Multi-Objective Search for Three-Dimensional Connectivity Paths between Wells in Fractured-Vuggy Reservoirs
-
摘要: 深层海相碳酸盐岩油气藏储集体类型复杂多样,非均质性强,井间连通关系评价困难. 针对传统静动态方法主观性强、多解等问题,基于三层结构设计,采用地震多属性数据刻画不同类型储集空间,提出改进A*算法搜索符合地质构造的井间连通路径,根据优化目标研究自适应交叉变异概率改进NSGA Ⅲ算法自动获取井间三维沟通路径,细致刻画静态连通情况. 以塔河油田S80单元典型井组为研究对象,实验结果表明改进优化算法能有效提升多目标算法的全局搜索能力,自动搜索路径与地震资料分析、示踪剂测试情况基本吻合,能较好反映井间不同尺度缝洞空间配置关系,为缝洞型油藏注水开发阶段指导工作制度调整、提高采收率提供技术支撑.Abstract: The deep marine carbonate reservoirs have complex reservoir types and strong heterogeneity, so it's difficult to evaluate the well connectivity.This paper designs a three-layer structure to address the subjectivity and multiple solutions problems about traditional static and dynamic inter-well connected evaluation methods. The improved A* algorithm is proposed to search for the inter-well connected paths by geological formations. The improved NSGA Ⅲ algorithm with self-applicable cross-variance probability according to the optimization objective is proposed to obtain three-dimensional multi-connected paths automatically which can carefully characterize the static connectivity. The experiment takes the S80 unit typical well group as the object in the TAHE oilfield. The results show that the adaptive cross-variance probability can effectively improve the multi-objective algorithm global search capability. The automatic search paths match with the seismic multi-attribute data analysis and tracer testing.Therefore, the algorithm can better reflect the spatial configuration relationship of fractures and cavities at different scales between wells. Furthermore, it can also provide technical support for adjusting the work system and improving the recovery in the field development of fractured-vuggy reservoirs in the water-injecting development stage.
-
表 1 融合地震多属性井间三维连通路径搜索算法
Table 1. Search algorithm for 3D inter-well connection paths with fused seismic multi-attribute
输入:控制参数:种群大小$ NP $,最大演化次数$ GE{N}_{\mathrm{m}\mathrm{a}\mathrm{x}} $,交叉概率最大最小值$ {p}_{c\mathrm{m}\mathrm{a}\mathrm{x}}、{p}_{c\mathrm{m}\mathrm{i}\mathrm{n}} $,变异概率最大最小值$ {p}_{m\mathrm{m}\mathrm{a}\mathrm{x}}、{p}_{m\mathrm{m}\mathrm{i}\mathrm{n}} $
输出:最终种群$ {P}_{GE{N}_{\mathrm{m}\mathrm{a}\mathrm{x}}} $1: 生成初始种群$ {P}_{GEN}=\left\{\overrightarrow{{x}_{1}}, \overrightarrow{{x}_{2}}, \dots, \overrightarrow{{x}_{NP}}\right\} $,并初始化演化代数$ GEN\leftarrow 0 $,生成参考点$ Z $
2: 根据改进A*算法搜索路径通过公式(8)(9)计算目标函数适应值$ f\left(\overrightarrow{{x}_{i}}\right)(i=\mathrm{1, 2}, \dots, NP) $
3: while $ GEN < GE{N}_{\mathrm{m}\mathrm{a}\mathrm{x}} $ do
4: 计算父代种群中的互异路径条数$ d $
5: 通过公式(11)(12)(13)计算交叉变异概率
6: 交叉变异产生子代种群$ {Q}_{GEN} $
7: 合并父子代种群$ {R}_{GEN} $← $ {P}_{GEN}\bigcup {Q}_{GEN} $
8:非支配排序$ \left({F}_{1}, {F}_{2}, \dots \right)=Non\_dominated\_sort\left({R}_{GEN}\right) $
9: 初始化$ {S}_{GEN}\leftarrow \mathrm{\varnothing }, i=1 $
10: do
11: $ {S}_{GEN}\leftarrow {S}_{GEN}\bigcup {F}_{i} $, $ i=i+1 $
12: while $ \left|{S}_{GEN}\right| $≤$ NP $
13: 关键层$ {F}_{l}\leftarrow {F}_{i+1} $
14: if $ \left|{S}_{GEN}\right|=NP $ then
15: $ {P}_{GEN+1}\leftarrow {S}_{GEN} $
16: break
17: else
18: $ {P}_{GEN+1}={\cup }_{j=1}^{l-1}{F}_{j} $
19: 从$ {F}_{l} $挑选个体数$ K=NP-\left|{P}_{GEN+1}\right| $
20: 自适应归一化$ Normalization\left({S}_{GEN}\right) $
21: 参考点关联$ [\pi \left(s\right), d(s\left)\right]\leftarrow Associate({S}_{GEN}, Z) $, $ \pi \left(s\right) $为参考点序号,$ d\left(s\right) $为个体到参考线的距离
22: 通过小生境保留$ {F}_{l} $层选择$ K $个个体$ {P}_{GEN+1}\leftarrow Niching(K, \pi, d, Z, {F}_{l}) $
23: $ GEN=GEN+1 $
24: end while
25: return $ {P}_{GE{N}_{\mathrm{m}\mathrm{a}\mathrm{x}}} $表 2 算法参数设置
Table 2. Algorithm parameter setting
算法 $ NP $ $ {P}_{c} $ $ {P}_{c\mathrm{m}\mathrm{a}\mathrm{x}} $ $ {P}_{c\mathrm{m}\mathrm{i}\mathrm{n}} $ $ {P}_{m} $ $ {P}_{m\mathrm{m}\mathrm{a}\mathrm{x}} $ $ {P}_{m\mathrm{m}\mathrm{i}\mathrm{n}} $ $ GE{N}_{\mathrm{m}\mathrm{a}\mathrm{x}} $ NSAG Ⅲ 200 0.6 - - 0.05 - - 30 改进算法 200 - 0.8 0.4 - 0.1 0.01 30 表 3 TK636H井组示踪剂测试结果
Table 3. Tracer test results of well group TK636H
生产井 背景浓度(cd) 突破时间(d) 突破浓度(cd) 井距(m) 推进速度(m/d) 累积浓度(cd) S80 91.2 12 326.8 691 57.6 24 588.7 TK611 101.4 11 244.5 1631 148.3 19 852.4 TK747 144.7 17 374.1 1191 70.1 20 641.2 -
[1] Albertoni, A., Lake, L. W., 2002. Inferring Inter-Well Connectivity Only from Well-Rate Fluctuations in Waterfloods. SPE Reservoir Evaluation & Engineering, 6(1): 6-16. https://doi.org/ 10.2118/83381-PA [2] Bao, J. S., Zhang, M. Y., Ge, S. R., et al., 2022. Underground Driverless Path Planning of Trackless Rubber Tyred Vehicle Based on Improved A* and Artificial Potential Field Algorithm. Journal of China Coal Society, 47(3): 1347-1360 (in Chinese with English abstract). [3] Cao, W., Deng, L. W., Guo, Y., et al., 2021. Research on Path Planning Method of Ship Based on Improved NSGA-III. Ship Engineering, 43(S1): 343-347+375 (in Chinese with English abstract). [4] Deb, K., Jain, H., 2014. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems with Box Constraints. IEEE Transactions on Evolutionary Computation, 18(4): 577-601. https://doi.org/10.1109/TEVC.2013.2281535 [5] Fan, J., Lei, T., Dong, N. J., et al., 2022. Multi-Objective UAV Path Planning Based on an Improved NGSA-II Algorithm. Fire Control & Command Control, 47(2): 43-48+55 (in Chinese with English abstract). [6] Ge, X. L., He, H. B., Fu, Y., et al., 2021. Interchange and Charging Path Planning of Shared Electric Vehicles Based on A* Algorithm Combined with Hierarchical Programming. Proceedings of the CSEE, 41(22): 7668-7681 (in Chinese with English abstract). [7] Guo, X. H., Ji, M. J., Zhang, W. D., 2020. AGV Global Path Planning Integrating with the Control of Multi-Objectives and Speed. Control and Decision, 35(6): 1369-1376 (in Chinese with English abstract). [8] Han, G. H., Qi, L. X., Li, Z. J., et al., 2006. Prediction of the Ordovician Fractured-Vuggy Carbonate Reservoirs in Tahe Oilfield. Oil & Gas Geology, 6: 860-870+878. (in Chinese with English abstract). [9] Hart, P. E., Nilsson, N. J., Raphael, B., 1968, A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2): 100-107. https://doi.org/10.1109/TSSC.1968.300136. [10] Heffer, J. K., Fox, et al., 1997. Novel Techniques Show Links between Reservoir Flow Directionality, Earth Stress, Fault Structure and Geomechanical Changes in Mature Waterfloods. Society of Petroleum Engineers Journal, 2(2): 91-98. [11] Kang, Y. Z., 1991. On Regularity and Oil-Searching Direction of Hydrocarbon in Tarim Basin. Earth Science, 16(4): 429-436 (in Chinese). doi: 10.3321/j.issn:1000-2383.1991.04.001 [12] Kang, Y. Z., 2008. Characteristics and Distribution Laws of Paleokarst Hydrocarbon Reservoirs in Palaeozoic Carbonate Formations in China. Natural Gas Industry, 28(96): 1-12(in Chinese with English abstract). [13] Kang, Z. J., Li, Y., Ji, B. Y., et al., 2020. Key Technologies for EOR in Fractured-Vuggy Carbonate Reservoirs. Oil & Gas Geology, 41(2): 434-441 (in Chinese with English abstract). [14] Li, X. B., Li, X. H., Rong, Y. S., 2014. The Seismic Attribute Characterization of Fracture-Vug Carbonate Reservoir Connectivity and Its Application in Waterflood Development. Petroleum Geology and Recovery Efficiency, 21(6): 65-67+71+115 (in Chinese with English abstract). [15] Li, Y., 2013. The Theory and Method for Development of Carbonate Fractured-Cavity Reservoirs in Tahe Oilfield. Acta Petrolei Sinica, 34(1): 115-121 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-8719.2013.01.019 [16] Liu, J., Bodvarsson, G. S., Wu, Y. S., 2003. Analysis of Flow Behavior in Fractured Lithophysal Reservoirs. Journal of Contaminant Hydrology, 62(Apr/May): 189-211. https://doi.org/ 10.1016/S0169-7722(2)00169-9 [17] Liu, L. F., Sun, Z. D., Yang, H. J., et al., 2009. Seismic Attribute Optimization Method and Its Application for Fractured-Vuggy Carbonate Reservoir. Oil Geophysical Prospecting, 44(6): 747-754+783+648-649 (in Chinese with English abstract). [18] Ma, A. L., Jin, Z. J., Li, H. L., et al., 2020. Secondary Alteration and Preservation of Ultra-Deep Ordovician Oil Reservoirs of North Shuntuoguole Area of Tarim Basin NW China. Earth Science, 45(5): 1737-1753(in Chinese with English abstract). [19] Marfurt, K. J., Kirlin, R. L., Farmer, S. L., et al., 1998. 3-D Seismic Attributes Using a Semblance-Based Coherency Algorithm. Geophysics, 63(4): 1122-1479. https://doi.org/ 10.1190/1.1444415 [20] Meakin, P., Wagner, G., Vedvik, A., et al., 2000. Invasion Percolation and Secondary Migration : Experiments and Simulations. Marine and Petroleum Geology, 17(7): 777-795. https://doi.org/ 10.1016/S0264-8172(99)00069-0 [21] Pollock, D. W., 1988. Semianalytical Computation of Path Lines for Finite-Difference Models. Groundwater, 26: 743-750. https://doi.org/ 10.1111/j.1745-6584.1988.tb00425.x. [22] Wang, B., Yang, Y., Cao, Z. C., et al., 2021. U-Pb Dating of Calcite Veins Developed in the Middle-Lower Ordovician Reservoirs in Tahe Oilfield and Its Petroleum Geologic Significance in Tahe Oilfield. Earth Science, 46(9): 3203-3216 (in Chinese with English abstract). [23] Wang, H. B., Hao, C., Zhang, P., et al., 2019. Path Planning of Mobile Robots Based on A* Algorithm and Artificial Potential Field Algorithm. China Mechanical Engineering, 30(20): 2489-2496 (in Chinese with English abstract). [24] Yang, P., Sun, Z. D., Xiang, H. L., et al., 2013. Seismic Strategy for Predicting Highly Profitable Wells in the Fractured-Vuggy Carbonate Reservoirs. Petroleum Exploration and Development, 40(4): 537-541. https://doi.org/ 10.1016/S1876-3804(13)60070-1 [25] Yousef, A. A., 2006. Investigating Statistical Techniques to Infer Interwell Connectivity from Production and Injection Fluctuations(Dissertation). The University of Texas at Austin, Texas, 1-540. [26] Zhao, H., Kang, Z. J., Zhang, Y., et al., 2014. An Interwell Connectivity Numerical Method for Geological Parameter Characterization and Oil-Water Two-Phase Dynamic Prediction. Acta Petrolei Sinica, 35(5): 922-927 (in Chinese with English abstract). [27] 鲍久圣, 张牧野, 葛世荣, 等, 2022. 基于改进A*和人工势场算法的无轨胶轮车井下无人驾驶路径规划. 煤炭学报, 47(3): 1347-1360. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202203027.htm [28] 曹旺, 邓烈威, 郭瑶, 等, 2021. 基于改进NSGA-Ⅲ的船舶路径规划方法. 船舶工程, 43(S1): 343-347+375. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB2021S1079.htm [29] 樊娇, 雷涛, 董南江, 等, 2022. 基于改进NSGA-Ⅱ算法的多目标无人机路径规划. 火力与指挥控制, 47(2): 43-48+55. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYZ202202008.htm [30] 葛晓琳, 何鈜博, 符杨, 等, 2021. 融合分层规划和A*算法的共享电动汽车换车与充电路径规划. 中国电机工程学报, 41(22): 7668-7681. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202122012.htm [31] 郭兴海, 计明军, 张卫丹, 2020. 融合多目标与速度控制的AGV全局路径规划. 控制与决策, 35(6): 1369-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202006012.htm [32] 韩革华, 漆立新, 李宗杰, 等, 2006. 塔河油田奥陶系碳酸盐岩缝洞型储层预测技术. 石油与天然气地质, 6: 860-870+878. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200606019.htm [33] 康玉柱, 1991. 试论塔里木盆地油气分布规律及找油方向. 地球科学, 1991(4): 429-436. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199104013.htm [34] 康玉柱, 2008. 中国古生代碳酸盐岩古岩溶储集特征与油气分布. 天然气工业, 2008(6): 1-12+141. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200806003.htm [35] 康志江, 李阳, 计秉玉, 等, 2020. 碳酸盐岩缝洞型油藏提高采收率关键技术. 石油与天然气地质, 41(2): 434-441. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202002020.htm [36] 李小波, 李新华, 荣元帅, 等, 2014. 地震属性在塔河油田碳酸盐岩缝洞型油藏连通性分析及其注水开发中的应用. 油气地质与采收率, 21(6): 65-67+71+115. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201406017.htm [37] 李阳, 2013. 塔河油田碳酸盐岩缝洞型油藏开发理论及方法. 石油学报, 34(1): 115-121. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301012.htm [38] 刘立峰, 孙赞东, 杨海军, 等, 2009. 缝洞型碳酸盐岩储层地震属性优化方法及应用. 石油地球物理勘探, 44(6): 747-754+783+648-649. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200906019.htm [39] 马安来, 金之钧, 李慧莉, 等, 2020. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存. 地球科学, 45(5): 1737-1753. doi: 10.3799/dqkx.2019.157 [40] 王斌, 杨毅, 曹自成, 等, 2021. 塔河油田中下奥陶统储层裂缝方解石脉U-Pb同位素年龄及油气地质意义. 地球科学, 46(9): 3203-3216. doi: 10.3799/dqkx.2020.352 [41] 王洪斌, 郝策, 张平, 等, 2019. 基于A*算法和人工势场法的移动机器人路径规划. 中国机械工程, 30(20): 2489-2496. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201920012.htm [42] 赵辉, 康志江, 张允, 等, 2014. 表征井间地层参数及油水动态的连通性计算方法. 石油学报, 35(5): 922-927. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201405012.htm -