Response Characteristics of Groundwater Dynamics to Ocean Tide in Volcanic Island of South China
-
摘要: 海潮是驱动地下水动态变化的动力基础,为探讨海潮对广东省硇洲岛地下水动态的影响,以地下水位和盐分作为主要指标,采用功率图谱分析地下水动态相对潮汐的频率特征,结合小波变换和互相关方法分析地下水动态的振幅和位相特征.结果表明:(1)硇洲岛海潮对地下水位的水平影响距离约为400~500 m.(2)离海距离、含水层特性是影响地下水对海潮响应的主要因素.(3)硇洲岛西北侧近海第四纪中砂层中存在海水进入地下淡水的通道,当含水层对海潮的水动力响应好且存在联系海水的通道时,海水盐分更易传输到地下淡水中.地下水动态对海潮的响应分析可以有效识别海潮的影响范围,从而为岛屿或近岸地下水咸化现象提供重要依据.Abstract: Ocean tide is the dynamic basis driving the hydrodynamic changes of groundwater. In order to explore the influence of ocean tide on the groundwater dynamics in Naozhou Island, Guangdong Province, the groundwater level and salinity were used as the main indicators, and the frequency characteristics of groundwater dynamics relative to tides were analyzed by power spectrum. Moreover, the amplitude and phase of groundwater dynamics were analyzed by combining wavelet transform and cross-correlation methods. The results show follows: (1) The response of groundwater to tidal loading has a certain spatial range. The horizontal influence of ocean tide on the groundwater level in Naozhou Island is about 400-500 m. (2) The distance from the sea and the aquifer properties are the main factors affecting the hydrodynamic response to the tide. (3) The channel connecting groundwater and seawater in Naozhou Island is distributed in the Quaternary medium sand layer. When the aquifer has a good hydrodynamic response to the tide and good connectivity with seawater, the seawater salt is more easily transmitted to the groundwater. The response analysis of groundwater dynamics to ocean tides can identify the influence range of ocean tides effectively, providing an important basis for the salinity phenomenon of groundwater in the island or nearshore areas.
-
表 1 地下观测井的基本情况
Table 1. The basic information of groundwater observation wells
地下观测井 W1 W2 W3 W4 离海距离(m) 63 479 218 1 462 井顶部高程(m) 3 14 10 13 实际井深(m) 86 148 50 23 水位埋深(m) 11 24 6 10 注:高程基准为1985国家高程基准,以黄海1952~1979多年平均海平面作为基准面. 表 2 地下观测井W1~W4在D6~D8频段内的有效波高及位相延迟
Table 2. Effective wave height and phase delay of wells W1‒W4 in frequency bands D6‒D8
波成分 周期(h) 海潮有效波高(m) 地下水有效波高(m) 地下水位相对海潮位相延迟(h) W1 W2 W3 W4 W1 W2 W3 W4 D8 10~30 1.65 0.31 0.15 0.09 - 1.8 2.3 51.6 - D7 5~15 2.29 0.30 0.18 0.06 - 0.4 0.6 123.3 - D6 2~10 0.59 - - - 0.01 - - - 208.3 注:-表示互相关计算中没有得到有效结果. -
Abarca, E., Karam, H., Hemond, H. F., et al., 2013. Transient Groundwater Dynamics in a Coastal Aquifer: The Effects of Tides, the Lunar Cycle, and the Beach Profile. Water Resources Research, 49(5): 2473-2488. https://doi.org/10.1002/wrcr.20075 Alcaraz, M., Carrera, J., Cuello, J., et al., 2021. Determining Hydraulic Connectivity of the Coastal Aquifer System of La Plata River Estuary (Argentina) to the Ocean by Analysis of Aquifer Response to Low-Frequency Tidal Components. Hydrogeology Journal, 29(4): 1587-1599. doi: 10.1007/s10040-021-02332-0 Bakker, M., 2019. Analytic Solutions for Tidal Propagation in Multilayer Coastal Aquifers. Water Resources Research, 55(4): 3452-3464. https://doi.org/10.1029/2019wr024757 Cao, J. F., Wu, R. Q., Xiao, Z. P., et al., 2014. Analysis of Hydrogen and Oxygen Isotope Characteristics of Groundwater in Naozhou Island. Pearl River, 35(5): 46-49 (in Chinese). Carr, P. A., van Der Kamp, G. S., 1969. Determining Aquifer Characteristics by the Tidal Method. Water Resources Research, 5(5): 1023-1031. https://doi.org/10.1029/wr005i005p01023 Chang, M. X., Shi, J. H., Ye, S. Y., et al., 2021. Dynamic Characteristics and Causes of Shallow Groundwater Level Intra-Annual Changes in the Yellow River Delta. Marine Sciences, 45(10): 20-31 (in Chinese with English abstract). Cuello, J. E., Guarracino, L., 2020. Tide-Induced Head Fluctuations in Coastal Aquifers of Variable Thickness. Hydrological Processes, 34(21): 4139-4146. https://doi.org/10.1002/hyp.13873 Doan, M. L., Brodsky, E. E., Prioul, R., et al., 2006. Tidal Analysis of Borehole Pressure: A Tutorial. University of California, Santa Cruz, 28-38. Dong, C. H., Gao, Z., Yu, X. H., 2004. The Principle and Application of Matlab Wavelet Analysis Toolbox. National Defense Industry Press, Beijing, 1-8 (in Chinese). Fadili, A., Malaurent, P., Najib, S., et al., 2016. Investigation of Groundwater Behavior in Response to Oceanic Tide and Hydrodynamic Assessment of Coastal Aquifers. Environmental Monitoring and Assessment, 188(5): 290. https://doi.org/10.1007/s10661-016-5287-2 Fang, Y. H., Zheng, T. Y., Zheng, X. L., et al., 2021. Influence of Tide-Induced Unstable Flow on Seawater Intrusion and Submarine Groundwater Discharge. Water Resources Research, 57(4): e2020WR029038. https://doi.org/10.1029/2020wr029038 Fu, C. S., Chen, J. Y., Zeng, S. Q., et al., 2008. Statistical Analysis on Impact of Tide on Water Table Fluctuation in Coastal Aquifer. Journal of Hydraulic Engineering, 39(12): 1365-1376 (in Chinese with English abstract). Guarracino, L., Carrera, J., Vázquez-Suñé, E., 2012. Analytical Study of Hydraulic and Mechanical Effects on Tide-Induced Head Fluctuation in a Coastal Aquifer System That Extends under the Sea. Journal of Hydrology, 450: 150-158. https://doi.org/10.1016/j.jhydrol.2012.05.015 Guo, Z. R., Huang, Y. P., 2003. Comprehensive Study on Seawater Intrusion. Hydrology, 23(3): 10-15 (in Chinese with English abstract). He, P., 2016. Power Spectrum Estimation Basics. China Meteorological Press, Beijing, 96-97 (in Chinese). Huang, J. O., Xian, Y., Li, W., et al., 2021. Hydrogeochemical Evolution of Groundwater Flow System in the Typical Coastal Plain: A Case Study of Hangjiahu Plain. Earth Science, 46(7): 2565-2582 (in Chinese with English abstract). Kim, J. H., Lee, J., Cheong, T. J., et al., 2005. Use of Time Series Analysis for the Identification of Tidal Effect on Groundwater in the Coastal Area of Kimje, Korea. Journal of Hydrology, 300(1/2/3/4): 188-198. https://doi.org/10.1016/j.jhydrol.2004.06.004 Li, Y., Wang, J. L., Jin, M. G., et al., 2021. Hydrodynamic Characteristics of Jinan Karst Spring System Identified by Hydrologic Time-Series Data. Earth Science, 46(7): 2583-2593 (in Chinese with English abstract). Lovrinović, I., Srzić, V., Matić, I., et al., 2022. Combined Multilevel Monitoring and Wavelet Transform Analysis Approach for the Inspection of Ground and Surface Water Dynamics in Shallow Coastal Aquifer. Water, 14(4): 656. https://doi.org/10.3390/w14040656 Luo, W. Y., 2020. Evaluation and Strategies of Development and Utilization of Groundwater Resources in Naozhou Island, Zhanjiang City. Ground Water, 42(5): 95-98 (in Chinese). Luo, Z. J., Wang, X., Dai, J., et al., 2024. Research on the Influence of Land Subsidence on the Minable Groundwater Resources. Earth Science, 49(1): 238-252 (in Chinese with English abstract). Mallat, S. G., 1989. Multiresolution Approximations and Wavelet Orthonormal Bases of L 2 (R). Transactions of the American Mathematical Society, 315(1): 69-87. https://doi.org/10.2307/2001373 McMillan, T. C., Rau, G. C., Timms, W. A., et al., 2019. Utilizing the Impact of Earth and Atmospheric Tides on Groundwater Systems: A Review Reveals the Future Potential. Reviews of Geophysics, 57(2): 281-315. https://doi.org/10.1029/2018rg000630 Poncela, R., Santamarta, J. C., García-Gil, A., et al., 2022. Hydrogeological Characterization of Heterogeneous Volcanic Aquifers in the Canary Islands Using Recession Analysis of Deep Water Gallery Discharge. Journal of Hydrology, 610: 127975. https://doi.org/10.1016/j.jhydrol.2022.127975 Purnomo, A. D., Marfai, M. A., Husrin, S., 2021. Identifying the Effect of Tides on Groundwater Level Fluctuations on Gili Ketapang Island, Indonesia. Journal of Environmental Engineering and Landscape Management, 29(3): 215-228. https://doi.org/10.3846/jeelm.2021.14618 Rizzo, C. B., Song, X. H., de Barros, F. P. J., et al., 2020. Temporal Flow Variations Interact with Spatial Physical Heterogeneity to Impact Solute Transport in Managed River Corridors. Journal of Contaminant Hydrology, 235: 103713. https://doi.org/10.1016/j.jconhyd.2020.103713 Robinson, C., Gibbes, B., Carey, H., et al., 2007. Salt-Freshwater Dynamics in a Subterranean Estuary over a Spring-Neap Tidal Cycle. Journal of Geophysical Research: Oceans, 112(C9): 2006JC003888. https://doi.org/10.1029/2006jc003888 Rotzoll, K., El-Kadi, A. I., Gingerich, S. B., 2008. Analysis of an Unconfined Aquifer Subject to Asynchronous Dual-Tide Propagation. Groundwater, 46(2): 239-250. https://doi.org/10.1111/j.1745-6584.2007.00412.x Sheng, C., Han, D. M., Xu, H. H., et al., 2020. Evaluating Dynamic Mechanisms and Formation Process of Freshwater Lenses on Reclaimed Atoll Islands in the South China Sea. Journal of Hydrology, 584: 124641. https://doi.org/10.1016/j.jhydrol.2020.124641 Su, Z. H., 1997. Development and Utilization Protection Strategies of Groundwater against Seawater Intrusion in Zhanjiang City. Geotechnical Investigation & Surveying, 2: 29-33 (in Chinese). Trefry, M. G., Bekele, E., 2004. Structural Characterization of an Island Aquifer via Tidal Methods. Water Resources Research, 40(1): 2003WR002003. https://doi.org/10.1029/2003wr002003 Trglavcnik, V., Morrow, D., Weber, K. P., et al., 2018. Analysis of Tide and Offshore Storm-Induced Water Table Fluctuations for Structural Characterization of a Coastal Island Aquifer. Water Resources Research, 54(4): 2749-2767. https://doi.org/10.1002/2017wr020975 Wheatcraft, S. W., Buddemeier, R. W., 1981. Atoll Island Hydrology. Groundwater, 19(3): 311-320. https://doi.org/10.1111/j.1745-6584.1981.tb03476.x Zhang, H., 2021. Characterization of a Multi-Layer Karst Aquifer through Analysis of Tidal Fluctuation. Journal of Hydrology, 601: 126677. https://doi.org/10.1016/j.jhydrol.2021.126677 Zhao, H. T., 1988. Natural Environmental Analyses of the South China Coastal Zone. Tropic Oceanology, 7(4): 36-45 (in Chinese with English abstract). Zhao, H. T., Wang, L. R., Song, Z. J., 2014. Review on Freshwater Lens of Lime-Sand Island in Nanhai Zhudao. Marine Science Bulletin, 33(6): 601-610 (in Chinese with English abstract). Zheng, W. Q., 2017. Research on Numerical Modeling and Prediction of Seawater Intrusion in Naozhou Island. Chinese Journal of Engineering Geophysics, 14(3): 371-378 (in Chinese with English abstract). Zheng, Y. R., Zhang, J., Wu, R. S., 2012. Tidal Analysis along the Coast of the Northern South China Sea. Journal of Oceanography in Taiwan Strait, 31(4): 549-556 (in Chinese with English abstract). 曹基富, 吴瑞钦, 肖子平, 等, 2014. 硇洲岛地下水氢氧同位素特征分析. 人民珠江, 35(5): 46-49. 常茂祥, 史经昊, 叶思源, 等, 2021. 黄河三角洲浅层地下水位年内变化特征及影响因素. 海洋科学, 45(10): 20-31. 董长虹, 高志, 余啸海, 2004. Matlab小波分析工具箱原理与应用. 北京: 国防工业出版社, 1-8. 付丛生, 陈建耀, 曾松青, 等, 2008. 滨海地区潮汐对地下水位变化影响的统计学分析. 水利学报, 39(12): 1365-1376. 郭占荣, 黄奕普, 2003. 海水入侵问题研究综述. 水文, 23(3): 10-15. 何平, 2016. 功率谱估计基础. 北京: 气象出版社, 96-97. 黄金瓯, 鲜阳, 黎伟, 等, 2021. 典型滨海平原区地下水流系统水化学场演化及成因: 以杭嘉湖平原为例. 地球科学, 46(7): 2565-2582. doi: 10.3799/dqkx.2020.230 李严, 王家乐, 靳孟贵, 等, 2021. 运用水文时间序列分析识别济南泉域岩溶发育特征. 地球科学, 46(7): 2583-2593. doi: 10.3799/dqkx.2020.236 罗炜宇, 2020. 湛江市硇洲岛地下水资源评价及开发利用对策研究. 地下水, 42(5): 95-98. 骆祖江, 王鑫, 代敬, 等, 2024. 地面沉降对地下水可采资源的影响. 地球科学, 49(1): 238-252. doi: 10.3799/dqkx.2022.143 苏肇汉, 1997. 湛江市地下水防海水入侵的开发利用保护对策. 工程勘察, 2: 29-33. 赵焕庭, 1988. 华南海岸带自然环境分析. 热带海洋, 7(4): 36-45. 赵焕庭, 王丽荣, 宋朝景, 2014. 南海诸岛灰沙岛淡水透镜体研究述评. 海洋通报, 33(6): 601-610. 郑王琼, 2017. 硇洲岛三维海水入侵数值模拟及预测研究. 工程地球物理学报, 14(3): 371-378. 郑有任, 张娟, 吴日升, 2012. 南海北部沿岸海域潮汐的调和分析. 台湾海峡, 31(4): 549-556. -