Discussion on Enrichment Law of Organic Matter in Continental Shale with Clue of Primary Productivity and Carbon Storage Law
-
摘要: 陆相优质烃源岩主要在盆地中心深湖-半深湖等深水环境发育,但大量页岩气勘探证实,富有机质页岩更靠近湖盆边缘,因此有必要深入剖析陆相湖盆有机质富集的规律.采用类比法对比页岩油气、煤的成矿条件,结合湖泊的初级生产力、固碳速率、化石发育,采用古地貌及埋藏史恢复手段,提出了页岩发育于浅水局限环境的六大证据.研究发现,页岩油气和煤具有相似的成矿模式;与浅水环境的煤、蒸发盐岩等具有共生关系;浅水环境下固碳速率远大于深水环境.结论是,页岩油气富集于浅水湖湾、间湾等封闭-半封闭环境;最大湖泛期凝缩段应为贫有机质段.最后以松南等地区进行验证,说明本结论具有普适性,可更好地指导陆相页岩油气勘探.Abstract: It is generally believed that it is easy to enrich oil and gas in deep-water environments such as deep lacustrine to semi-deep lacustrine in continental basins, but a large number of shale gas exploration has proved that shale gas reservoirs are generally located closer to the edge of lacustrine basins, so it is necessary to further study the law of organic matter enrichment in continental lacustrine basins. In this paper, the metallogenic conditions of shale oil, gas and coal are compared by analogy method. Combined with the primary productivity of the lake, the rate of carbon sequestration and fossil development, the paleo-geomognomy and burial history recovery means are used to put forward six evidence that shale developed in shallow water restricted environment. It is found that shale oil, gas and coal have similar metallogenic patterns, and have a symbiotic relationship with coal and evaporative salt in shallow water environment. The carbon sequestration rate in shallow water environment is much higher than that in deep water environment. The conclusion is that shale oil and gas are enriched in closed to semi-closed environment such as shallow lake bay and interbay. The condensed section of the maximum flood period should be the organic-poor section. Finally, the results are verified in Songnan area, indicating that this conclusion is universal and can guide shale oil and gas exploration better.
-
图 1 银额盆地北部苏红图坳陷东北端下白垩统巴格毛德K1b2油页岩分布
据拜文华等(2010)修改
Fig. 1. Distribution of Bagmaud oil shale at the northeast end of Suhongtu depression in the north of Yin'e basin
图 3 吐哈盆地南缘沙尔湖煤田东部侏罗系煤层剖面特征
Fig. 3. Profile characteristics of coal seams in the east of Shaerhu coalfield on the southern margin of Turpan-Hami basin
图 5 岐口凹陷古近系渐新统烃源岩对比剖面
Fig. 5. Correlation profile of Paleogene-Oligocene source rocks in Qikou depression
图 7 湖泊溶解氧和初级生产力随水体深度的变化
a.湖泊溶解氧与相关因子垂向分布;b.初级生产力. 据俞焰等(2017)及費尊乐等(1988)
Fig. 7. Vertical distribution model of dissolved oxygen and related factors in Qiandao Lake area
图 8 太湖初级生产力空间分布(单位: mgC/(m2·d))
据张运林(2008)修改
Fig. 8. Spatial distribution of primary productivity in Taihu Lake
表 1 我国主要湖泊固碳速度与年平均气温、湖泊面积的关系
Table 1. Relationship between carbon fixation rate of main lakes and annual average temperature and lake area
湖泊名 固碳速率(g/(m2·a)) 水深(m) 海拔(m) 年平均气温(℃) 面积(km2) 独山湖 63.71 1.50 32 15.0 144.61 微山湖 24.91 3.00 32 15.0 660.00 洪湖 29.81 1.35 25 16.6 350.00 巢湖 40.78 2.89 15 16.0 780.00 太湖 16.82 1.90 62 17.1 2 427.80 东湖 129.36 6.00 20 17.7 31.75 乌梁素海 48.84 1.00 1 021 8.2 300.00 岱海 30.33 7.00 1 220 8.0 70.00 青海湖 22.95 21.00 3 196 1.2 4 625.60 呼伦湖 45.43 5.70 546 -0.1 2 339.00 红碱淖 20.45 15.00 1 242 8.9 31.51 安固里淖 32.21 3.00 1 312 2.8 47.60 滇池 35.43 5.00 1 886 14.7 330.00 泸沽湖 6.60 40.30 2 690 9.5 50.10 程海 34.80 25.74 1 622 17.6 78.80 洱海 3.48 10.50 1 972 15.7 246.00 洞错 6.47 68.70 4 396 0 87.70 苟鲁错 5.60 1.30 4 666 -5.0 23.50 色林错 3.85 33.00 4 530 -6.0 2 391.00 希门错 10.47 40.00 4 020 -2.0 50.00 清水河 5.12 15.00 4 480 -6.2 689.00 小月亮泡 5.47 4.70 125 4.3 205.00 表 2 我国主要陆相页岩地层有机质类型及含气量统计
Table 2. Statistics of organic matter types and gas content in continental shale formations
盆地名称 层位 含气量(m3/t) 有机质类型 鄂尔多斯盆地 长7 1.60~4.95 Ⅱ 长9 Ⅱ 松辽盆地 松辽盆地青一段 Ⅰ-Ⅱ 营一段 0~4.5/2.0 II1-II2 松辽盆地青二、三段 Ⅱ 济阳坳陷 济阳坳陷沙一段 Ⅰ-Ⅱ1 济阳坳陷沙三下亚段 Ⅰ-Ⅱ1 济阳坳陷沙四上亚段 Ⅱ1 辽河坳陷 辽河坳陷沙三段 2.74~5.58/4.37 Ⅱ1 四川盆地 侏罗系自流井组 1.35~1.66 腐泥型,腐殖-腐泥型 大安寨二亚段 0.78~5.8/4.31 II2 千佛崖组二段 0.68~5.69/3.53 II1、II2 东岳庙段 0.47~4.82/2.27 II、III 须家河三段 0.98~41.81/11.31 II2、III 川东北地区大安寨段 0.87~1.98/1.49 II2、III 川西坳陷 1.37 III型,少量II2型 川北川东北川中一带 1.28 III型,少量II2型 川东北地区大安寨段 0.87~1.98/1.49 Ⅱ2或Ⅲ型 阜新盆地 沙海组和九佛堂组 0.5~2.5 II2型 阜新组 1.5 III型 南襄盆地 泌阳凹陷下侏罗统 1.35~1.66 混合-腐殖 泌阳凹陷核桃园组 2.5~6.1 Ⅰ-Ⅱ1 -
Arculus, R. J., Ishizuka, O., Bogus, K., et al., 2015. Expedition 351 Summary. In: Proceedings of the International Ocean Discovery Program Volume 351, 1-26. Bai, W. H., Wu, Y. B., Gao, Z. L., et al., 2010. Study on the Mechanism of Oil Shale Minerogenetic Enrichmen in the Arm of Shallow to Half-Deep Lake Depositional Environment. Geological Survey and Research, 33(3): 207-214 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-4135.2010.03.007 Baxter, A. T., Burkett, A. M., Charpentier, D., et al., 2013. Expedition 344 Summary. In: Proceedings of the International Ocean Discovery Program Volume 344, 1-26. Boyd, P. W., Newton, P. P., 1999. Does Planktonic Community Structure Determine downward Particulate Organic Carbon Flux in Different Oceanic Provinces? Deep Sea Research Part I: Oceanographic Research, 46(1): 63-91. https://doi.org/10.1016/S0967-0637(98)00066-1 Calvert, S. E., Pedersen, T. F., 1993. Geochemistry of Recent Oxic and Anoxic Marine Sediments: Implications for the Geological Record. Marine Geology, 113(1-2): 67-88. https://doi.org/10.1016/0025-3227(93)90150-T Cui, B. W., Zhang, S., Fu, X. L., et al., 2021. Organic Sequence Stratigraphic Division and Its Influencing Factors' Analyses for Gulong Shale in Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 40(5): 13-28 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-8217.2021.05.003 Deng, C. L., Chen, K. R., 1963. Application and Interpretation of Petrochemical Data in Postgraduate Oil Layers. Petroleum Geology & Experiment, (3): 19-25 (in Chinese with English abstract). Deng, H. W., 1993. Sedimentary Geochemistry and Environmental Analysis. Gansu Science and Technology Press, Lanzhou, 111-115 (in Chinese). Dickinson, W. R., 1976. Plate Tectonic Evolution of Sedimentary Basin. In: Dickinson, W. R., Yarborough, H., eds., Plate Tectonics and Hydrocarbon Accumulation. AAPG Continuing Education Course Note Series, Tulsa, 1: 1-63. Ding, C., Sun, P. C., Rexiti·Y. L. K., et al., 2021. Classification and Genesis of Fine-Grained Sedimentary Rocks of Qingshankou Formation in Songliao Basin. Xinjiang Petroleum Geology, 42(4): 418-427 (in Chinese with English abstract). Downing, J. A., Cole, J. J., Middelburg, J. J., et al., 2008. Sediment Organic Carbon Burial in Agriculturally Eutrophic Impoundments over the last Century. Global Biogeochemical Cycles, 22(1): GB1018. https://doi.org/10.1029/2006GB002854 Duan, X. N., Wang, X. K., Lu, F., et al., 2008. Carbon Sequestration and Its Potential by Wetland Ecosystems in China. Acta Ecologica Sinica, 28(2): 463-469(in Chinese with English abstract). doi: 10.1016/S1872-2032(08)60025-6 Fei, Z. L., Mao, X. H., Zhu, M. Y., et al., 1988. Studies on the Productivity of the Bohai Sea Ⅱ. Estimation of Primary Productivity and Potential Fishing Yield. Acta Oceanologica Sinica, 10(4): 481-489 (in Chinese with English abstract). Ferland, M. E., del Giorgio, P. A., Teodoru, C. R., et al., 2012. Long-Term C Accumulation and Total C Stocks in Boreal Lakes in Northern Québec. Global Biogeochemical Cycles, 26(4): GB0E04. https://doi.org/10.1029/2011GB004241 Fu, C., Ding, H., Chen, W. M., 2021. Resources Distribution and Comprehensive Utilization of Oil Shale and Coal Symbiosis in China. Coal Quality Technology, 36(3): 1-13 (in Chinese with English abstract). Gao, G., Xiang, B. L., Li, T. T., et al., 2017. Tight Oil System Particularity of Lucaogou Formation in Jimusaer Sag, Junggar Basin. Acta Sedimentologica Sinica, 35(4): 824-833 (in Chinese with English abstract). Gemaison, G. J., Moore, G. T., 1980. Anoxic Environments and Oil Source Bed Genesis. AAPG Bulletin, 64: 1179-1209. Gu, J. Y., Guo, B. C., Zhang, X. Y., 2005. Sequence Stratigraphic Framework and Model of the Continental Basins in China. Petroleum Exploration and Development, 32(5): 11-15 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2005.05.002 Guo, B., Shao, L. Y., Ma, S. M., et al., 2017. Coal-Accumulating and Coal-Forming Patterns within Sequence Stratigraphy Framework of Early Cretaceous in Hailar Basins. Coal Geology & Exploration, 45(1): 14-19 (in Chinese with English abstract). Guo, M., Zhu, J. W., Gong, Q. H., et al., 2006. Sedimentary Characteristic and Formation Environment of Oil Shale in Danzhou, Hainan Province. Journal of Jilin University (Earth Science Edition), 36(6): 959-962, 1011 (in Chinese with English abstract). He, J. L., Chen, Z. H., Dong, D. Z., et al., 2022. The Evolution of Sedimentary Environments of Dongyuemiao Member and Key Factors for Enrichment of Shale Oil and Gas, Northeastern Sichuan Basin. Sedimentary Geology and Tethyan Geology, 42(3): 385-397 (in Chinese with English abstract). He, W. Y., Liu, B., Zhang, J. Y., et al., 2023. Geological Characteristics and Key Scientific and Technological Problems of Gulong Shale Oil in Songliao Basin. Earth Science, 48(1): 49-62(in Chinese with English abstract). Hou, G. F., Ni, C., Chen, W., et al., 2017. Sedimentary Characteristics and Factors Controlling the Shell Beach in the Da'anzhai Member of the Central Sichuan Basin. Journal of Southwest Petroleum University (Science & Technology Edition), 39(1): 25-34 (in Chinese with English abstract). Hu, J. Y., Huang, D. F., Xu, S. B., et al., 1991. The Bases of Nonmarine Petroleum Geology in China. Petroleum Industry Press, Beijing (in Chinese). Huang, D., Duan, Y., Li, Y. C., et al., 2018. Study on the TOC Lower Limit of Shale Oil and Gas of Freshwater Lake Facies: A Case Study on the Jurassic Da'anzhai Member in the Sichuan Basin. China Petroleum Exploration, 23(6): 38-45 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2018.06.005 Huang, T. D., Wang, P., Li, H., et al., 2011. The Analysis of Heterotopic Formation about Extremely-Thick Coal Seam in Shaerhu Coalfield. Xinjiang Geology, 29(3): 324-326 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2011.03.015 Jiang, S., Tang, X. L., Osborne, S., et al., 2017. Enrichment Factors and Current Misunderstanding of Shale Oil and Gas: Case Study of Shales in U. S., Argentina and China. Earth Science, 42(7): 1083-1091 (in Chinese with English abstract). Jiang, W. J., Qin, M. K., Fan, H. H., et al., 2022. Study on the Relationship between Diagenesis of Cretaceous Yaojia Formation Clastic Rocks and Uranium Mineralization in the Southwest of Songliao Basin. Uranium Geology, 38(2): 181-193 (in Chinese with English abstract). Jiang, W. Y., Liu, S., 2015. Distribution and Controlling Factors of High-Quality Hydrocarbon Source Rock in Sequential Stratigraphic Framework—Taking Paleogene System in Qikou Depression for Instance. China Petroleum Exploration, 20(2): 51-58 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2015.02.006 Jiang, Z. X., Liang, C., Wu, J., et al., 2013. Several Issues in Sedimentological Studies on Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks. Acta Petrolei Sinica, 34(6): 1031-1039 (in Chinese with English abstract). Jin, X. C., 1981. Origin, Classification and Mineral Composition of Deep-Sea Sediments. Marine Science Bulletin, (6): 49-57 (in Chinese with English abstract). Jin, Y., 1977. Some Basic Geological Characteristics of the Continental Oil-Source Rocks in China and Their Originating Conditions. Acta Geologica Sinica, 51(1): 19-28 (in Chinese with English abstract). Jun, J., Jian, W., Ying, M., et al., 2022. Main Controlling Factors and Development Model of the Oil Shale Deposits in the Late Permian Lucaogou Formation, Junggar Basin. ACS Earth Space Chem. , 6(4): 1080-1094. doi: 10.1021/acsearthspacechem.2c00015 Li, B., Zhang, M., Cai Q. H., 2018. Spatial distribution of Macrobenthic Secondary Production of Danjiangkou Reservoir. Asian Journal of Ecotoxicology, 13(4): 22-29(in Chinese with English abstract). Li, D. Q., 1984. On Organic Origin of Ore Deposit in View of the Sedimentary Environment of Dark Siliceous Rocks of Sedimentary Type. Petroleum Geology & Expeximent, 6(2): 142-145 (in Chinese with English abstract). Li, H., Huang, B. Q., Wang, N., 2017. Changes of the Palaeo-Sea Surface Productivity and Bottom Water Dissolved Oxygen Content at MD12-3429, Northern South China Sea. Acta Palaeontologica Sinica, 56(2): 238-248 (in Chinese with English abstract). Li, H., Lu, J. L., Li, R. L., et al., 2017. Generation Paleoenvironment and Its Controlling Factors of Lower Cretaceous Lacustrine Hydrocarbon Source Rocks in Changling Depression, South Songliao Basin. Earth Science, 42(10): 1774-1786 (in Chinese with English abstract). Li, J., Qin, R. F., 2018. The Characteristics of Oil Shale and the Controlling Factors of Metallogeny in the Yaojie Oil Shale Ore-Bearing Area. Coal and Chemical Industry, 41(4): 43-47 (in Chinese with English abstract). Li, L., Meng, Q. T., Liu, Z. J., et al., 2021. Organic Geochemical Characteristics and Organic Matter Source Analysis of Oil Shale and Coal in Paleogene Lijiaya Formation in Huangxian Basin. Global Geology, 40(2): 343-353 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2021.02.011 Li, L., Wang, Z. X., Zheng, Y. H., et al., 2019. Mechanism of Shale Oil Enrichment from the Salt Cyclotherm in Qian3 Member of Qianjiang Sag, Jianghan Basin. Earth Science, 44(3): 1012-1023 (in Chinese with English abstract). Lin, C. M., 2019. Sedimentary Petrology. Science Press, Beijing (in Chinese). Lin, T. F., Bai, Y. F., Zhao, Y., et al., 2021. Cyclic Stratigraphy of Fine-Grained Sedimentary Rocks and Sedimentary Filling Response Characteristics of Member Qing-1 in Gulong Sag, Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 40(5): 29-39 (in Chinese with English abstract). Liu, G. Z., 1959. New Data of Oil Bearing Property in Songliao Plain. Journal of Beijing University of Geosciences, 2: 99-106 (in Chinese with English abstract). Liu, P. L., Zhou, H. Q., Kang, G. Y., 1986. Distribution of Elements and Its Relation with Sedimentary Environment in Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 5(2): 11-15, 18 (in Chinese with English abstract). Liu, Q. Q., Chi, Q. H., Wang, X. Q., et al., 2018. Distribution and Influencing Factors of Rare Earth Elements in Carbonate Rocks along Three Continental-Scale Transects in Eastern China. Earth Science Frontiers, 25(4): 99-115 (in Chinese with English abstract). Liu, S. M., Jiang, L., Liu, B. J., et al., 2023. Investigation of Organic Matter Sources and Depositional Environment Changes for Terrestrial Shale Succession from the Yuka Depression: Implications from Organic Geochemistry and Petrological Analyses. Journal of Earth Science, 34(5): 1577-1595. https://doi.org/10.1007/s12583-022-1617-1 Lu, J., 2017. Fine Sedimentary Cycles and Heterogeneity of Qingshankou Formation in Gulong Sag, Songliao Basin (NE China)(Dissertation). Northeast Petroleum University, Daqing(in Chinese with English abstract). Lu, S. J., 2022. Analysis on Sedimentary Characteristics and Uranium Mineralization Conditions of the Second and Third Members of Qingshankou Fm in Songliao Basin. Uranium Mining and Metallurgy, 41(1): 12-20 (in Chinese with English abstract). Miao, J. Y., Zhou, L. F., Deng, K., et al., 2004. Relationship between the Depositonal Environment and Geochemistry of Permian Hydrocarbon Source Rocks in the Turpan Depression. Geology in China, 31(4): 424-430 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2004.04.014 Ni, D. M., 2021. Geological Features of Continental Shale Reservoir in Lishu Fault Depression of Songliao Basin. Unconventional Oil & Gas, 8(3): 33-42 (in Chinese with English abstract). Peng, N., Kuang, H. W., Liu, Y. Q., 2011. Sedimentary Evolution and Palaeogeography of the Early Cretaceous Basins from the Northern Qilian Mountains to Jiuxi Areas. Earth Science Frontiers, 18(4): 77-87 (in Chinese with English abstract). Picard, M. D., 1971. Classification of Fine-Grained Sedimentary Rocks. Journal of Sedimentary Research, 41: 179-195. Qi, Y. A., Zeng, G. Y., Hu, B., et al., 2007. Trace Fossil Assemblages and Their Environmental Significance from Hetaoyuan Formation of Palaeogene in Biyang Depression of Henan Province. Acta Palaeontologica Sinica, 46(4): 441-452 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-6616.2007.04.006 Qiu, Z. J., Ren, W. Z., Chen, J. L., 1993. Coal Field Geology. Coal Industry Press, Beijing, 139 (in Chinese). Shi, Z. S., Zhu, X. M., Hu, B., et al., 2005. Deep Water Trace Fossils from the Shahejie Formation of Paleogene of Chezhen Sag in Jiyang Depression. Journal of Palaeogeography, 7(2): 233-242 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1505.2005.02.008 Sun, L. D., Liu, H., He, W. Y., et al., 2021. An Analysis of Major Scientific Problems and Research Paths of Gulong Shale Oil in Daqing Oilfield, NE China. Petroleum Exploration and Development, 48(3): 453-463 (in Chinese with English abstract). Tait, R. V., 1981. Elements of Marine Ecology an Introductory Course (3rd Edition). Butterworths & Co. (Publishers) Ltd., London, 207-218. Tu, J. Q., Chen, J. P., Zhang, D. J., et al., 2012. A Petrographic Classification of Macerals in Lacustrine Carbonate Source Rocks and Their Organic Petrological Characteristics: A Case Study on Jiuxi Basin, NW China. Acta Petrologica Sinica, 28(3): 917-926 (in Chinese with English abstract). Van Mooy, B. A., Keil, R. G., Devol, A. H., 2002. Impact of Suboxia on Sinking Particulate Organic Carbon: Enhanced Carbon Flux and Preferential Degradation of Amino Acids via Denitrification. Geochimica et Cosmochimica Acta, 66(3): 457-465. doi: 10.1016/S0016-7037(01)00787-6 Wang, C. L., Liu, C. L., Hu, H. B., et al., 2012. Sedimentary Characteristics and Its Environmental Significance of Salt-Bearing Strata of the Member 4 of Paleocene Shashi Formation in Southern Margin of Jiangling Depression, Jianghan Basin. Journal of Palaeogeography, 14(2): 165-175 (in Chinese with English abstract). Wang, D. D., Li, Z. X., Lü, D. W., et al., 2016. Coal and Oil Shale Paragenetic Assemblage and Sequence Stratigraphic Features in Continental Faulted Basin. Earth Science, 41(3): 508-522 (in Chinese with English abstract). Wang, L., Zeng, W. T., Xia, X. M., et al., 2019. Study on Lithofacies Types and Sedimentary Environment of Black Shale of Qingshankou Formation in Qijia-Gulong Depression, Songliao Basin. Natural Gas Geoscience, 30(8): 1125-1133 (in Chinese with English abstract). Wang, Y. F., 1983. Discovery of Glauconite in Modern Lake Sediments of Fuxian Lake and Preliminary Study on Its Genesis. Chinese Science Bulletin, 28(22): 1388-1392 (in Chinese). doi: 10.1360/csb1983-28-22-1388 Wu, C. L., Wang, X. Q., Liu, G., et al., 2001. Tectonic Evolution Dynamics of Fushun Basin. Science in China (Ser. D), 31(6): 477-485 (in Chinese). Wu, F., Zhan, J. Y., Deng, X. Z., et al., 2012. Influencing Factors of Lake Eutrophication in China—A Case Study in 22 Lakes in China. Ecology and Environmental Sciences, 21(1): 94-100 (in Chinese with English abstract). Wu, T. T., Shang, F., Chen, R. Q., et al., 2022. Organic Carbon Distribution Characteristics of Qingshankou Shale in Songliao Basin, China. Earth Science, 47(11): 4309-4318(in Chinese with English abstract). Xiao, F., Liu, L. F., Gao, X. Y., et al., 2014. Geological Features and Favorable Area Prediction of the Mid-Jurassic Shale Gas in Kuqa Depression. Natural Gas Geoscience, 25(10): 1668-1677 (in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2014.10.1668 Xing, S. Q., Xiao, Z. S., Zhang, S. G., 1982. Mineralogical Characteristics of Glauconite and Conditions of Its Formation in the Taikang Inlet, Songliao Basin. Acta Mineralogica Sinica, 2(1): 52-58, 85 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-4734.1982.01.008 Xu, H. D., 1997. Some Problems in the Study of Continental Sequence Stratigraphy. Oil & Gas Geology, 18(2): 83-89 (in Chinese with English abstract). Xu, S. C., Liu, Z. J., Dong, Q. S., et al., 2012. Deposition and Sedimentary Evolution of Coal, Oil Shale and Evaporite-Bearing Strata in Terrestrial Basins. Journal of Jilin University (Earth Science Edition), 42(2): 296-303 (in Chinese with English abstract). Yang, Y., Shi, W. Z., Zhang, X. M., et al., 2021. Identification Method of Shale Lithofacies by Logging Curves: A Case Study from Wufeng-Longmaxi Formation in Jiaoshiba Area, SW China. Lithologic Reservoirs, 33(2): 135-146 (in Chinese with English abstract). Yang, Z., Zou, C. N., Wu, S. T., et al., 2022. Characteristics, Types, and Prospects of Geological Sweet Sections in Giant Continental Shale Oil Provinces in China. Journal of Earth Science, 33(5): 1260-1277. https://doi.org/10.1007/s12583-022-1735-9 Yu, Y., Liu, D. F., Yang, Z. J., et al., 2017. Vertical Stratification Characteristics of Dissolved Oxygen and Phytoplankton in Thousand-Island Lake and Their Influencing Factors. Environmental Science, 38(4): 1393-1402 (in Chinese with English abstract). Yuan, X. J., Lin, S. H., Liu, Q., et al., 2015. Lacustrine Fine-Grained Sedimentary Features and Organic-Rich Shale Distribution Pattern: A Case Study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 42(1): 34-43 (in Chinese with English abstract). Yukio, S., Yoshimi, S., 1988. A High-Temperature Catalytic Oxidation Method for the Determination of Non-Volatile Dissolved Organic Carbon in Seawater by Direct Injection of a Liquid Sample. Marine Chemistry, 24(2): 105-131. doi: 10.1016/0304-4203(88)90043-6 Zhang, J., Bian, X. F., Chen, S. W., et al., 2013. Shale Gas Resources Prospect of Late Permian Linxi Formation in the Middle-Southern Part of the Da Hinggan Mountains. Geological Bulletin of China, 32(8): 1297-1306 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2013.08.017 Zhang, J. C., Jin, Z. J., Yuan, M. S., 2004. Reservoiring Mechanism of Shale Gas and Its Distribution. Natural Gas Industry, 24(7): 15-18, 131-132 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0976.2004.07.005 Zhang, J. F., Xu, X. Y., Bai, J., et al., 2020. Enrichment and Exploration of Deep Lacustrine Shale Oil in the First Member of Cretaceous Qingshankou Formation, Southern Songliao Basin, NE China. Petroleum Exploration and Development, 47(4): 637-652 (in Chinese with English abstract). Zhang, Y. L., Feng, S., Ma, R. H., et al., 2008. Spatial Pattern of Euphotic Depth and Estimation of Phytoplankton Primary Production in Lake Taihu in Autumn 2004. Journal of Lake Sciences, 20(3): 380-388 (in Chinese with English abstract). doi: 10.18307/2008.0319 Zhang, Y. S., Yang, Y. Q., Qi, Z. X., et al., 2003. Sedimentary Characteristics and Environments of the Salt-Bearing Series of Qianjiang Formation of the Paleogene in Qianjiang Sag of Jianghan Basin. Journal of Palaeogeography, 5(1): 29-35 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1505.2003.01.003 Zheng, G. D., Meng, Q. T., Liu, Z. J., 2020. Geochemical Characteristics and Paleolimnological Information of Oil Shale in 1st Member of Qingshankou Formation in Northern Songliao Basin. Journal of Jilin University (Earth Science Edition), 50(2): 392-404 (in Chinese with English abstract). Zhou, T. X., Luo, W. L., Da, J., et al., 2022. Spatial Distribution of Bacterioplankton Community Composition and Their Diversity in Lake Fuxian during Thermal Stratification Period. Journal of Lake Sciences, 34(5): 1642-1655 (in Chinese with English abstract). doi: 10.18307/2022.0518 Zhu, R. K., Zou, C. N., Yuan, X. J., et al., 2017. Research Progress and Development Strategic Thinking on Energy Sedimentology. Acta Sedimentologica Sinica, 35(5): 1004-1015 (in Chinese with English abstract). Zhu, X. M., 2008. Sedimentary Petrology (4th Edition). Petroleum Industry Press, Beijing (in Chinese). Zou, C. N., Dong, D. Z., Wang, S. J., et al., 2010. Geological Characteristics, Formation Mechanism and Resource Potential of Shale Gas in China. Petroleum Exploration and Development, 37(6): 641-653 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60001-3 拜文华, 吴彦斌, 高智梁, 等, 2010. 浅湖-半深湖相湖湾环境油页岩成矿富集机理研究. 地质调查与研究, 33(3): 207-214. doi: 10.3969/j.issn.1672-4135.2010.03.007 崔宝文, 张顺, 付秀丽, 等, 2021. 松辽盆地古龙页岩有机层序地层划分及影响因素. 大庆石油地质与开发, 40(5): 13-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202105002.htm 邓茨兰, 陈克仁, 1963. 岩石化学资料在研究生油层中的运用和解释. 石油地质实验文摘, (3): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD196303005.htm 邓宏文, 1993. 沉积地球化学与环境分析. 兰州: 甘肃科学技术出版社, 111-115. 丁聪, 孙平昌, 热西提·亚力坤, 等, 2021. 松辽盆地青山口乡青山口组细粒沉积岩分类及其成因. 新疆石油地质, 42(4): 418-427. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202104005.htm 段晓男, 王效科, 逯非, 等, 2008. 中国湿地生态系统固碳现状和潜力. 生态学报, 28(2): 463-469. doi: 10.3321/j.issn:1000-0933.2008.02.002 費尊乐, 毛兴华, 朱明运, 等, 1988. 渤海生产力研究: Ⅱ. 初级生产力及潜在渔获量的估算. 海洋学报, 10(4): 481-489. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC2003S2008.htm 傅丛, 丁华, 陈文敏, 2021. 我国油页岩与煤共生资源分布及综合利用. 煤质技术, 36(3): 1-13. doi: 10.3969/j.issn.1007-7677.2021.03.001 高岗, 向宝力, 李涛涛, 等, 2017. 吉木萨尔凹陷芦草沟组致密油系统的成藏特殊性. 沉积学报, 35(4): 824-833. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201704016.htm 顾家裕, 郭彬程, 张兴阳, 2005. 中国陆相盆地层序地层格架及模式. 石油勘探与开发, 32(5): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200505001.htm 郭彪, 邵龙义, 马施民, 等, 2017. 海拉尔盆地群下白垩统层序格架内聚煤特征与成煤模式. 煤田地质与勘探, 45(1): 14-19. doi: 10.3969/j.issn.1001-1986.2017.01.003 郭敏, 朱建伟, 宫清华, 等, 2006. 海南儋州长坡组油页岩矿沉积特征及形成环境. 吉林大学学报(地球科学版), 36(6): 959-962, 1011. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200606015.htm 何江林, 陈正辉, 董大忠, 等, 2022. 川东地区东岳庙段沉积环境演化及其页岩油气富集主控因素分析. 沉积与特提斯地质, 42(3): 385-397. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202203005.htm 何文渊, 柳波, 张金友, 等, 2023. 松辽盆地古龙页岩油地质特征及关键科学问题探索. 地球科学, 48(1): 49-62. doi: 10.3799/dqkx.2022.320 厚刚福, 倪超, 陈薇, 等, 2017. 川中地区大安寨段介壳滩沉积特征及控制因素. 西南石油大学学报(自然科学版), 39(1): 25-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201701003.htm 胡见义, 黄第藩, 徐树宝, 等, 1991. 中国陆相石油地质理论基础. 北京: 石油工业出版社. 黄东, 段勇, 李育聪, 等, 2018. 淡水湖相页岩油气有机碳含量下限研究: 以四川盆地侏罗系大安寨段为例. 中国石油勘探, 23(6): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201806005.htm 黄铁栋, 王平, 李慧, 等, 2011. 沙尔湖煤田巨厚煤层异地成煤分析. 新疆地质, 29(3): 324-326. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201103017.htm 蒋恕, 唐相路, Steve Osborne, 等, 2017. 页岩油气富集的主控因素及误辩: 以美国、阿根廷和中国典型页岩为例. 地球科学, 42(7): 1083-1091. doi: 10.3799/dqkx.2017.087 江文剑, 秦明宽, 范洪海, 等, 2022. 松辽盆地西南部白垩系姚家组碎屑岩成岩作用与铀成矿. 铀矿地质, 38(2): 181-193. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202202003.htm 姜文亚, 柳飒, 2015. 层序地层格架中优质烃源岩分布与控制因素: 以歧口凹陷古近系为例. 中国石油勘探, 20(2): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201502006.htm 姜在兴, 梁超, 吴靖, 等, 2013. 含油气细粒沉积岩研究的几个问题. 石油学报, 34(6): 1031-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306001.htm 金性春, 1981. 深海沉积物的来源、分类与矿物组成. 海洋科技资料, (6): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HUTB198106008.htm 锦言, 1977. 我国陆相生油岩的若干基本地质特征及其形成条件. 地质学报, 51(1): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197701001.htm 李斌, 张敏, 蔡庆华, 2018. 丹江口水库底栖动物群落次级生产力空间分布. 生态毒理学报, 13(4): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201804004.htm 李道琪, 1984. 从暗色沉积型硅质岩的形成环境看有机成矿. 石油实验地质, 6(2): 142-145. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD198402007.htm 李浩, 陆建林, 李瑞磊, 等, 2017. 长岭断陷下白垩统湖相烃源岩形成古环境及主控因素. 地球科学, 42(10): 1774-1786. doi: 10.3799/dqkx.2017.539 李鹤, 黄宝琦, 王娜, 2017. 南海北部MD12-3429站位海水古生产力和溶解氧含量特征. 古生物学报, 56(2): 238-248. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX201702010.htm 李靖, 秦荣芳, 2018. 窑街油页岩含矿区油页岩特征及成矿控制因素. 煤炭与化工, 41(4): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HHGZ201804013.htm 李乐, 王自翔, 郑有恒, 等, 2019. 江汉盆地潜江凹陷潜三段盐韵律层页岩油富集机理. 地球科学, 44(3): 1012-1023. doi: 10.3799/dqkx.2018.389 李丽, 孟庆涛, 刘招君, 等, 2021. 黄县盆地古近系李家崖组油页岩与煤有机地球化学特征及有机质来源分析. 世界地质, 40(2): 343-353. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ202102012.htm 林春明, 2019. 沉积岩石学. 北京: 科学出版社. 林铁锋, 白云风, 赵莹, 等, 2021. 松辽盆地古龙凹陷青一段细粒沉积岩旋回地层分析及沉积充填响应特征. 大庆石油地质与开发, 40(5): 29-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202105003.htm 刘官植, 1959. 松遼平原含油性的新资料. 北京地质学院学报, 2: 99-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX195902009.htm 刘平略, 周厚清, 康桂云, 1986. 松辽盆地元素分布及其与沉积环境的关系. 大庆石油地质与开发, 5(2): 11-15, 18. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK198602002.htm 柳青青, 迟清华, 王学求, 等, 2018. 中国东部大陆尺度地球化学走廊带碳酸盐岩稀土元素分布特征与影响因素. 地学前缘, 25(4): 99-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804010.htm 卢胜军, 2022. 松辽盆地青山口组二、三段沉积特征及铀成矿分析. 铀矿冶, 41(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YKYI202201002.htm 陆军, 2017. 古龙地区青山口组细粒沉积旋回及非均质性(硕士学位论文). 大庆: 东北石油大学. 苗建宇, 周立发, 邓昆, 等, 2004. 吐鲁番坳陷二叠系烃源岩地球化学与沉积环境的关系. 中国地质, 31(4): 424-430. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200404013.htm 倪冬梅, 2021. 松辽盆地梨树断陷陆相页岩储层地质特征及地质意义. 非常规油气, 8(3): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202103006.htm 彭楠, 旷红伟, 柳永清, 2011. 北祁连-酒西地区早白垩世盆地沉积特征与古地理演化. 地学前缘, 18(4): 77-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201104006.htm 齐永安, 曾光艳, 胡斌, 等, 2007. 河南泌阳凹陷古近纪核桃园组遗迹化石组合及其环境意义: 兼论深水湖泊遗迹相特征. 古生物学报, 46(4): 441-452. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX200704009.htm 邱震杰, 任文忠, 陈家良, 1993. 煤田地质学. 北京: 煤炭工业出版社, 139. 施振生, 朱筱敏, 胡斌, 等, 2005. 济阳坳陷车镇凹陷古近系沙河街组深水沉积中的遗迹化石. 古地理学报, 7(2): 233-242. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200502009.htm 孙龙德, 刘合, 何文渊, 等, 2021. 大庆古龙页岩油重大科学问题与研究路径探析. 石油勘探与开发, 48(3): 453-463. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103002.htm 涂建琪, 陈建平, 张大江, 等, 2012. 湖相碳酸盐岩烃源岩有机显微组分分类及其岩石学特征: 以酒西盆地为例. 岩石学报, 28(3): 917-926. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203021.htm 王春连, 刘成林, 胡海兵, 等, 2012. 江汉盆地江陵凹陷南缘古新统沙市组四段含盐岩系沉积特征及其沉积环境意义. 古地理学报, 14(2): 165-175. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201202004.htm 王东东, 李增学, 吕大炜, 等, 2016. 陆相断陷盆地煤与油页岩共生组合及其层序地层特征. 地球科学, 41(3): 508-522. doi: 10.3799/dqkx.2016.042 王岚, 曾雯婷, 夏晓敏, 等, 2019. 松辽盆地齐家—古龙凹陷青山口组黑色页岩岩相类型与沉积环境. 天然气地球科学, 30(8): 1125-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201908006.htm 王云飞, 1983. 抚仙湖现代湖泊沉积物中海绿石的发现及成因的初步研究. 科学通报, 28(22): 1388-1392. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198322011.htm 吴冲龙, 汪新庆, 刘刚, 等, 2001. 抚顺盆地构造演化动力学研究. 中国科学(D辑: 地球科学), 31(6): 477-485. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200106005.htm 吴锋, 战金艳, 邓祥征, 等, 2012. 中国湖泊富营养化影响因素研究: 基于中国22个湖泊实证分析. 生态环境学报, 21(1): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201201019.htm 武田田, 商斐, 陈睿倩, 等, 2022. 松辽盆地青山口组页岩有机碳含量分布特征. 地球科学, 47(11): 4309-4318. doi: 10.3799/dqkx.2022.337 肖飞, 刘洛夫, 高小跃, 等, 2014. 库车坳陷中侏罗统页岩气地质特征及有利区预测. 天然气地球科学, 25(10): 1668-1677. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201410024.htm 邢顺洤, 肖祝胜, 张书贵, 1982. 泰康湖湾海绿石矿物学特征及其形成条件的探讨. 矿物学报, 2(1): 52-58, 85. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198201007.htm 徐怀大, 1997. 陆相层序地层学研究中的某些问题. 石油与天然气地质, 18(2): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT702.000.htm 许圣传, 刘招君, 董清水, 等, 2012. 陆相盆地含煤、油页岩和蒸发盐地层单元沉积演化. 吉林大学学报(地球科学版), 42(2): 296-303. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201202003.htm 杨洋, 石万忠, 张晓明, 等, 2021. 页岩岩相的测井曲线识别方法: 以焦石坝地区五峰组—龙马溪组为例. 岩性油气藏, 33(2): 135-146. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202102014.htm 俞焰, 刘德富, 杨正健, 等, 2017. 千岛湖溶解氧与浮游植物垂向分层特征及其影响因素. 环境科学, 38(4): 1393-1402. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201704014.htm 袁选俊, 林森虎, 刘群, 等, 2015. 湖盆细粒沉积特征与富有机质页岩分布模式: 以鄂尔多斯盆地延长组长7油层组为例. 石油勘探与开发, 42(1): 34-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501005.htm 张健, 卞雄飞, 陈树旺, 等, 2013. 大兴安岭中南部上二叠统林西组页岩气资源前景. 地质通报, 32(8): 1297-1306. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201308019.htm 张金川, 金之钧, 袁明生, 2004. 页岩气成藏机理和分布. 天然气工业, 24(7): 15-18, 131-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200407004.htm 张君峰, 徐兴友, 白静, 等, 2020. 松辽盆地南部白垩系青一段深湖相页岩油富集模式及勘探实践. 石油勘探与开发, 47(4): 637-652. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004002.htm 张永生, 杨玉卿, 漆智先, 等, 2003. 江汉盆地潜江凹陷古近系潜江组含盐岩系沉积特征与沉积环境. 古地理学报, 5(1): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200301002.htm 张运林, 冯胜, 马荣华, 等, 2008. 太湖秋季真光层深度空间分布及浮游植物初级生产力的估算. 湖泊科学, 20(3): 380-388. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX200803021.htm 郑国栋, 孟庆涛, 刘招君, 2020. 松辽盆地北部青一段油页岩地球化学特征及其记录的古湖泊学信息. 吉林大学学报(地球科学版), 50(2): 392-404. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202002008.htm 周天旭, 罗文磊, 笪俊, 等, 2022. 抚仙湖垂向分层期间水体细菌群落结构组成及多样性的空间分布. 湖泊科学, 34(5): 1642-1655. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202205019.htm 朱如凯, 邹才能, 袁选俊, 等, 2017. 中国能源沉积学研究进展与发展战略思考. 沉积学报, 35(5): 1004-1015. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201705012.htm 朱筱敏, 2008. 沉积岩石学(4版). 北京: 石油工业出版社. 邹才能, 董大忠, 王社教, 等, 2010. 中国页岩气形成机理、地质特征及资源潜力. 石油勘探与开发, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm