229-243. https://doi.org/10.1139/er-2013-0059 Lehnherr, I., St. Louis, V. L., Hintelmann, H., et al., 2011. Methylation of Inorganic Mercury in Polar Marine Waters. Nature Geoscience, 4(5): 298-302. https://doi.org/10.1038/ngeo1134 Li, C. H., Wang, T., Liang, H. D., et al., 2017. Progresses in Study of Hg Isotope Database. Ecology and Environmental Sciences, 26(9): 1627-1638 (in Chinese with English abstract). Liang, L., Horvat, M., Li, H., et al., 2003. Determination of Mercury in Minerals by Combustion/Trap/Atomic Fluorescence Spectrometry. Journal of Analytical Atomic Spectrometry, 18(11): 1383-1385. https://doi.org/10.1039/B306603G Liem-Nguyen, V., Wild, B., Gustafsson, Ö., et al., 2022. Spatial Patterns and Distributional Controls of Total and Methylated Mercury off the Lena River in the Laptev Sea Sediments. Marine Chemistry, 238(17): 104052. https://doi.org/10.1016/j.marchem.2021.104052 Lim, D., Kim, H., Kim, J., et al., 2020. Mercury Proxy for Hydrothermal and Submarine Volcanic Activities in the Sediment Cores of Central Indian Ridge. Marine Pollution Bulletin, 159: 111513. https://doi.org/10.1016/j.marpolbul.2020.111513 Lin, H. Y., Yuan, D. X., Lu, B. Y., et al., 2015. Isotopic Composition Analysis of Dissolved Mercury in Seawater with Purge and Trap Preconcentration and a Modified Hg Introduction Device for MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 30(2): 353-359. https://doi.org/10.1039/C4JA00242C Liu, C., Chen, L. F., Gao, H. Y., et al., 2018. Distribution of Mercury Species and Their Controlling Factors in the Sediment of the East China Sea. Periodical of Ocean University of China, 48(S2): 59-66 (in Chinese with English abstract). Liu, C., Chen, L. F., Liang, S. K., et al., 2020. Distribution of Total Mercury and Methylmercury and Their Controlling Factors in the East China Sea. Environmental Pollution, 258(6): 113667. https://doi.org/10.1016/j.envpol.2019.113667 Liu, J. H., Cao, L., Huang, W., et al., 2013. Species- and Tissue-Specific Mercury Bioaccumulation in Five Fish Species from Laizhou Bay in the Bohai Sea of China. Chinese Journal of Oceanology and Limnology, 31(3): 504-513. https://doi.org/10.1007/s00343-013-2277-x Liu, J. L., Xu, X. R., Yu, S., et al., 2014. Mercury Pollution in Fish from South China Sea: Levels, Species- Specific Accumulation, and Possible Sources. Environmental Research, 131: 160-164. https://doi.org/10.1016/j.envres.2014.03.004 Liu, M. D., Xiao, W. J., Zhang, Q. R., et al., 2021a. Substantial Accumulation of Mercury in the Deepest Parts of the Ocean and Implications for the Environmental Mercury Cycle. PNAS, 118(51): e2102629118. https://doi.org/10.1073/pnas.2102629118 Liu, M. D., Zhang, Q. R., Maavara, T., et al., 2021b. Rivers as the Largest Source of Mercury to Coastal Oceans Worldwide. Nature Geoscience, 14(9): 672-677. https://doi.org/10.1038/s41561-021-00793-2 Liu, Y. L., Chen, J. B., Liu, J. F., et al., 2021c. Coprecipitation of Mercury from Natural Iodine-Containing Seawater for Accurate Isotope Measurement. Analytical Chemistry, 93(48): 15905-15912. https://doi.org/10.1021/acs.analchem.1c03060 López-Berenguer, G., Peñalver, J., Martínez-López, E., 2020. A Critical Review about Neurotoxic Effects in Marine Mammals of Mercury and Other Trace Elements. Chemosphere, 246: 125688. https://doi.org/10.1016/j.chemosphere.2019.125688 Lors, C., Tiffreau, C., Laboudigue, A., 2004. Effects of Bacterial Activities on the Release of Heavy Metals from Contaminated Dredged Sediments. Chemosphere, 56(6): 619-630. https://doi.org/10.1016/j.chemosphere.2004.04.009 Lu, X. Z., Shen, J., Guo, W., et al., 2021. Influence of Mercury Geochemistry and Volcanism on the Enrichment of Organic Matter near the Ordovician Silurian Transition in the Middle and Upper Yangtze. Earth Science, 46(7): 2329-2340 (in Chinese with English abstract). Madenjian, C. P., Janssen, S. E., Lepak, R. F., et al., 2019. Mercury Isotopes Reveal an Ontogenetic Shift in Habitat Use by Walleye in Lower Green Bay of Lake Michigan. Environmental Science & Technology Letters, 6(1): 8-13. https://doi.org/10.1021/acs.estlett.8b00592 Madigan, D. J., Li, M. L., Yin, R. S., et al., 2018. Mercury Stable Isotopes Reveal Influence of Foraging Depth on Mercury Concentrations and Growth in Pacific Bluefin Tuna. Environmental Science & Technology, 52(11): 6256-6264. https://doi.org/10.1021/acs.est.7b06429 Malinovsky, D., Latruwe, K., Moens, L., et al., 2010. Experimental Study of Mass-Independence of Hg Isotope Fractionation during Photodecomposition of Dissolved Methylmercury. Journal of Analytical Atomic Spectrometry, 25(7): 950-956. https://doi.org/10.1039/B926650J Malinovsky, D., Vanhaecke, F., 2011. Mercury Isotope Fractionation during Abiotic Transmethylation Reactions. International Journal of Mass Spectrometry, 307(1-3): 214-224. https://doi.org/10.1016/j.ijms.2011.01.020 Marvin-Dipasquale, M., Agee, J., McGowan, C., et al., 2000. Methyl-Mercury Degradation Pathways: A Comparison among Three Mercury-Impacted Ecosystems. Environmental Science & Technology, 34(23): 4908-4916. https://doi.org/10.1021/es0013125 Masbou, J., Point, D., Sonke, J. E., et al., 2015. Hg Stable Isotope Time Trend in Ringed Seals Registers Decreasing Sea Ice Cover in the Alaskan Arctic. Environmental Science & Technology, 49(15): 8977-8985. https://doi.org/10.1021/es5048446 Masbou, J., Sonke, J. E., Amouroux, D., et al., 2018. Hg-Stable Isotope Variations in Marine Top Predators of the Western Arctic Ocean. ACS Earth and Space Chemistry, 2(5): 479-490. https://doi.org/10.1021/acsearthspacechem.8b00017 Mason, R. P., Choi, A. L., Fitzgerald, W. F., et al., 2012. Mercury Biogeochemical Cycling in the Ocean and Policy Implications. Environmental Research, 119: 101-117. https://doi.org/10.1016/j.envres.2012.03.013 Mason, R. P., Fitzgerald, W. F., 1990. Alkylmercury Species in the Equatorial Pacific. Nature, 347(6292): 457-459. https://doi.org/10.1038/347457a0 Mason, R. P., Fitzgerald, W. F., 1993. The Distribution and Biogeochemical Cycling of Mercury in the Equatorial Pacific Ocean. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 40(9): 1897-1924. https://doi.org/10.1016/0967-0637(93)90037-4 Mason, R. P., Lawson, N. M., Sheu, G. R., 2001. Mercury in the Atlantic Ocean: Factors Controlling Air-Sea Exchange of Mercury and Its Distribution in the Upper Waters. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 48(13): 2829-2853. https://doi.org/10.1016/S0967-0645(01)00020-0 Mason, R. P., Reinfelder, J. R., Morel, F. M. M., 1996. Uptake, Toxicity, and Trophic Transfer of Mercury in a Coastal Diatom. Environmental Science & Technology, 30(6): 1835-1845. https://doi.org/10.1021/es950373d Mason, R. P., Rolfhus, K. R., Fitzgerald, W. F., 1998. Mercury in the North Atlantic. Marine Chemistry, 61(1-2): 37-53. https://doi.org/10.1016/S0304-4203(98)00006-1 Mason, R. P., Sheu, G. R., 2002. Role of the Ocean in the Global Mercury Cycle. Global Biogeochemical Cycles, 16(4): 40-1-40-14. https://doi.org/10.1029/2001GB001440 McMeans, B. C., Arts, M. T., Fisk, A. T., 2015. Impacts of Food Web Structure and Feeding Behavior on Mercury Exposure in Greenland Sharks (Somniosus Microcephalus). Science of the Total Environment, 509-510: 216-225. https://doi.org/10.1016/j.scitotenv.2014.01.128 Meador, J. P., Ernest, D. W., Kagley, A. N., 2005. A Comparison of the Non-Essential Elements Cadmium, Mercury, and Lead Found in Fish and Sediment from Alaska and California. Science of the Total Environment, 339(1-3): 189-205. https://doi.org/10.1016/j.scitotenv.2004.07.028 Meng, M., Liu, H. W., Yu, B., et al., 2021. Mercury Inputs into Eastern China Seas Revealed by Mercury Isotope Variations in Sediment Cores. Journal of Geophysical Research: Oceans, 126(8): e2020JC016891. https://doi.org/10.1029/2020JC016891 Meng, M., Shi, J. B., Yun, Z. J., et al., 2014. Distribution of Mercury in Coastal Marine Sediments of China: Sources and Transport. Marine Pollution Bulletin, 88(1-2): 347-353. https://doi.org/10.1016/j.marpolbul.2014.08.028 Meng, M., Sun, R. Y., Liu, H. W., et al., 2019. An Integrated Model for Input and Migration of Mercury in Chinese Coastal Sediments. Environmental Science & Technology, 53(5): 2460-2471. https://doi.org/10.1021/acs.est.8b06329 Meng, M., Sun, R. Y., Liu, H. W., et al., 2020. Mercury Isotope Variations within the Marine Food Web of Chinese Bohai Sea: Implications for Mercury Sources and Biogeochemical Cycling. Journal of Hazardous Materials, 384: 121379. https://doi.org/10.1016/j.jhazmat.2019.121379 Mil-Homens, M., Blum, J. D., Canario, J., et al., 2013. Tracing Anthropogenic Hg and Pb Input Using Stable Hg and Pb Isotope Ratios in Sediments of the Central Portuguese Margin. Chemical Geology, 336: 62-71. https://doi.org/10.1016/j.chemgeo.2012.02.018 Morel, F. M. M., Kraepiel, A. M. L., Amyot, M., 1998. The Chemical Cycle and Bioaccumulation of Mercury. Annual Review of Ecology and Systematics, 29(1): 543-566. https://doi.org/10.1146/annurev.ecolsys.29.1.543 Motta, L. C., Blum, J. D., Johnson, M. W., et al., 2019. Mercury Cycling in the North Pacific Subtropical Gyre as Revealed by Mercury Stable Isotope Ratios. Global Biogeochemical Cycles, 33(6): 777-794. https://doi.org/10.1029/2018GB006057 Motta, L. C., Blum, J. D., Popp, B. N., et al., 2020. Mercury Stable Isotopes in Flying Fish as a Monitor of Photochemical Degradation of Methylmercury in the Atlantic and Pacific Oceans. Marine Chemistry, 223: 103790. https://doi.org/10.1016/j.marchem.2020.103790 Munson, K. M., Lamborg, C. H., Boiteau, R. M., et al., 2018. Dynamic Mercury Methylation and Demethylation in Oligotrophic Marine Water. Biogeosciences, 15(21): 6451-6460. https://doi.org/10.5194/bg-15-6451-2018 Munson, K. M., Lamborg, C. H., Swarr, G. J., et al., 2015. Mercury Species Concentrations and Fluxes in the Central Tropical Pacific Ocean. Global Biogeochemical Cycles, 29(5): 656-676. https://doi.org/10.1002/2015gb005120 Nigro, M., Campana, A., Lanzillotta, E., et al., 2002. Mercury Exposure and Elimination Rates in Captive Bottlenose Dolphins. Marine Pollution Bulletin, 44(10): 1071-1075. https://doi.org/10.1016/S0025-326X(02)00159-5 Ogrinc, N., Hintelmann, H., Kotnik, J., et al., 2019. Sources of Mercury in Deep-Sea Sediments of the Mediterranean Sea as Revealed by Mercury Stable Isotopes. Scientific Reports, 9(1): 11626. https://doi.org/10.1038/s41598-019-48061-z Ogrinc, N., Monperrus, M., Kotnik, J., et al., 2007. Distribution of Mercury and Methylmercury in Deep-Sea Surficial Sediments of the Mediterranean Sea. Marine Chemistry, 107(1): 31-48. https://doi.org/10.1016/j.marchem.2007.01.019 Olson, B. H., Cooper, R. C., 1974. In Situ Methylation of Mercury in Estuarine Sediment. Nature, 252(5485): 682-683. https://doi.org/10.1038/252682b0 Orani, A. M., Vassileva, E., Azemard, S., et al., 2020. Comparative Study on Hg Bioaccumulation and Biotransformation in Mediterranean and Atlantic Sponge Species. Chemosphere, 260: 127515. https://doi.org/10.1016/j.chemosphere.2020.127515 Ortiz, V. L., Mason, R. P., Ward, J. E., 2015. An Examination of the Factors Influencing Mercury and Methylmercury Particulate Distributions, Methylation and Demethylation Rates in Laboratory-Generated Marine Snow. Marine Chemistry, 177: 753-762. https://doi.org/10.1016/j.marchem.2015.07.006 Outridge, P. M., Mason, R. P., Wang, F., et al., 2018. Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018. Environmental Science & Technology, 52(20): 11466-11477. https://doi.org/10.1021/acs.est.8b01246 Perrot, V., Epov, V. N., Pastukhov, M. V., et al., 2010. Tracing Sources and Bioaccumulation of Mercury in Fish of Lake Baikal-Angara River Using Hg Isotopic Composition. Environmental Science & Technology, 44(21): 8030-8037. https://doi.org/10.1021/es101898e Perrot, V., Pastukhov, M. V., Epov, V. N., et al., 2012. Higher Mass-Independent Isotope Fractionation of Methylmercury in the Pelagic Food Web of Lake Baikal (Russia). Environmental Science & Technology, 46(11): 5902-5911. https://doi.org/10.1021/es204572g Perrot, V., Bridou, R., Pedrero, Z., et al., 2015. Identical Hg Isotope Mass Dependent Fractionation Signature during Methylation by Sulfate-Reducing Bacteria in Sulfate and Sulfate-Free Environment. Environmental Science & Technology, 49(3): 1365-1373. https://doi.org/10.1021/es5033376 Point, D., Sonke, J. E., Day, R. D., et al., 2011. Methylmercury Photodegradation Influenced by Sea-Ice Cover in Arctic Marine Ecosystems. Nature Geoscience, 4(3): 188-194. https://doi.org/10.1038/ngeo1049 Qiu, Y., Gai, P. X., Yue, F. G., et al., 2021. Stable Mercury Isotopes Revealing Photochemical Processes in the Marine Boundary Layer. Journal of Geophysical Research: Atmospheres, 126(16): e2021JD034630. https://doi.org/10.1029/2021JD034630 Qu, P., Pang, M., Wang, P. G., et al., 2022. Bioaccumulation of Mercury along Continuous Fauna Trophic Levels in the Yellow River Estuary and Adjacent Sea Indicated by Nitrogen Stable Isotopes. Journal of Hazardous Materials, 432(9): 128631. https://doi.org/10.1016/j.jhazmat.2022.128631 Queirós, J. P., Hill, S. L., Pinkerton, M., et al., 2020. High Mercury Levels in Antarctic Toothfish Dissostichus Mawsoni from the Southwest Pacific Sector of the Southern Ocean. Environmental Research, 187: 109680. https://doi.org/10.1016/j.envres.2020.109680 Ravichandran, M., Aiken, G. R., Reddy, M. M., et al., 1998. Enhanced Dissolution of Cinnabar (Mercuric Sulfide) by Dissolved Organic Matter Isolated from the Florida Everglades. Environmental Science & Technology, 32(21): 3305-3311. https://doi.org/10.1021/es9804058 Renedo, M., Point, D., Sonke, J. E., et al., 2021. ENSO Climate Forcing of the Marine Mercury Cycle in the Peruvian Upwelling Zone does not Affect Methylmercury Levels of Marine Avian Top Predators. Environmental Science & Technology, 55(23): 15754-15765. https://doi.org/10.1021/acs.est.1c03861 Renedo, M., Bustamante, P., Cherel, Y., et al., 2020. A "Seabird-Eye" on Mercury Stable Isotopes and Cycling in the Southern Ocean. Science of the Total Environment, 742(6): 140499. https://doi.org/10.1016/j.scitotenv.2020.140499 Rodríguez-González, P., Epov, V. N., Bridou, R., et al., 2009. Species-Specific Stable Isotope Fractionation of Mercury during Hg(Ⅱ) Methylation by an Anaerobic Bacteria (Desulfobulbus Propionicus) under Dark Conditions. Environmental Science & Technology, 43(24): 9183-9188. https://doi.org/10.1021/es902206j Romero, M. B., Polizzi, P., Chiodi, L., et al., 2016. The Role of Metallothioneins, Selenium and Transfer to Offspring in Mercury Detoxification in Franciscana Dolphins (Pontoporia Blainvillei). Marine Pollution Bulletin, 109(1): 650-654. https://doi.org/10.1016/j.marpolbul.2016.05.012 Romero-Romero, S., García-Ordiales, E., Roqueñí, N., et al., 2022. Increase in Mercury and Methylmercury Levels with Depth in a Fish Assemblage. Chemosphere, 292(301): 133445. https://doi.org/10.1016/j.chemosphere.2021.133445 Rose, C. H., Ghosh, S., Blum, J. D., et al., 2015. Effects of Ultraviolet Radiation on Mercury Isotope Fractionation during Photo-Reduction for Inorganic and Organic Mercury Species. Chemical Geology, 405: 102-111. https://doi.org/10.1016/j.chemgeo.2015.02.025 Rosera, T. J., Janssen, S. E., Tate, M. T., et al., 2020. Isolation of Methylmercury Using Distillation and Anion-Exchange Chromatography for Isotopic Analyses in Natural Matrices. Analytical and Bioanalytical Chemistry, 412(3): 681-690. https://doi.org/10.1007/s00216-019-02277-0 Sattarova, V. V., Aksentov, K. I., 2018. Geochemistry of Mercury in Surface Sediments of the Kuril Basin of the Sea of Okhotsk, Kuril-Kamchatka Trench and Adjacent Abyssal Plain and Northwest Part of the Bering Sea. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 154: 24-31. https://doi.org/10.1016/j.dsr2.2017.09.002 Schartup, A. T., Ndu, U., Balcom, P. H., et al., 2015. Contrasting Effects of Marine and Terrestrially Derived Dissolved Organic Matter on Mercury Speciation and Bioavailability in Seawater. Environmental Science & Technology, 49(10): 5965-5972. https://doi.org/10.1021/es506274x Seco, J., Xavier, J. C., Bustamante, P., et al., 2020. Main Drivers of Mercury Levels in Southern Ocean Lantern Fish Myctophidae. Environmental Pollution, 264: 114711. https://doi.org/10.1016/j.envpol.2020.114711 Selin, N. E., 2009. Global Biogeochemical Cycling of Mercury: A Review. Annual Review of Environment and Resources, 34(1): 43-63. https://doi.org/10.1146/annurev.environ.051308.084314 Seller, P., Kelly, C. A., Rudd, J. W. M., et al., 1996. Photodegradation of Methylmercury in Lakes. Nature, 380(6576): 694-697. https://doi.org/10.1038/380694a0 Senn, D. B., Chesney, E. J., Blum, J. D., et al., 2010. Stable Isotope (N, C, Hg) Study of Methylmercury Sources and Trophic Transfer in the Northern Gulf of Mexico. Environmental Science & Technology, 44(5): 1630-1637. https://doi.org/10.1021/es902361j Shan, C. Q., Liu, R. H., Shan, H. X., 2006. The Research on Releasing of Mercury from Jiaozhou Bay Offshore Sediment to Seawater. Transactions of Oceanology and Limnology, (4): 44-51 (in Chinese with English abstract). doi: 10.3969/j.issn.1003-6482.2006.04.007 Shen, J., Algeo, T. J., Chen, J., et al., 2019. Mercury in Marine Ordovician/Silurian Boundary Sections of South China is Sulfide-Hosted and Non-Volcanic in Origin. Earth and Planetary Science Letters, 511: 130-140. https://doi.org/10.1016/j.epsl.2019.01.028 Shen, J., Feng, Q., Algeo, T. J., et al., 2020. Sedimentary Host Phases of Mercury (Hg) and Implications for Use of Hg as a Volcanic Proxy. Earth and Planetary Science Letters, 543: 116333. https://doi.org/10.1016/j.epsl.2020.116333 Sherman, L. S., Blum, J. D., Johnson, K. P., et al., 2010. Mass-Independent Fractionation of Mercury Isotopes in Arctic Snow Driven by Sunlight. Nature Geoscience, 3(3): 173-177. https://doi.org/10.1038/ngeo758 Sherman, L. S., Blum, J. D., Keeler, G. J., et al., 2012. Investigation of Local Mercury Deposition from a Coal-Fired Power Plant Using Mercury Isotopes. Environmental Science & Technology, 46(1): 382-390. https://doi.org/10.1021/es202793c Sherman, L. S., Blum, J. D., Nordstrom, D. K., et al., 2009. Mercury Isotopic Composition of Hydrothermal Systems in the Yellowstone Plateau Volcanic Field and Guaymas Basin Sea-Floor Rift. Earth and Planetary Science Letters, 279(1-2): 86-96. https://doi.org/10.1016/j.epsl.2008.12.032 Siedlewicz, G., Korejwo, E., Szubska, M., et al., 2020. Presence of Mercury and Methylmercury in Baltic Sea Sediments, Collected in Ammunition Dumpsites. Marine Environmental Research, 162: 105158. https://doi.org/10.1016/j.marenvres.2020.105158 Smith, C. N., Kesler, S. E., Blum, J. D., et al., 2008. Isotope Geochemistry of Mercury in Source Rocks, Mineral Deposits and Spring Deposits of the California Coast Ranges, USA. Earth and Planetary Science Letters, 269(3-4): 399-407. https://doi.org/10.1016/j.epsl.2008.02.029 Smith, C. N., Kesler, S. E., Klaue, B., et al., 2005. Mercury Isotope Fractionation in Fossil Hydrothermal Systems. Geology, 33(10): 825-828. https://doi.org/10.1130/G21863.1 Smith, R. S., Wiederhold, J. G., Kretzschmar, R., 2015. Mercury Isotope Fractionation during Precipitation of Metacinnabar (β-HgS) and Montroydite (HgO). Environmental Science & Technology, 49(7): 4325-4334. https://doi.org/10.1021/acs.est.5b00409 Soerensen, A. L., Mason, R. P., Balcom, P. H., et al., 2013. Drivers of Surface Ocean Mercury Concentrations and Air-Sea Exchange in the West Atlantic Ocean. Environmental Science & Technology, 47(14): 7757-7765. https://doi.org/10.1021/es401354q Stetson, S. J., Gray, J. E., Wanty, R. B., et al., 2009. Isotopic Variability of Mercury in Ore, Mine-Waste Calcine, and Leachates of Mine-Waste Calcine from Areas Mined for Mercury. Environmental Science & Technology, 43(19): 7331-7336. https://doi.org/10.1021/es9006993 Stoffers, P., Hannington, M., Wright, I., et al., 1999. Elemental Mercury at Submarine Hydrothermal Vents in the Bay of Plenty, Taupo Volcanic Zone, New Zealand. Geology, 27(10): 931-934. https://doi.org/10.1130/0091-7613(1999)027<0931:EMASHV>2.3.CO;2 doi: 10.1130/0091-7613(1999)027<0931:EMASHV>2.3.CO;2 Štrok, M., Baya, P. A., Dietrich, D., et al., 2019. Mercury Speciation and Mercury Stable Isotope Composition in Sediments from the Canadian Arctic Archipelago. Science of the Total Environment, 671(3): 655-665. https://doi.org/10.1016/j.scitotenv.2019.03.424 Štrok, M., Baya, P. A., Hintelmann, H., 2015. The Mercury Isotope Composition of Arctic Coastal Seawater. Comptes Rendus Geoscience, 347(7-8): 368-376. https://doi.org/10.1016/j.crte.2015.04.001 Štrok, M., Hintelmann, H., Dimock, B., 2014. Development of Pre-Concentration Procedure for the Determination of Hg Isotope Ratios in Seawater Samples. Analytica Chimica Acta, 851: 57-63. https://doi.org/10.1016/j.aca.2014.09.005 Sun, G. Y., Sommar, J., Feng, X. B., et al., 2016. Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and Br. Environmental Science & Technology, 50(17): 9232-9241. https://doi.org/10.1021/acs.est.6b01668 Sun, R. Y., Enrico, M., Heimbürger, L. E., et al., 2013a. A Double-Stage Tube Furnace—Acid-Trapping Protocol for the Pre-Concentration of Mercury from Solid Samples for Isotopic Analysis. Analytical and Bioanalytical Chemistry, 405(21): 6771-6781. https://doi.org/10.1007/s00216-013-7152-2 Sun, R. Y., Heimburger, L. E., Sonke, J. E., et al., 2013b. Mercury Stable Isotope Fractionation in Six Utility Boilers of Two Large Coal-Fired Power Plants. Chemical Geology, 336: 103-111. https://doi.org/10.1016/j.chemgeo.2012.10.055 Sun, R. Y., Yuan, J. J., Sonke, J. E., et al., 2020a. Methylmercury Produced in Upper Oceans Accumulates in Deep Mariana Trench Fauna. Nature Communications, 11(1): 3389. https://doi.org/10.1038/s41467-020-17045-3 Sun, X., Yin, R. S., Hu, L. M., et al., 2020b. Isotopic Tracing of Mercury Sources in Estuarine-Inner Shelf Sediments of the East China Sea. Environmental Pollution, 262: 114356. https://doi.org/10.1016/j.envpol.2020.114356 Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., et al., 2009. Mercury Sources, Distribution, and Bioavailability in the North Pacific Ocean: Insights from Data and Models. Global Biogeochemical Cycles, 23(2): GB2010. https://doi.org/10.1029/2008GB003425 Sunderland, E. M., Mason, R. P., 2007. Human Impacts on Open Ocean Mercury Concentrations. Global Biogeochemical Cycles, 21(4): GB4022. https://doi.org/10.1029/2006GB002876 Them, T. R., Jagoe, C. H., Caruthers, A. H., et al., 2019. Terrestrial Sources as the Primary Delivery Mechanism of Mercury to the Oceans across the Toarcian Oceanic Anoxic Event (Early Jurassic). Earth and Planetary Science Letters, 507: 62-72. https://doi.org/10.1016/j.epsl.2018.11.029 Tsui, M. T. K., Blum, J. D., Kwon, S. Y., 2020. Review of Stable Mercury Isotopes in Ecology and Biogeochemistry. Science of the Total Environment, 716: 135386. https://doi.org/10.1016/j.scitotenv.2019.135386 Ullrich, S. M., Tanton, T. W., Abdrashitova, S. A., 2001. Mercury in the Aquatic Environment: A Review of Factors Affecting Methylation. Critical Reviews in Environmental Science and Technology, 31(3): 241-293. https://doi.org/10.1080/20016491089226 Vieira, H. C., Bordalo, M. D., Figueroa, A. G., et al., 2021. Mercury Distribution and Enrichment in Coastal Sediments from Different Geographical Areas in the North Atlantic Ocean. Marine Pollution Bulletin, 165: 112153. https://doi.org/10.1016/j.marpolbul.2021.112153 Voegborlo, R. B., Akagi, H., 2007. Determination of Mercury in Fish by Cold Vapour Atomic Absorption Spectrometry Using an Automatic Mercury Analyzer. Food Chemistry, 100(2): 853-858. https://doi.org/10.1016/j.foodchem.2005.09.025 Wagemann, R., Trebacz, E., Boila, G., et al., 1998. Methylmercury and Total Mercury in Tissues of Arctic Marine Mammals. Science of the Total Environment, 218(1): 19-31. https://doi.org/10.1016/S0048-9697(98)00192-2 Wang, C. J., Ci, Z. J., Wang, Z. W., et al., 2016. Air-Sea Exchange of Gaseous Mercury in the East China Sea. Environmental Pollution, 212: 535-543. https://doi.org/10.1016/j.envpol.2016.03.016 Wang, C. J., Wang, Z. W., Zhang, X. S., 2020. Characteristics of Mercury Speciation in Seawater and Emission Flux of Gaseous Mercury in the Bohai Sea and Yellow Sea. Environmental Research, 182(7): 109092. https://doi.org/10.1016/j.envres.2019.109092 Wang, R., Wang, W. X., 2010. Importance of Speciation in Understanding Mercury Bioaccumulation in Tilapia Controlled by Salinity and Dissolved Organic Matter. Environmental Science & Technology, 44(20): 7964-7969. https://doi.org/10.1021/es1011274 Wang, X. Y., He, C. F., Sun, R. G., et al., 2015. Releases and Methylation of Soil Mercury in Water-Level Fluctuating Zone of the Three Gorges Reservoir Region. Environmental Chemistry, 34(1): 172-177 (in Chinese with English abstract). Wang, Z. F., Huang, K. J., Lu, Y. W., et al., 2021. Tracing Earth's Oxygenation Events Using Metal Stable Isotopes. Earth Science, 46(12): 4427-4451 (in Chinese with English abstract). Wang, Z. H., Chen, J. B., Feng, X. B., et al., 2012. Progress in the Study of Stable Hg Isotope Geochemistry. Earth and Environment, 40(4): 599-610 (in Chinese with English abstract). Watras, C. J., Morrison, K. A., Host, J. S., et al., 1995. Concentration of Mercury Species in Relationship to Other Site-Specific Factors in the Surface Waters of Northern Wisconsin Lakes. Limnology and Oceanography, 40(3): 556-565. https://doi.org/10.4319/lo.1995.40.3.0556 Weber, J. H., 1993. Review of Possible Paths for Abiotic Methylation of Mercury(Ⅱ) in the Aquatic Environment. Chemosphere, 26(11): 2063-2077. https://doi.org/10.1016/0045-6535(93)90032-Z Whalin, L., Kim, E. H., Mason, R., 2007. Factors Influencing the Oxidation, Reduction, Methylation and Demethylation of Mercury Species in Coastal Waters. Marine Chemistry, 107(3): 278-294. https://doi.org/10.1016/j.marchem.2007.04.002 Whiteside, J. H., Grice, K., 2016. Biomarker Records Associated with Mass Extinction Events. Annual Review of Earth and Planetary Sciences, 44: 581-612. https://doi.org/10.1146/annurev-earth-060115-012501 Wiederhold, J. G., Cramer, C. J., Daniel, K., et al., 2010. Equilibrium Mercury Isotope Fractionation between Dissolved Hg(Ⅱ) Species and Thiol-Bound Hg. Environmental Science & Technology, 44(11): 4191-4197. https://doi.org/10.1029/2006GB00287610.1021/es100205t Wiederhold, J. G., Skyllberg, U., Drott, A., et al., 2015. Mercury Isotope Signatures in Contaminated Sediments as a Tracer for Local Industrial Pollution Sources. Environmental Science & Technology, 49(1): 177-185. https://doi.org/10.1021/es5044358 Wiederhold, J. G., Smith, R. S., Siebner, H., et al., 2013. Mercury Isotope Signatures as Tracers for Hg Cycling at the New Idria Hg Mine. Environmental Science & Technology, 47(12): 6137-6145. https://doi.org/10.1021/es305245z Wintle, N. J. P., Duffield, D. A., Barros (Deceased), N. B., et al., 2011. Total Mercury in Stranded Marine Mammals from the Oregon and Southern Washington Coasts. Marine Mammal Science, 27(4): E268-E278. https://doi.org/10.1111/j.1748-7692.2010.00461.x Xu, W. H., Yan, W., Huang, W. X., et al., 2013. Mercury Profiles in Surface Sediments from Ten Bays along the Coast of Southern China. Marine Pollution Bulletin, 76(1-2): 394-399. https://doi.org/10.1016/j.marpolbul.2013.07.047 Xun, L. Y., Campbell, N. E. R., Rudd, J. W. M., 1987. Measurements of Specific Rates of Net Methyl Mercury Production in the Water Column and Surface Sediments of Acidified and Circumneutral Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 44(4): 750-757. https://doi.org/10.1139/f87-091 Yang, J., Kim, H., Kang, C. K., et al., 2017. Distributions and Fluxes of Methylmercury in the East/Japan Sea. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 130: 47-54. https://doi.org/10.1016/j.dsr.2017.10.009 Yang, T. T., Liu, Y., Tan, S., et al., 2021. The Role of Intestinal Microbiota of the Marine Fish (Acanthopagrus Latus) in Mercury Biotransformation. Environmental Pollution, 277: 116768. https://doi.org/10.1016/j.envpol.2021.116768 Yang, Y. H., Kwon, S. Y., Tsui, M. T. K., et al., 2022. Ecological Traits of Fish for Mercury Biomonitoring: Insights from Compound-Specific Nitrogen and Stable Mercury Isotopes. Environmental Science & Technology, 56(15): 10808-10817. https://doi.org/10.1021/acs.est.2c02532 Yin, R. S., Feng, X. B., Chen, B. W., et al., 2015. Identifying the Sources and Processes of Mercury in Subtropical Estuarine and Ocean Sediments Using Hg Isotopic Composition. Environmental Science & Technology, 49(3): 1347-1355. https://doi.org/10.1021/es504070y Yin, R. S., Feng, X. B., Li, X. D., et al., 2014. Trends and Advances in Mercury Stable Isotopes as a Geochemical Tracer. Trends in Environmental Analytical Chemistry, 2: 1-10. https://doi.org/10.1016/j.teac.2014.03.001 Yin, R. S., Feng, X. B., Shi, W. F., 2010. Application of the Stable-Isotope System to the Study of Sources and Fate of Hg in the Environment: A Review. Applied Geochemistry, 25(10): 1467-1477. https://doi.org/10.1016/j.apgeochem.2010.07.007 Yin, R. S., Feng, X. B., Wang, J. X., et al., 2013. Mercury Isotope Variations between Bioavailable Mercury Fractions and Total Mercury in Mercury Contaminated Soil in Wanshan Mercury Mine, SW China. Chemical Geology, 336: 80-86. https://doi.org/10.1016/j.chemgeo.2012.04.017 Yin, R. S., Feng, X. B., Zhang, J. J., et al., 2016. Using Mercury Isotopes to Understand the Bioaccumulation of Hg in the Subtropical Pearl River Estuary, South China. Chemosphere, 147: 173-179. https://doi.org/10.1016/j.chemosphere.2015.12.100 Yin, R. S., Guo, Z. G., Hu, L. M., et al., 2018. Mercury Inputs to Chinese Marginal Seas: Impact of Industrialization and Development of China. Journal of Geophysical Research: Oceans, 123(8): 5599-5611. https://doi.org/10.1029/2017jc013691 Yu, C. H., Xiao, W. J., Xu, Y. P., et al., 2021. Spatial-Temporal Characteristics of Mercury and Methylmercury in Marine Sediment under the Combined Influences of River Input and Coastal Currents. Chemosphere, 274: 129728. https://doi.org/10.1016/j.chemosphere.2021.129728 Zaferani, S., Pérez-Rodríguez, M., Biester, H., 2018. Diatom Ooze—A Large Marine Mercury Sink. Science, 361(6404): 797-800. https://doi.org/10.1126/science.aat2735 Zhang, T., Hsu-Kim, H., 2010. Photolytic Degradation of Methylmercury Enhanced by Binding to Natural Organic Ligands. Nature Geoscience, 3(7): 473-476. https://doi.org/10.1038/ngeo892 Zhang, W., Sun, G. Y., Yin, R. S., et al., 2021. Separation of Methylmercury from Biological Samples for Stable Isotopic Analysis. Journal of Analytical Atomic Spectrometry, 36(11): 2415-2422. https://doi.org/10.1039/D1JA00236H Zhang, Y., Horowitz, H., Wang, J., et al., 2019. A Coupled Global Atmosphere-Ocean Model for Air-Sea Exchange of Mercury: Insights into Wet Deposition and Atmospheric Redox Chemistry. Environmental Science & Technology, 53(9): 5052-5061. https://doi.org/10.1021/acs.est.8b06205 Zhang, Y. T., Sun, R. G., Ma, M., et al., 2012. Study of Inhibition Mechanism of NO3- on Photoreduction of Hg(Ⅱ) in Artificial Water. Chemosphere, 87(2): 171-176. https://doi.org/10.1016/j.chemosphere.2011.11.077 Zhang, Y. X., Jacob, D. J., Dutkiewicz, S., et al., 2015. Biogeochemical Drivers of the Fate of Riverine Mercury Discharged to the Global and Arctic Oceans: River Mercury in the Ocean. Global Biogeochemical Cycles, 29(6): 854-864. https://doi.org/10.1002/2015GB005124 Zheng, J., Yamada, M., Yoshida, S., 2011. Sensitive Iodine Speciation in Seawater by Multi-Mode Size- Exclusion Chromatography with Sector-Field ICP-MS. Journal of Analytical Atomic Spectrometry, 26(9): 1790-1795. https://doi.org/10.1039/C0JA00270D Zheng, W., Demers, J. D., Lu, X., et al., 2019. Mercury Stable Isotope Fractionation during Abiotic Dark Oxidation in the Presence of Thiols and Natural Organic Matter. Environmental Science & Technology, 53(4): 1853-1862. https://doi.org/10.1021/acs.est.8b05047 Zheng, W., Foucher, D., Hintelmann, H., 2007. Mercury Isotope Fractionation during Volatilization of Hg(0) from Solution into the Gas Phase. Journal of Analytical Atomic Spectrometry, 22(9): 1097-1104. https://doi.org/10.1039/B705677J Zheng, W., Gilleaudeau, G. J., Kah, L. C., et al., 2018. Mercury Isotope Signatures Record Photic Zone Euxinia in the Mesoproterozoic Ocean. PNAS, 115(42): 10594-10599. https://doi.org/10.1073/pnas.1721733115 Zheng, W., Hintelmann, H., 2009. Mercury Isotope Fractionation during Photoreduction in Natural Water is Controlled by Its Hg/Doc Ratio. Geochimica et Cosmochimica Acta, 73(22): 6704-6715. https://doi.org/10.1016/j.gca.2009.08.016 Zheng, W., Hintelmann, H., 2010a. Isotope Fractionation of Mercury during Its Photochemical Reduction by Low-Molecular-Weight Organic Compounds. The Journal of Physical Chemistry A, 114(12): 4246-4253. https://doi.org/10.1021/jp9111348 Zheng, W., Hintelmann, H., 2010b. Nuclear Field Shift Effect in Isotope Fractionation of Mercury during Abiotic Reduction in the Absence of Light. The Journal of Physical Chemistry A, 114(12): 4238-4245. https://doi.org/10.1021/jp910353y Zheng, W., Liang, L. Y., Gu, B. H., 2012. Mercury Reduction and Oxidation by Reduced Natural Organic Matter in Anoxic Environments. Environmental Science & Technology, 46(1): 292-299. https://doi.org/10.1021/es203402p Zheng, W., Zhao, Y. Q., Sun, R. Y., et al., 2021. The Mechanism of Mercury Stable Isotope Fractionation: A Review. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1087-1110, 998 (in Chinese with English abstract). Zhong, H., Wang, W. X., 2006. Metal-Solid Interactions Controlling the Bioavailability of Mercury from Sediments to Clams and Sipunculans. Environmental Science & Technology, 40(12): 3794-3799. https://doi.org/10.1021/es0523441 Zhu, C. W., Tao, C. H., Yin, R. S., et al., 2020. Seawater versus Mantle Sources of Mercury in Sulfide-Rich Seafloor Hydrothermal Systems, Southwest Indian Ridge. Geochimica et Cosmochimica Acta, 281: 91-101. https://doi.org/10.1016/j.gca.2020.05.008 冯新斌, 尹润生, 俞奔, 等, 2015. 汞同位素地球化学概述. 地学前缘, 22(5): 124-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202003004.htm 李春辉, 汪婷, 梁汉东, 等, 2017. 汞同位素自然库存研究进展. 生态环境学报, 26(9): 1627-1638. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201709025.htm 刘畅, 陈路锋, 高华阳, 等, 2018. 东海沉积物汞形态分布及控制因素. 中国海洋大学学报(自然科学版), 48(S2): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY2018S2008.htm 卢贤志, 沈俊, 郭伟, 等, 2021. 中上扬子地区奥陶纪‒志留纪之交火山作用对有机质富集的影响. 地球科学, 46(7): 2329-2340. doi: 10.3799/dqkx.2020.258 单长青, 刘汝海, 单红仙, 2006. 胶州湾近岸沉积物‒海水汞的释放研究. 海洋湖沼通报, (4): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFB200604006.htm 王欣悦, 贺春凤, 孙荣国, 等, 2015. 三峡库区消落带土壤淹水过程中汞的释放及甲基化特征. 环境化学, 34(1): 172-177. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201501023.htm 王振飞, 黄康俊, 路雅雯, 等, 2021. 金属稳定同位素示踪地球增氧事件. 地球科学, 46(12): 4427-4451. doi: 10.3799/dqkx.2021.088 王柱红, 陈玖斌, 冯新斌, 等, 2012. Hg稳定同位素地球化学研究进展. 地球与环境, 40(4): 599-610. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201204022.htm 郑旺, 赵亚秋, 孙若愚, 等, 2021. 汞的稳定同位素分馏机理. 矿物岩石地球化学通报, 40(5): 1087-1110, 998. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202105010.htm -