• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    北澜沧江结合带晚白垩世花岗岩成因及其地球动力学意义

    李洪梁 杨东旭 田尤 李元灵 王灵 李宝幸

    李洪梁, 杨东旭, 田尤, 李元灵, 王灵, 李宝幸, 2023. 北澜沧江结合带晚白垩世花岗岩成因及其地球动力学意义. 地球科学, 48(4): 1330-1350. doi: 10.3799/dqkx.2022.466
    引用本文: 李洪梁, 杨东旭, 田尤, 李元灵, 王灵, 李宝幸, 2023. 北澜沧江结合带晚白垩世花岗岩成因及其地球动力学意义. 地球科学, 48(4): 1330-1350. doi: 10.3799/dqkx.2022.466
    Li Hongliang, Yang Dongxu, Tian You, Li Yuanling, Wang Ling, Li Baoxing, 2023. Genesis and Its Geodynamic Significance of Late Cretaceous Granites in North Lancang River Suture. Earth Science, 48(4): 1330-1350. doi: 10.3799/dqkx.2022.466
    Citation: Li Hongliang, Yang Dongxu, Tian You, Li Yuanling, Wang Ling, Li Baoxing, 2023. Genesis and Its Geodynamic Significance of Late Cretaceous Granites in North Lancang River Suture. Earth Science, 48(4): 1330-1350. doi: 10.3799/dqkx.2022.466

    北澜沧江结合带晚白垩世花岗岩成因及其地球动力学意义

    doi: 10.3799/dqkx.2022.466
    基金项目: 

    中国地质调查局项目 DD20230449

    中国地质调查局项目 DD20221741

    国家自然科学基金项目 91955208

    第二次青藏高原综合科学考察研究 2019QZKK0902

    中国地质科学院探矿工艺研究所科研结余资金项目 2022004

    详细信息
      作者简介:

      李洪梁(1990-),男,博士,高级工程师,主要从事青藏高原基础地质与灾害地质研究. ORCID:0000-0002-2514-9368. E-mail:amsep@qq.com

    • 中图分类号: P597.3;P588.121

    Genesis and Its Geodynamic Significance of Late Cretaceous Granites in North Lancang River Suture

    • 摘要: 北澜沧江结合带花岗岩的研究主要集中于印支期,对白垩纪花岗岩却鲜有报道.在野外地质调查基础上,对藏东类乌齐地区新发现的花岗岩进行了岩石地球化学、锆石U-Pb定年和Hf同位素研究.结果显示,2件花岗岩样品成岩年龄分别为75.06±0.82 Ma(MSWD=1.90)、74.89±0.65 Ma(MSWD=1.05),为晚白垩世岩浆活动的产物;花岗岩含白云母(~5%),具高SiO2(69.07%~69.39%)、富K2O(5.31%~5.77%)、低Mg#(0.30~0.33)的特点,A/CNK比值为1.11~1.15,富集大离子亲石元素和LREE,亏损高场强元素和HREE,轻、重稀土元素强烈分馏,负Eu异常显著,属过铝质S型花岗岩,其源岩为变泥质岩和变质杂砂岩.岩石具分布较为分散的锆石εHft)值(-4.6~1.1)和古老的Hf同位素二阶段模式年龄(TDM2,1.07~1.43 Ga).综合分析认为,北澜沧江结合带晚白垩世花岗岩是拉萨-南羌塘地体后碰撞伸展构造背景下,由加厚岩石圈拆沉引发软流圈物质上涌和减压熔融形成的幔源镁铁质岩浆底侵于古老地壳,诱发其部分熔融,并与之混合形成的母岩浆,再经历一定程度分离结晶作用而形成,指示晚白垩世藏东类乌齐地区造山演化处于后期造山带破坏阶段.

       

    • 图  1  青藏高原大地构造单元划分简图(王保弟等,2021

      底图的审图号为GS(2022)1873号

      Fig.  1.  Simplified geotectonic units map of Qinghai-Tibet Plateau (after Wang et al., 2021)

      图  2  藏东昌都地区地质图及采样点位置图(b)(图a据王立全等, 2013

      Fig.  2.  Geological map of Qamdo area in East Tibet (a) and location map of sampling points (b) (Fig.a according to Wang et al., 2013)

      图  3  花岗岩手标本(a)及镜下微观(b)特征

      Qtz. 石英;Kfs. 钾长石;Pl. 斜长石;Bt. 黑云母;Ms. 白云母

      Fig.  3.  Characteristics of hand specimen (a) and microscopic (b) of the granite

      图  4  花岗岩锆石CL图像

      Fig.  4.  Zircon CL images of the granite

      图  5  锆石稀土元素球粒陨石标准化配分图(a)及Ce/Ce*-SmN/LaN图解(b)

      球粒陨石数据据Sun and McDonough(1989);底图b引自Hoskin(2005

      Fig.  5.  Chondrite-normalized rare earth element patterns (a) and Ce/Ce*-SmN/LaN diagram (b) of zircons

      图  6  花岗岩LA-ICP-MS锆石U-Pb定年结果

      Fig.  6.  LA-ICP-MS zircon U-Pb dating concordia diagrams of the granite

      图  7  花岗岩K2O-SiO2图解(a)与A/NK-A/CNK图解(b)

      底图a引自Middlemost(1994);底图b引自Maniar et al.1989);藏东吉塘早古生代花岗岩引自任飞等(2021);北澜沧江结合带早三叠世花岗片麻岩引自王保弟等(2011);藏东察拉晚三叠世花岗岩引自Wang et al.2018)、Tao et al.2014);藏东拉荣早白垩世花岗岩引自刘俊(2020);滇西昌宁-孟连结合带西侧漕涧晚白垩世花岗岩引自禹丽等(2014)

      Fig.  7.  K2O-SiO2 (a) and A/NK-A/CNK (b) diagrams of the granite

      图  8  花岗岩稀土元素球粒陨石标准化配分图(a)与微量元素原始地幔标准化蛛网图(b)

      标准化值引自Sun and McDonough(1989);上地壳数据引自Rudnick and Gao(2014);印度克拉通基底数据引自Célérier et al.2009);其他数据源同图 7

      Fig.  8.  Chondrite-normalized REE patterns (a) and primitive mantle-normalized spider diagram (b) of the granite

      图  9  花岗岩ACF图解(a)与Zr-SiO2图解(b)

      A(%)=Al2O3-(K2O+Na2O);C(%)=CaO;F(%)=TFeO+MgO. 图a据Chappell et al.2001);图b据King et al.1997

      Fig.  9.  ACF (a) and Zr-SiO2 (b) diagrams of the granite

      图  10  花岗岩源岩判别图

      Fig.  10.  Source rock discriminant diagrams of the granite

      图  11  花岗岩t-εHf(t)图解(数据源与图例同图 7

      Fig.  11.  t-εHf(t) diagram of the granite

      图  12  花岗岩Rb/Sr-Ba图解

      印度克拉通基底数据引自Célérier et al.(2009);平均大陆壳数据引自Rudnick et al.2014

      Fig.  12.  Rb/Sr-Ba diagram of the granite

      图  13  花岗岩构造环境判别图

      图a底图据Pearce(1996);图b底图据Maniar and Piccoli(1989);sync-COLD. 同碰撞花岗岩;post-COLD. 后碰撞花岗岩;WPG. 板内花岗岩;VAG. 火山弧花岗岩;ORG. 洋脊花岗岩;RRG. 与裂谷活动相关的花岗岩;CEUG. 与大陆造陆抬升相关的花岗岩;IAG. 岛弧花岗岩;CAG. 大陆弧花岗岩;CCG. 大陆碰撞型花岗岩

      Fig.  13.  Tectonic discrimination diagrams of the granite

      表  1  花岗岩锆石U-Pb分析结果

      Table  1.   Zircon U-Pb data of the granite

      测试点 含量(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
      Th U 比值 比值 比值 年龄(Ma) 年龄(Ma)
      ECGK03-01 375.4 1 510.2 0.25 0.044 06 0.002 05 0.070 76 0.003 09 0.011 63 0.000 20 69.4 2.93 74.5 1.25
      ECGK03-02 221.6 1 379.9 0.16 0.046 82 0.002 26 0.073 81 0.003 36 0.011 42 0.000 20 72.3 3.17 73.2 1.26
      ECGK03-03 211.9 2 256.2 0.09 0.045 22 0.001 77 0.070 99 0.002 56 0.011 37 0.000 18 69.6 2.43 72.9 1.17
      ECGK03-04 501.6 1 528.3 0.33 0.047 87 0.002 17 0.075 76 0.003 21 0.011 46 0.000 19 74.1 3.03 73.5 1.24
      ECGK03-05 254.1 2 027.5 0.13 0.046 63 0.001 91 0.074 54 0.002 83 0.011 58 0.000 19 73.0 2.67 74.2 1.21
      ECGK03-06 259.2 1 781.2 0.15 0.044 26 0.001 97 0.072 13 0.003 00 0.011 81 0.000 20 70.7 2.84 75.7 1.26
      ECGK03-07 340.2 2 324.1 0.15 0.045 17 0.001 76 0.072 22 0.002 59 0.011 59 0.000 19 70.8 2.45 74.3 1.19
      ECGK03-08 190.1 1 488.4 0.13 0.046 89 0.002 21 0.073 43 0.003 25 0.011 35 0.000 19 71.9 3.08 72.8 1.24
      ECGK03-09 378.4 1 356.1 0.28 0.046 25 0.002 20 0.077 26 0.003 45 0.012 11 0.000 21 75.6 3.26 77.6 1.33
      ECGK03-10 376.5 1 640.6 0.23 0.046 19 0.002 07 0.074 11 0.003 10 0.011 63 0.000 20 72.6 2.93 74.5 1.25
      ECGK03-11 474.1 1 570.2 0.30 0.046 36 0.002 12 0.073 32 0.003 15 0.011 47 0.000 19 71.8 2.98 73.5 1.24
      ECGK03-12 363.4 2 003.1 0.18 0.046 98 0.001 90 0.075 02 0.002 81 0.011 58 0.000 19 73.5 2.66 74.2 1.21
      ECGK03-13 283.9 1 649.2 0.17 0.046 39 0.002 04 0.077 46 0.003 19 0.012 11 0.000 20 75.8 3.01 77.6 1.30
      ECGK03-14 245.2 1 999.5 0.12 0.046 06 0.001 87 0.075 80 0.002 85 0.01194 0.000 20 74.2 2.69 76.5 1.25
      ECGK03-15 342.1 1 876.3 0.18 0.047 02 0.001 97 0.076 04 0.002 97 0.011 73 0.000 20 74.4 2.80 75.2 1.25
      ECGK03-16 263.4 1 589.9 0.17 0.048 17 0.002 13 0.080 70 0.003 34 0.012 16 0.000 21 78.8 3.14 77.9 1.32
      ECGK03-17 228.6 1 378.8 0.17 0.047 95 0.002 27 0.079 38 0.003 53 0.012 01 0.000 21 77.6 3.32 77.0 1.33
      ECGK03-18 371.1 2 312.2 0.16 0.046 34 0.001 82 0.074 93 0.002 72 0.011 74 0.000 19 73.4 2.57 75.2 1.23
      ECGK03-19 269.2 1 963.7 0.14 0.047 58 0.001 90 0.079 29 0.002 94 0.012 10 0.000 20 77.5 2.76 77.5 1.27
      ECGK04-01 214.2 1 498.5 0.14 0.045 81 0.002 24 0.073 50 0.003 39 0.011 65 0.000 20 72.0 3.21 74.6 1.30
      ECGK04-02 205.9 1 657.3 0.12 0.047 74 0.002 16 0.076 47 0.003 24 0.011 63 0.000 20 74.8 3.06 74.5 1.27
      ECGK04-03 322.4 1 344.9 0.24 0.048 17 0.002 32 0.075 18 0.003 41 0.011 33 0.00020 73.6 3.22 72.6 1.27
      ECGK04-04 191.8 1 592.9 0.12 0.044 69 0.002 02 0.071 15 0.003 02 0.011 56 0.000 20 69.8 2.87 74.1 1.26
      ECGK04-05 502.7 1 821.4 0.28 0.049 01 0.002 05 0.076 91 0.002 99 0.011 40 0.000 19 75.2 2.82 73.1 1.22
      ECGK04-06 205.5 1 488.2 0.14 0.047 31 0.002 16 0.077 88 0.003 33 0.011 96 0.000 21 76.2 3.14 76.6 1.32
      ECGK04-07 242.2 1 787.0 0.14 0.044 65 0.001 94 0.071 49 0.002 91 0.011 63 0.000 20 70.1 2.76 74.6 1.26
      ECGK04-08 453.0 1 449.8 0.31 0.046 33 0.002 23 0.075 89 0.003 44 0.011 90 0.000 21 74.3 3.25 76.3 1.33
      ECGK04-09 279.0 1 597.4 0.17 0.047 52 0.002 10 0.077 18 0.003 19 0.011 80 0.000 20 75.5 3.00 75.6 1.29
      ECGK04-10 214.3 1 600.4 0.13 0.045 90 0.002 14 0.074 02 0.003 25 0.011 72 0.000 20 72.5 3.07 75.1 1.30
      ECGK04-11 259.0 1 380.2 0.19 0.049 05 0.002 38 0.078 58 0.003 59 0.011 64 0.00021 76.8 3.38 74.6 1.32
      ECGK04-12 304.3 2 451.3 0.12 0.046 95 0.001 84 0.076 06 0.002 76 0.011 77 0.000 20 74.4 2.60 75.5 1.25
      ECGK04-13 425.8 1 293.5 0.33 0.047 41 0.002 47 0.077 00 0.003 81 0.011 80 0.000 21 75.3 3.59 75.7 1.36
      ECGK04-14 167.5 1 229.9 0.14 0.045 44 0.002 51 0.075 90 0.003 99 0.012 14 0.000 22 74.3 3.77 77.8 1.42
      ECGK04-15 713.6 1 814.9 0.39 0.046 56 0.002 11 0.073 74 0.003 14 0.011 51 0.000 20 72.2 2.97 73.8 1.27
      下载: 导出CSV

      表  2  花岗岩锆石Lu-Hf同位素分析数据

      Table  2.   Zircon Lu-Hf isotope data of the granite

      测试点 年龄(Ma) 176Hf/177Hf 176Lu/177Hf 176Yb/177Hf εHf(t) TDM1 TDM2 fLu/Hf
      ECGK03-01 74.5 0.282 651 0.000 018 0.001 155 0.000 011 0.047 367 0.000 894 -2.7 0.637 615 856 1 313 -0.97
      ECGK03-02 73.2 0.282 700 0.000 017 0.000 908 0.000 007 0.036 844 0.000 560 -1.0 0.611 886 781 1 202 -0.97
      ECGK03-03 72.9 0.282 687 0.000 018 0.001 256 0.000 025 0.051 481 0.001 232 -1.5 0.633 644 806 1 232 -0.96
      ECGK03-04 73.5 0.282 606 0.000 016 0.001 391 0.000 008 0.056 421 0.000 630 -4.3 0.564 371 926 1 415 -0.96
      ECGK03-05 74.2 0.282 708 0.000 020 0.001 300 0.000 015 0.052 837 0.000 746 -0.7 0.695 234 778 1 185 -0.96
      ECGK03-06 75.7 0.282 643 0.000 018 0.001 159 0.000 035 0.045 980 0.001 782 -3.0 0.616 337 867 1 330 -0.97
      ECGK03-07 74.3 0.282 652 0.000 017 0.001 155 0.000 040 0.047 210 0.001 884 -2.7 0.604 481 854 1 309 -0.97
      ECGK03-08 72.8 0.282 725 0.000 017 0.001 056 0.000 005 0.043 658 0.000 448 -0.1 0.581 650 749 1 148 -0.97
      ECGK03-09 77.6 0.282 657 0.000 018 0.001 044 0.000 007 0.043 429 0.000 354 -2.4 0.622 497 844 1 296 -0.97
      ECGK03-10 74.5 0.282 685 0.000 018 0.001 686 0.000 022 0.071 110 0.001 315 -1.5 0.622 508 818 1 237 -0.95
      ECGK03-11 73.5 0.282 677 0.000 019 0.000 632 0.000 022 0.025 809 0.001 120 -1.8 0.659 680 807 1 252 -0.98
      ECGK03-12 74.2 0.282 700 0.000 018 0.001 213 0.000 009 0.049 312 0.000 597 -1.0 0.622 890 788 1 204 -0.96
      ECGK03-13 77.6 0.282 672 0.000 019 0.001 122 0.000 014 0.045 939 0.000 709 -1.9 0.673 216 826 1 264 -0.97
      ECGK03-14 76.5 0.282 661 0.000 020 0.001 466 0.000 004 0.058 195 0.000 526 -2.3 0.694 901 848 1 289 -0.96
      ECGK03-15 75.2 0.282 654 0.000 017 0.001 032 0.000 015 0.041 585 0.000 828 -2.6 0.610 774 848 1 304 -0.97
      ECGK03-16 77.9 0.282 660 0.000 019 0.001 162 0.000 003 0.046 704 0.000 249 -2.3 0.660 976 843 1 290 -0.96
      ECGK03-17 77.0 0.282 715 0.000 019 0.001 004 0.000 036 0.040 854 0.001 501 -0.4 0.651 558 762 1 167 -0.97
      ECGK03-18 75.2 0.282 705 0.000 020 0.001 025 0.000 008 0.042 706 0.000 535 -0.8 0.700 274 776 1 190 -0.97
      ECGK03-19 77.5 0.282 709 0.000 021 0.001 795 0.000 020 0.076 424 0.000 737 -0.6 0.743 571 787 1 183 -0.95
      ECGK04-01 74.6 0.282 711 0.000 019 0.001 169 0.000 012 0.047 988 0.000 566 -0.6 0.652 205 771 1 177 -0.96
      ECGK04-02 74.5 0.282 663 0.000 019 0.001 023 0.000 005 0.041 483 0.000 443 -2.3 0.656 645 835 1 285 -0.97
      ECGK04-03 72.6 0.282 664 0.000 020 0.001 456 0.000 008 0.060 013 0.000 487 -2.3 0.708 731 843 1 284 -0.96
      ECGK04-04 74.1 0.282 658 0.000 017 0.001 178 0.000 027 0.047 253 0.001 384 -2.5 0.598 109 846 1 297 -0.96
      ECGK04-05 73.1 0.282 706 0.000 020 0.001 184 0.000 006 0.048 776 0.000 087 -0.8 0.685 409 778 1 189 -0.96
      ECGK04-06 76.6 0.282 642 0.000 018 0.001 031 0.000 024 0.042 017 0.001 316 -3.0 0.626 679 866 1 332 -0.97
      ECGK04-07 74.6 0.282 701 0.000 019 0.001 058 0.000 011 0.042 880 0.000 622 -0.9 0.652 351 783 1 200 -0.97
      ECGK04-08 76.3 0.282 636 0.000 020 0.001 143 0.000 021 0.046 229 0.001 159 -3.2 0.687 939 877 1 346 -0.97
      ECGK04-09 75.6 0.282 630 0.000 015 0.000 882 0.000 012 0.036 900 0.000 654 -3.4 0.527 929 878 1 357 -0.97
      ECGK04-10 75.1 0.282 649 0.000 017 0.001 345 0.000 018 0.054 117 0.000 944 -2.8 0.585 974 862 1 316 -0.96
      ECGK04-11 74.6 0.282 683 0.000 018 0.001 113 0.000 020 0.046 001 0.000 881 -1.6 0.644 117 809 1 239 -0.97
      ECGK04-12 75.5 0.282 724 0.000 020 0.001 288 0.000 017 0.053 124 0.000 845 -0.1 0.688 795 754 1 147 -0.96
      ECGK04-13 75.7 0.282 758 0.000 020 0.001 162 0.000 007 0.049 962 0.000 461 1.1 0.716 703 704 1 071 -0.97
      ECGK04-14 77.8 0.282 597 0.000 019 0.000 978 0.000 034 0.039 924 0.001 594 -4.5 0.660 601 928 1 432 -0.97
      ECGK04-15 73.8 0.282 683 0.000 018 0.001 073 0.000 006 0.044 555 0.000 387 -1.6 0.628 561 808 1 240 -0.97
      注:(176Lu/177Hf)CHUR=0.033 2±0.000 2,(176Hf/177Hf)CHUR =0.028 277 2±0.000 029 (Bouvier et al., 2008);(176Lu/177Hf)DM=0.038 4,(176Hf/177Hf)DM=0.283 25 (Griffin et al., 2000);εHf(0)=[(176Hf/177Hf)S/(176Hf/177Hf)CHUR, 0-1]×10 000;εHf(t)={[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf) CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1}×10 000;TDM1=1/λ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM]};TDM2= TDM1-(TDM1-t)×[(fCC-fS)/( fCC-fDM)];fLu/Hf =(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1;其中,176Lu的衰变常数为1.876×10-11 a-1 (Albarède et al., 2006);TDM2计算时采用地壳平均值176Lu/177Hf=0.015 (Rudnick and Gao, 2014)
      下载: 导出CSV

      表  3  花岗岩主量(%)、微量元素(10-6)分析数据

      Table  3.   Major elements (%), trace elements (10-6) and Sr-Nd isotopes of the granite

      样品
      编号
      ECGK01 ECGK02 ECGK03 ECGK04 ECGK05 样品编号 ECGK01 ECGK02 ECGK03 ECGK04 ECGK05
      SiO2 69.26 69.18 69.36 69.39 69.07 Pr 10.01 11.07 12.73 12.40 13.00
      TiO2 0.43 0.35 0.41 0.41 0.35 Nd 38.12 41.21 47.51 46.59 48.83
      Al2O3 15.01 15.04 14.88 14.92 15.06 Sm 6.53 7.10 8.15 8.00 8.36
      TFeO 3.39 2.69 3.12 3.12 2.70 Eu 0.80 0.83 0.77 0.75 0.78
      MnO 0.05 0.04 0.05 0.05 0.04 Gd 5.28 5.58 6.71 6.36 6.69
      MgO 0.85 0.73 0.76 0.73 0.70 Tb 0.63 0.67 0.80 0.76 0.79
      CaO 1.13 1.21 1.20 1.20 1.21 Dy 2.91 3.08 3.73 3.50 3.68
      Na2O 2.95 3.13 3.02 3.05 2.95 Ho 0.53 0.57 0.68 0.63 0.67
      K2O 5.77 5.74 5.31 5.35 5.76 Er 1.68 1.76 2.18 2.05 2.13
      P2O5 0.31 0.26 0.30 0.30 0.25 Tm 0.23 0.25 0.29 0.28 0.29
      LOI 1.22 1.73 1.56 1.54 1.66 Ce 90 99 112 111 114
      Total 100.37 100.10 99.97 100.06 99.76 Yb 1.51 1.57 1.91 1.80 1.88
      Cr 12.2 10.6 14.5 12.9 12.6 Lu 0.23 0.24 0.29 0.27 0.28
      Ni 4.39 3.80 4.66 4.43 4.94 Hf 4.21 4.08 4.59 4.28 5.01
      Rb 341 358 365 358 384 Ta 2.72 2.87 3.51 3.52 3.72
      Sr 120 126 113 110 114 Pb 36.14 38.54 36.51 35.89 41.02
      Y 19.5 20.4 25.2 24.1 24.4 Th 27.72 29.39 35.21 34.22 35.61
      Zr 140 139 156 145 165 U 5.50 7.00 11.49 9.02 9.16
      Nb 18.7 19.6 23.2 23.1 23.7 Ti 2556 2112 2472 2460 2124
      Ba 426 451 350 340 399 Mg# 0.31 0.33 0.30 0.30 0.31
      La 42.4 46.3 52.9 52.0 53.4 TZr(℃) 736 731 748 739 751
      下载: 导出CSV
    • Albarède, F., Scherer, E. E., Blichert-Toft, J., et al., 2006. Γ-Ray Irradiation in the Early Solar System and the Conundrum of the 176Lu Decay Constant. Geochimica et Cosmochimica Acta, 70(5): 1261-1270. https://doi.org/10.1016/j.gca.2005.09.027
      Allen, A. P., Allen, R. J., 1990. Basin Analysis: Principles and Applications. Blackwell Scientific Publication, London.
      Amelin, Y., Lee, D. C., Halliday, A. N., et al., 1999. Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature, 399(6733): 252-255. https://doi.org/10.1038/20426
      Atherton, M. P., Ghani, A. A., 2002. Slab Breakoff: A Model for Caledonian, Late Granite Syn-Collisional Magmatism in the Orthotectonic (Metamorphic) Zone of Scotland and Donegal, Ireland. Lithos, 62(3-4): 65-85. https://doi.org/10.1016/S0024-4937(02)00111-1
      Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi.org/10.1016/S0024-4937(98)00085-1
      Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8
      Bird, P., 1979. Continental Delamination and the Colorado Plateau. Journal of Geophysical Research: Solid Earth, 84(B13): 7561-7571. https://doi.org/10.1029/jb084ib13p07561
      Brown, M., Pressley, R. A., 1999. Crustal Melting in Nature: Prosecuting Source Processes. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(3): 305-316. https://doi.org/10.1016/S1464-1895(99)00034-4
      Célérier, J., Harrison, T. M., Alexander G.A., et al., 2009. The Kumaun and Garwhal Lesser Himalaya, India: Part 1. Structure and Stratigraphy. Geological Society of America Bulletin, 121(9/10): 1262-1280. https://doi.org/10.1130/b26344.1
      Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
      Chen, Q., Wang, C.M., Du, B., et al., 2019. Zircon LA-ICP-MS U-Pb Dating and Geochemistry of the Jitang Metamorphic Complex in Eastern Tibet and Their Geological Implications. Acta Petrologica Sinica, 35(5): 1423-1446(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.05.07
      Chen, Y.F., Zhang, Z.M., Chen, X.H., et al., 2020. The Late Triassic Basic Magmatism and Tectonic Implication in Leiwuqi Area, Eastern Tibet. Acta Petrologica Sinica, 36(9): 2701-2713(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.09.06
      Dan, M., 1978. Active Tectonics of the Alpine-Himalayan Belt: The Aegean Sea and Surrounding Regions. Geophysical Journal International, 55(1): 217-254. https://doi.org/10.1111/j.1365-246X.1978.tb04759.x
      Deng, J.F., Liu, C., Feng, Y.F., et al., 2015. On the Correct Application in the Common Igneous Petrological Diagrams: Discussion and Suggestion. Geological Review, 61(4): 717-734(in Chinese with English abstract).
      Dong, C. Y., Li, C., Wan, Y. S., et al., 2011. Detrital Zircon Age Model of Ordovician Wenquan Quartzite South of Lungmuco-Shuanghu Suture in the Qiangtang Area, Tibet: Constraint on Tectonic Affinity and Source Regions. Science China Earth Sciences, 54(7): 1034-1042. https://doi.org/10.1007/s11430-010-4166-x
      Dong, G. C., Mo, X. X., Zhao, Z. D., et al., 2013. Zircon U-Pb Dating and the Petrological and Geochemical Constraints on Lincang Granite in Western Yunnan, China: Implications for the Closure of the Paleo-Tethys Ocean. Journal of Asian Earth Sciences, 62: 282-294. https://doi.org/10.1016/j.jseaes.2012.10.003
      Fan, J. J., Li, C., Xie, C. M., et al., 2016. Depositional Environment and Provenance of the Upper Permian-Lower Triassic Tianquanshan Formation, Northern Tibet: Implications for the Palaeozoic Evolution of the Southern Qiangtang, Lhasa, and Himalayan Terranes in the Tibetan Plateau. International Geology Review, 58(2): 228-245. https://doi.org/10.1080/00206814.2015.1070108
      Fan, J. J., Li, C., Xie, C. M., et al., 2017. Remnants of Late Permian-Middle Triassic Ocean Islands in Northern Tibet: Implications for the Late-Stage Evolution of the Paleo-Tethys Ocean. Gondwana Research, 44: 7-21. https://doi.org/10.1016/j.gr.2016.10.020
      Fleitout, L., Froidevaux, C., Yuen, D., 1986. Active Lithospheric Thinning. Tectonophysics, 132(1/2/3): 271-278. https://doi.org/10.1016/0040-1951(86)90037-5
      Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/S0016-7037(99)00343-9
      Healy, B., Collins, W. J., Richards, S. W., 2004. A Hybrid Origin for Lachlan S-Type Granites: The Murrumbidgee Batholith Example. Lithos, 78(1/2): 197-216. https://doi.org/10.1016/j.lithos.2004.04.047
      Henry, D. J., Guidotti, C. V., Thomson, J., 2005. The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites: Implications for Geothermometry and Ti-Substitution Mechanisms. American Mineralogist, 90(2/3): 316-328. https://doi.org/10.2138/am.2005.1498
      Hoskin, P. W. O., 2005. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648. https://doi.org/10.1016/j.gca.2004.07.006
      Houseman, G. A., Molnar, P., 1997. Gravitational (Rayleigh-Taylor) Instability of a Layer with Non-Linear Viscosity and Convective Thinning of Continental Lithosphere. Geophysical Journal International, 128(1): 125-150. https://doi.org/10.1111/j.1365-246x.1997.tb04075.x
      Hu, P.Y., Li, C., Li, J., et al., 2014. Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry of Gneissic Granites from the Jitang Complex in Leiwuqi Area, Eastern Tibet, China: Record of the Closure of the Paleo-Tethys Ocean. Tectonophysics, 623: 83-99. https://doi.org/10.1016/j.tecto.2014.03.018
      Icenhower, J., London, D., 1995. An Experimental Study of Element Partitioning among Biotite, Muscovite, and Coexisting Peraluminous Silicic Melt at 200 MPa (H2O). American Mineralogist, 80(11-12): 1229-1251. https://doi.org/10.2138/am-1995-11-1213
      Icenhower, J., London, D., 1996. Experimental Partitioning of Rb, Cs, Sr, and Ba between Alkali Feldspar and Peraluminous Melt. American Mineralogist, 81(5-6): 719-734. https://doi.org/10.2138/am-1996-5-619
      Kapp, P., Murphy, M. A., Yin, A., et al., 2003. Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet. Tectonics, 22(4): 1029-1053. https://doi.org/10.1029/2001tc001332
      Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
      King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371
      Kinny, P. D., Compston, W., Williams, I. S., 1991. A Reconnaissance Ion-Probe Study of Hafnium Isotopes in Zircons. Geochimica et Cosmochimica Acta, 55(3): 849-859. https://doi.org/10.1016/0016-7037(91)90346-7
      Kinny, P. D., Maas, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327-341. https://doi.org/10.2113/0530327
      Li, C., 1987. The Longmucuo-Shuanghu-Lancangjiang Plate Suture and the North Boundary of Distribution of Gondwana Facies Permo-Carboniferous System in Northern Xizang, China. Journal of Jilin University (Earth Science Edition), 17(2): 155-166(in Chinese with English abstract).
      Li, C., 2008. A Review on 20 Years' Study of the Longmu Co-Shuanghu-Lancang River Suture Zone in Qinghai-Xizang (Tibet) Plateau. Geological Review, 54(1): 105-119(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2008.01.012
      Li, C., Xie, Y.W., Dong, Y.S., et al., 2009. The North Lancangjiang Suture: The Boundary between Gondwana and Yangtze? Geological Bulletin of China, 28(12): 1711-1719(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2009.12.004
      Li, H.L., Li, G.M., Liu, H., et al., 2019. Petrogenesis of Paleocene Granite Porphyry of Daruo Area in Western Lhasa Block, Tibet: Constraints from Geochemistry, Zircon U-Pb Chronology and Sr-Nd-Pb-Hf Isotopes. Earth Science, 44(7): 2275-2297 (in Chinese with English abstract).
      Li, H.L., Li, G.M., Zhang, Z., et al., 2021. Genesis of Jienagepu Gold Deposit in Zhaxikang Ore Concentration Area, Eastern Tethys Himalayas: Constraints from He? Ar and In? Situ S Isotope of Pyrite. Earth Science, 46(12): 4291-4315(in Chinese with English abstract).
      Li, Y. L., He, J., Wang, C. S., et al., 2013. Late Cretaceous K-Rich Magmatism in Central Tibet: Evidence for Early Elevation of the Tibetan Plateau? Lithos, 160/161: 1-13. https://doi.org/10.1016/j.lithos.2012.11.019
      Li, Y.G., Wang, S.S., Liu, M.W., et al., 2015. U-Pb Dating Study of Baddeleyite by LA-ICP-MS: Technique and Application. Acta Geologica Sinica, 89(12): 2400-2418(in Chinese with English abstract).
      Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1
      Liégeois, J. P., 1998. Preface: Some Words on the Post-Collisional Magmatism. Lithos, 45: 15-17.
      Liu, D. L., Shi, R. D., Ding, L., et al., 2018. Late Cretaceous Transition from Subduction to Collision along the Bangong-Nujiang Tethys: New Volcanic Constraints from Central Tibet. Lithos, 296/297/298/299: 452-470. https://doi.org/10.1016/j.lithos.2017.11.012
      Liu, J., 2020. The Larong Giant W-(Mo) Deposit in the Eastern Tibet: Magmatism and Mineralization (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Liu, S.F., Zhang, G.W., 2005. Fundamental Ideas, Contents and Methods in Study of Basin and Mountain Relationships. Earth Science Frontiers, 12(3): 101-111(in Chinese with English abstract).
      Liu, Y., Santosh, M., Zhao, Z. B., et al., 2011. Evidence for Palaeo-Tethyan Oceanic Subduction within Central Qiangtang, Northern Tibet. Lithos, 127(1-2): 39-53. https://doi.org/10.1016/j.lithos.2011.07.023
      Liu, Y.M., Li, S.Z., Yu, S.Y., et al., 2019. The Mesozoic Collage and Orogeny Process of Micro-Blocks in Bangong-Nujiang Suture Zone, Tibetan Plateau. Geotectonica et Metallogenia, 43(4): 824-838(in Chinese with English abstract).
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      Marotta, A. M., Fernàndez, M., Sabadini, R., 1998. Mantle Unrooting in Collisional Settings. Tectonophysics, 296(1-2): 31-46. https://doi.org/10.1016/S0040-1951(98)00134-6
      Metcalfe, I., 2021. Multiple Tethyan Ocean Basins and Orogenic Belts in Asia. Gondwana Research, 100: 87-130. https://doi.org/10.1016/j.gr.2021.01.012
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529-532. https://doi.org/10.1130/0091-7613(2003)0310529: hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2
      Nabelek, P. I., Bartlett, C. D., 1998. Petrologic and Geochemical Links between the Post-Collisional Proterozoic Harney Peak Leucogranite, South Dakota, USA, and Its Source Rocks. Lithos, 45(1-4): 71-85. https://doi.org/10.1016/S0024-4937(98)00026-7
      Nash, W. P., Crecraft, H. R., 1985. Partition Coefficients for Trace Elements in Silicic Magmas. Geochimica et Cosmochimica Acta, 49(11): 2309-2322. https://doi.org/10.1016/0016-7037(85)90231-5
      Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012. Tectonic Model of Archipelagic Arc-Basin Systems: The Key to the Continental Geology. Sedimentary Geology and Tethyan Geology, 32(3): 1-20(in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2012.03.001
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
      Peng, Y. B., Yu, S. Y., Li, S. Z., et al., 2020. Early Jurassic and Late Cretaceous Granites in the Tongka Micro-Block, Central Tibet: Implications for the Evolution of the Bangong-Nujiang Ocean. Journal of Asian Earth Sciences, 194: 104030. https://doi.org/10.1016/j.jseaes.2019.104030
      Ren, F., Yin, F.G., Xu, B., et al., 2021. Zircon U-Pb Age and Hf Isotope of Early Paleozoic Granite from the Jitang Area in Eastern Tibet and Its Insight into the Evolution of the Proto-Tethys Ocean. Geological Bulletin of China, 40(11): 1865-1876(in Chinese with English abstract). doi: 10.12097/j.issn.1671-2552.2021.11.006
      Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam, 1-51. https://doi.org/10.1016/b978-0-08-095975-7.00301-6
      Shi, R. D., Griffin, W. L., O'Reilly, S. Y., et al., 2012. Melt/Mantle Mixing Produces Podiform Chromite Deposits in Ophiolites: Implications of Re-Os Systematics in the Dongqiao Neo-Tethyan Ophiolite, Northern Tibet. Gondwana Research, 21(1): 194-206. https://doi.org/10.1016/j.gr.2011.05.011
      Song, S.G., Wang, M.J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth: A Perspective. Scientia Sinica (Terrae), 45(7): 916-940(in Chinese). doi: 10.1360/zd-2015-45-7-916
      Song, Y., Zeng, Q.G., Liu, H.Y., et al., 2019. An Innovative Perspective for the Evolution of Bangong-Nujiang Ocean: Also Discussing the Paleo- and Neo-Tethys Conversion. Acta Petrologica Sinica, 35(3): 625-641(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.02
      Spahić, D., 2022. Towards the Triassic Configuration of Western Paleotethys. Journal of Earth Science, 33(6): 1494-1512. https://doi.org/10.1007/s12583-021-1578-9
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/S0024-4937(98)00024-3
      Tao, Y., Bi, X. W., Li, C. S., et al., 2014. Geochronology, Petrogenesis and Tectonic Significance of the Jitang Granitic Pluton in Eastern Tibet, SW China. Lithos, 184/185/186/187: 314-323. https://doi.org/10.1016/j.lithos.2013.10.031
      Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
      Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3-4): 533-556. https://doi.org/10.1016/S0016-7037(98)00274-9
      Wang, B. D., Wang, L. Q., Wang, L. Q., et al., 2011. Early Triassic Collision of Northern Lancangjiang Suture: Geochronological, Geochemical and Hf Isotope Evidences from the Granitic Gneiss in Leiwuqi Area, East Tibet. Acta Petrologica Sinica, 27(9): 2752-2762(in Chinese with English abstract).
      Wang, B.D., Wang, L.Q., Zhou, D.Q., et al., 2021. Longmucuo-Shuanghu-Changning-Menglian Junction Zone: The Boundary between Gondwana Continent and Pan-Cathaysian Continent. Geological Bulletin of China, 40(11): 1783-1798(in Chinese with English abstract). doi: 10.12097/j.issn.1671-2552.2021.11.001
      Wang, L. Q., Pan, G. T., Ding, J., et al., 2013. Geological Map and Manual of Qinghai-Tibet Plateau and Adjacent Areas (1∶1 500 000). Geological Publishing House, Beijing (in Chinese).
      Wang, M. J., Song, S. G., Niu, Y. L., et al., 2014. Post-Collisional Magmatism: Consequences of UHPM Terrane Exhumation and Orogen Collapse, N. Qaidam UHPM Belt, NW China. Lithos, 210/211: 181-198. https://doi.org/10.1016/j.lithos.2014.10.006
      Wang, X. Y., Wang, S. F., Wang, C., et al., 2018. Permo-Triassic Arc-Like Granitoids along the Northern Lancangjiang Zone, Eastern Tibet: Age, Geochemistry, Sr-Nd-Hf Isotopes, and Tectonic Implications. Lithos, 308/309: 278-293. https://doi.org/10.1016/j.lithos.2018.03.008
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.06.001
      Wu, F.Y., Wan, B., Zhao, L., et al., 2020. Tethyan Geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.01
      Wu, Y.B., Zheng, Y.F., 2004. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589
      Xiao, Q.H., Li, X.B., Jia, Y.M., et al., 1995. Frontiers on Orogenic Belt Researches. Earth Science Frontiers, 2(1): 43-50(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1995.01.007
      Xin, H.B., Qu, X.M., 2006. Geological Characteristics and Ore-Forming Epoch of Ri'a Copper Deposit Related to Bimodal Rock Series in Coqen County, Western Tibet. Mineral Deposits, 25(4): 477-482(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2006.04.012
      Xu, W., Li, C., Wang, M., et al., 2017. Subduction of a Spreading Ridge within the Bangong Co-Nujiang Tethys Ocean: Evidence from Early Cretaceous Mafic Dykes in the Duolong Porphyry Cu-Au Deposit, Western Tibet. Gondwana Research, 41: 128-141. https://doi.org/10.1016/j.gr.2015.09.010
      Xu, Z. Q., Dilek, Y., Cao, H., et al., 2015. Paleo-Tethyan Evolution of Tibet as Recorded in the East Cimmerides and West Cathaysides. Journal of Asian Earth Sciences, 105: 320-337. https://doi.org/10.1016/j.jseaes.2015.01.021
      Yong, Y. Y., Xiang, T. X., Wang, J. M., 1990. Some New Observations on North Lancangjiang Metamorphic Rocks. Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau, 20: 67-89 (in Chinese with English abstract).
      Yu, L., Li, G. J., Wang, Q. F., et al., 2014. Petrogenesis and Tectonic Significance of the Late Cretaceous Magmatism in the Northern Part of the Baoshan Block: Constraints from Bulk Geochemistry Zircon U-Pb Geochronology and Hf Isotopic Compositions. Acta Petrologica Sinica, 30(9): 2709-2724(in Chinese with English abstract).
      Zhai, M.G., 2017. Granites: Leading Study Issue for Continental Evolution. Acta Petrologica Sinica, 33(5): 1369-1380(in Chinese with English abstract).
      Zhai, Q. G., Jahn, B. M., Wang, J., et al., 2016. Oldest Paleo-Tethyan Ophiolitic Mélange in the Tibetan Plateau. Geological Society of America Bulletin, 128(3-4): 355-373. https://doi.org/10.1130/b31296.1
      Zhai, Q. G., Jahn, B. M., Zhang, R. Y., et al., 2011. Triassic Subduction of the Paleo-Tethys in Northern Tibet, China: Evidence from the Geochemical and Isotopic Characteristics of Eclogites and Blueschists of the Qiangtang Block. Journal of Asian Earth Sciences, 42(6): 1356-1370. https://doi.org/10.1016/j.jseaes.2011.07.023
      Zhang, K. J., Tang, X. C., Wang, Y., et al., 2011. Geochronology, Geochemistry, and Nd Isotopes of Early Mesozoic Bimodal Volcanism in Northern Tibet, Western China: Constraints on the Exhumation of the Central Qiangtang Metamorphic Belt. Lithos, 121(1-4): 167-175. https://doi.org/10.1016/j.lithos.2010.10.015
      Zhang, Q., Jin, W.J., Li, C.D., et al., 2010. On the Classification of Granitic Rocks Based on Whole-Rock Sr and Yb Concentrations Ⅲ: Practice. Acta Petrologica Sinica, 26(12): 3431-3455(in Chinese with English abstract).
      Zhang, S., Shi, H.F., Hao, H.J., et al., 2014. Geochronology, Geochemistry and Tectonic Significance of Late Cretaceous Adakites in Bangong Lake, Tibet. Earth Science, 39(5): 509-524(in Chinese with English abstract).
      Zhong, H., Zhu, W. G., Chu, Z. Y., et al., 2007. SHRIMP U-Pb Zircon Geochronology, Geochemistry, and Nd-Sr Isotopic Study of Contrasting Granites in the Emeishan Large Igneous Province, SW China. Chemical Geology, 236(1-2): 112-133. https://doi.org/10.1016/j.chemgeo.2006.09.004
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      Zhao, Z.H., 2007. How to Use the Trace Element Diagrams to Discriminate Tectonic Settings. Geotectonica et Metallogenia, 31(1): 92-103(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2007.01.011
      陈奇, 王长明, 杜斌, 等, 2019. 藏东吉塘变质杂岩体锆石U-Pb年龄、地球化学特征及其地质意义. 岩石学报, 35(5): 1423-1446. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201905008.htm
      陈言飞, 张泽明, 陈宣华, 等, 2020. 藏东类乌齐地区晚三叠世基性岩浆作用与构造意义. 岩石学报, 36(9): 2701-2713. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202009007.htm
      邓晋福, 刘翠, 冯艳芳, 等, 2015. 关于火成岩常用图解的正确使用: 讨论与建议. 地质论评, 61(4): 717-734. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201504002.htm
      李才, 1987. 龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界. 长春地质学院学报, 17(2): 155-166. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ198702003.htm
      李才, 2008. 青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年. 地质论评, 54(1): 105-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200801013.htm
      李才, 谢尧武, 董永胜, 等, 2009. 北澜沧江带的性质: 是冈瓦纳板块与扬子板块的界线吗? 地质通报, 28(12): 1711-1719. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200912005.htm
      李洪梁, 李光明, 刘洪, 等, 2019. 拉萨地体西段达若地区古新世花岗斑岩成因: 锆石U-Pb年代学、岩石地球化学和Sr-Nd-Pb-Hf同位素的约束. 地球科学, 44(7): 2275-2297. doi: 10.3799/dqkx.2019.034
      李洪梁, 李光明, 张志, 等, 2021. 特提斯喜马拉雅东段扎西康矿集区姐纳各普金矿床成因: 黄铁矿He⁃Ar及原位S同位素约束. 地球科学, 46(12): 4291-4315. doi: 10.3799/dqkx.2021.018
      李艳广, 汪双双, 刘民武, 等, 2015. 斜锆石LA-ICP-MS U-Pb定年方法及应用. 地质学报, 89(12): 2400-2418. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201512015.htm
      刘俊, 2020. 藏东拉荣大型钨(钼)矿床: 岩浆作用与矿床成因(博士学位论文). 武汉: 中国地质大学.
      刘少峰, 张国伟, 2005. 盆山关系研究的基本思路、内容和方法. 地学前缘, 12(3): 101-111. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503016.htm
      刘一鸣, 李三忠, 于胜尧, 等, 2019. 青藏高原班公湖-怒江缝合带及周缘燕山期微地块聚合与增生造山过程. 大地构造与成矿学, 43(4): 824-838. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201904014.htm
      潘桂棠, 王立全, 李荣社, 等, 2012. 多岛弧盆系构造模式: 认识大陆地质的关键. 沉积与特提斯地质, 32(3): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201203000.htm
      任飞, 尹福光, 徐波, 等, 2021. 藏东吉塘地区早古生代花岗岩锆石U-Pb年龄、Hf同位素及其对原特提斯洋演化的启示. 地质通报, 40(11): 1865-1876. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202111006.htm
      宋述光, 王梦珏, 王潮, 等, 2015. 大陆造山带碰撞-俯冲-折返-垮塌过程的岩浆作用及大陆地壳净生长. 中国科学: 地球科学, 45(7): 916-940. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201507003.htm
      宋扬, 曾庆高, 刘海永, 等, 2019. 班公湖-怒江洋形成演化新视角: 兼论西藏中部古-新特提斯转换. 岩石学报, 35(3): 625-641. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201903002.htm
      王保弟, 王立全, 强巴扎西, 等, 2011. 早三叠世北澜沧江结合带碰撞作用: 类乌齐花岗质片麻岩年代学、地球化学及Hf同位素证据. 岩石学报, 27(9): 2752-2762. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109024.htm
      王保弟, 王立全, 周道卿, 等, 2021. 龙木错-双湖-昌宁-孟连结合带: 冈瓦纳大陆与泛华夏大陆的界线. 地质通报, 40(11): 1783-1798. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202111001.htm
      王立全, 潘桂棠, 丁俊, 等, 2013. 青藏高原及邻区地质图及说明书(1∶1 500 000). 北京: 地质出版社.
      吴福元, 万博, 赵亮, 等, 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202006001.htm
      吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706000.htm
      吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
      肖庆辉, 李晓波, 贾跃明, 等, 1995. 当代造山带研究中值得重视的若干前沿问题. 地学前缘, 2(1): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY501.008.htm
      辛洪波, 曲晓明, 2006. 藏西措勤县日阿与斑(玢)岩有关的铜矿床的矿床地质特征与成矿时代. 矿床地质, 25(4): 477-482. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200604011.htm
      雍永源, 向天秀, 王洁民, 1990. 初论北澜沧江变质岩. 青藏高原地质文集, 20: 67-89. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ199012001008.htm
      禹丽, 李龚健, 王庆飞, 等, 2014. 保山地块北部晚白垩世岩浆岩成因及其构造指示: 全岩地球化学、锆石U-Pb年代学和Hf同位素制约. 岩石学报, 30(9): 2709-2724. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409020.htm
      翟明国, 2017. 花岗岩: 大陆地质研究的突破口以及若干关键科学问题: "岩石学报"花岗岩专辑代序. 岩石学报, 33(5): 1369-1380. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705001.htm
      张旗, 金惟俊, 李承东, 等, 2010. 三论花岗岩按照Sr-Yb的分类: 应用. 岩石学报, 26(12): 3431-3455. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201012002.htm
      张硕, 史洪峰, 郝海健, 等, 2014. 青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义. 地球科学, 39(5): 509-524. doi: 10.3799/dqkx.2014.049
      赵振华, 2007. 关于岩石微量元素构造环境判别图解使用的有关问题. 大地构造与成矿学, 31(1): 92-103. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200701012.htm
    • 加载中
    图(13) / 表(3)
    计量
    • 文章访问数:  747
    • HTML全文浏览量:  528
    • PDF下载量:  79
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-05-31
    • 刊出日期:  2023-04-25

    目录

      /

      返回文章
      返回