• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    走滑断裂“分期-异向”变形过程砂箱物理模拟:以塔里木盆地顺北5号断层北段为例

    付晓飞 冯军 王海学 邓尚 马庆佑 兰明杰 易泽军

    付晓飞, 冯军, 王海学, 邓尚, 马庆佑, 兰明杰, 易泽军, 2023. 走滑断裂“分期-异向”变形过程砂箱物理模拟:以塔里木盆地顺北5号断层北段为例. 地球科学, 48(6): 2104-2116. doi: 10.3799/dqkx.2022.475
    引用本文: 付晓飞, 冯军, 王海学, 邓尚, 马庆佑, 兰明杰, 易泽军, 2023. 走滑断裂“分期-异向”变形过程砂箱物理模拟:以塔里木盆地顺北5号断层北段为例. 地球科学, 48(6): 2104-2116. doi: 10.3799/dqkx.2022.475
    Fu Xiaofei, Feng Jun, Wang Haixue, Deng Shang, Ma Qingyou, Lan Mingjie, Yi Zejun, 2023. Sandbox Physical Simulation on 'Different Period-Different Direction' Deformation Process of Strike-Slip Faults: A Case Study of Northern Segment of Shunbei No. 5 Fault in Tarim Basin. Earth Science, 48(6): 2104-2116. doi: 10.3799/dqkx.2022.475
    Citation: Fu Xiaofei, Feng Jun, Wang Haixue, Deng Shang, Ma Qingyou, Lan Mingjie, Yi Zejun, 2023. Sandbox Physical Simulation on "Different Period-Different Direction" Deformation Process of Strike-Slip Faults: A Case Study of Northern Segment of Shunbei No. 5 Fault in Tarim Basin. Earth Science, 48(6): 2104-2116. doi: 10.3799/dqkx.2022.475

    走滑断裂“分期-异向”变形过程砂箱物理模拟:以塔里木盆地顺北5号断层北段为例

    doi: 10.3799/dqkx.2022.475
    基金项目: 

    国家自然科学基金项目 41972157

    黑龙江省普通本科高等学校青年创新人才培养计划 UNPYSCT-2020142

    详细信息
      作者简介:

      付晓飞(1973-),男,教授,博士,主要从事断层变形、封闭性及与流体运移方面工作. ORCID:0000-0003-3079-7033.E-mail:760136897@qq.com

      通讯作者:

      冯军,ORCID:0000-0003-4931-7984.E-mail:408298107@qq.com

    • 中图分类号: P548

    Sandbox Physical Simulation on "Different Period-Different Direction" Deformation Process of Strike-Slip Faults: A Case Study of Northern Segment of Shunbei No. 5 Fault in Tarim Basin

    • 摘要: 塔里木盆地顺北5号走滑断裂是顺北及邻区一条克拉通内小尺度走滑断裂带,整体分为3段:北段、中段和南段.选取顺北5号断层北段为研究对象,结合断层几何学和运动学解析,应用构造物理模拟实验,明确了走滑断层的变形特征与形成机制.结果表明:顺北5号断层北段主体表现为多段式特征,发育平直型、压隆型和拉分型3种类型构造样式.北段主要活动时期为加里东中期Ⅲ幕与加里东晚期,表现为两期异向叠加变形作用,早期(T74界面)表现为多种组合样式分段生长特征,晚期(T70界面)表现为雁列式正断层分布特征.基于顺北5号断层北段砂箱物理模拟证实,早期走滑作用控制断层分段变形特征,晚期张扭作用控制着雁列式断层的分布规律.因此,“分期-异向”叠加变形控制了顺北5号断层北段走滑断层的变形过程和形成机制.

       

    • 图  1  塔里木盆地顺北及邻区下古生界断裂体系分布(据邓尚等,2019)

      Fig.  1.  A map showing the distribution of major faults in the Lower Paleozoic in Shunbei area and its surroundings, Tarim basin(according to Deng et al., 2019)

      图  2  顺北5号断层北段不同地层(T74、T70)相干与断层解释平面图

      Fig.  2.  The plane map of correlation and fault interpretation of different strata (T74, T70) in the northern segment of Shunbei No.5 fault

      图  3  顺北5号断层北段不同部位地震剖面发育特征

      Fig.  3.  The characteristics of seismic sections in different segment of the northern segment of Shunbei No.5 fault

      图  4  实验地质模型图

      Fig.  4.  The experimental geological model

      图  5  走滑断层两期异向叠加变形实验模拟结果

      a.第一期位移5 mm变形结果;b.第一期位移18 mm变形结果;c.第二期位移26 mm变形结果;d.第二期位移34 mm变形结果

      Fig.  5.  The simulation results of "two-stage and different direction" superimposed deformation of strike-slip fault

      图  6  砂箱物理模拟结果与实际断层平面组合样式和特征对比

      a.顺北5号断裂带北段T74界面断层平面分段解释;b.第一期断层分段模拟结果红外线扫描

      Fig.  6.  The comparison of the combination patterns and characteristics of the sandbox physical simulation results with the actual fault plane

      图  7  顺北5号断层北段走滑断层模拟实验剖面特征(平面位置见图 5d)

      Fig.  7.  The features of the simulated experiment section of the strike-slip fault in the northern segment of Shunbei No.5 fault (see Fig.5d for plane position)

      图  8  走滑断层纵向分层-分期、平面分段演化模式

      Fig.  8.  The model of vertical stratification-staging and plane segment evolution of strike-slip fault

      图  9  不同走滑断层小断层和裂缝特征的差异性

      Fig.  9.  The differences on the characteristics of small faults and fractures in different strike-slip faults

      图  10  不同走滑断层组合样式下位移与断裂带宽度的关系

      Fig.  10.  The relationship between displacement and width of fault zone under different combination styles of strike-slip fault

      表  1  实验相似性参数

      Table  1.   The experimental similarity parameter

      参数 代码 单位 自然原型 模拟模型 比例因子
      厚度 h m hn≈4 000 hm≈4 cm h*=hm/hn=10-5
      密度 ρ kg/m3 ρn≈2 800 ρm≈1 297 ρ*=ρm/ρn≈0.5
      重力加速度 g m/s2 gn=9.8 gm=9.8 g*=gm/gn=1
      粘聚力 C Pa Cn=5×106 Cm≈30 Pa C*=σ*=5×10-6
      内摩擦角 φ ° 31~38 ≈35 1
      垂向应力 σ Pa σn= σm= σ*=ρ*g*h*=5×10-6
      下载: 导出CSV

      表  2  实验变形位移、应力场与地层厚度等参数

      Table  2.   The experimental parameters such as deformation, displacement, stress field and formation thickness

      序号 变形时期 应力场 变形位移(cm) 实验材料 厚度(cm) 累计厚度(cm)
      1 第二期变形 与基底断层偏转10° 1.5 绿色标志层 忽略不计 2.0
      白色石英砂(100目) 1
      绿色标志层 忽略不计
      白色石英砂(100目) 1
      2 第一期变形 与基底构造平行 2.0 蓝色标志层 忽略不计 1.6
      白色石英砂(60目) 1
      蓝色标志层 忽略不计
      白色石英砂(60目) 0.6
      下载: 导出CSV
    • Aydin, A., Page, B. M., 1984. Diverse Pliocene-Quaternary Tectonics in a Transform Environment, San Francisco Bay Region, California. Geological Society of America Bulletin, 95(11): 1303. https://doi.org/10.1130/0016-7606(1984)951303:dptiat>2.0.co;2 doi: 10.1130/0016-7606(1984)951303:dptiat>2.0.co;2
      Bian, Q., Deng, S., Lin, H. X., et al., 2022. Strike-Slip Salt Tectonics in the Shuntuoguole Low Uplift, Tarim Basin, and the Significance to Petroleum Exploration. Marine and Petroleum Geology, 139: 105600. https://doi.org/10.1016/j.marpetgeo.2022.105600
      Chen, X. P., Li, W., Wu, Z. P., et al., 2008. Structural Characteristics of Combined Extension and Strike-Slip: Insights from Analogue Modeling. Geotectonica et Metallogenia, 43(6): 1106-1116(in Chinese with English abstract).
      Cubas, N., Maillot, B., Barnes, C., 2010. Statistical Analysis of an Experimental Compressional Sand Wedge. Journal of Structural Geology, 32(6): 818-831. https://doi.org/10.1016/j.jsg.2010.05.010
      Deng, S., Li, H. L., Han, J., et al., 2019. Characteristics of the Central Segment of Shunbei 5 Strike-Slip Fault Zone in Tarim Basin and Its Geological Significance. Oil & Gas Geology, 40(5): 990-998, 1073(in Chinese with English abstract).
      Deng, S., Li, H. L., Zhang, Z. P., et al., 2018. Characteristics of Differential Activities in Major Strike-Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Area and Its Surroundings, Tarim Basin. Oil & Gas Geology, 39(5): 878-888(in Chinese with English abstract).
      Deng, S., Li, H. L., Zhang, Z. P., et al., 2019. Structural Characterization of Intracratonic Strike-Slip Faults in the Central Tarim Basin. AAPG Bulletin, 103(1): 109-137. https://doi.org/10.1306/06071817354
      Dooley, T. P., Schreurs, G., 2012. Analogue Modelling of Intraplate Strike-Slip Tectonics: A Review and New Experimental Results. Tectonophysics, 574-575: 1-71. https://doi.org/10.1016/j.tecto.2012.05.030
      Han, J. F., Su, Z., Chen, L. X., et al., 2019. Reservoir-Controlling and Accumulation-Controlling of Strike-Slip Faults and Exploration Potential in the Platform of Tarim Basin. Acta Petrolei Sinica, 40(11): 1296-1310(in Chinese with English abstract). doi: 10.7623/syxb201911002
      He, D. F., Zhou, X. Y., Yang, H. J., et al., 2008. Formation Mechanism and Tectonic Types of Intracratonic Paleo-Uplifts in the Tarim Basin. Earth Science Frontiers, 15(2): 207-221(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2008.02.024
      Hubbert, M. K., 1951. Mechanical Basis for Certain Familiar Geologic Structures. Geological Society of America Bulletin, 62(4): 355-372. https://doi.org/10.1130/0016-7606(1951)62[355:mbfcfg]2.0.co;2
      Jiao, F. Z., 2017. Significance of Oil and Gas Exploration in NE Strike-Slip Fault Belts in Shuntuoguole Area of Tarim Basin. Oil & Gas Geology, 38(5): 831-839(in Chinese with English abstract).
      Jiao, F. Z., 2018. Significance and Prospect of Ultra-Deep Carbonate Fault-Karst Reservoirs in Shunbei Area, Tarim Basin. Oil & Gas Geology, 39(2): 207-216(in Chinese with English abstract).
      Krantz, R. W., 1991. Measurements of Friction Coefficients and Cohesion for Faulting and Fault Reactivation in Laboratory Models Using Sand and Sand Mixtures. Tectonophysics, 188(1-2): 203-207. https://doi.org/10.1016/0040-1951(91)90323-K
      Li, M., Tang, L. J., Li, Z. J., et al., 2016. Fault Characteristics and Their Petroleum Geology Significance: A Case Study of Well Shun-1 on the Northern Slope of the Central Tarim Basin. Petroleum Geology and Experiment, 38(1): 113-121(in Chinese with English abstract).
      Lin, B., Yun, L., Li, H. Y., et al., 2021. Spatial Structure of Shunbei No. 5 Strike-Slip Fault and Its Relationship with Oil and Gas Reservoirs in the Tarim Basin. Oil & Gas Geology, 42(6): 1344-1353, 1400(in Chinese with English abstract).
      Lü, H. T., Zhang, S. N., Ma, Q. Y., et al., 2017. Classification and Formation Mechanism of Fault Systems in the Central and Northern Tarim Basin. Petroleum Geology and Experiment, 39(4): 444-452(in Chinese with English abstract).
      Meng, X. X., Wang, H. B., Yao, Q. Z., et al., 2015. Tectonic Evolution Characteristics of Tabei Uplift and Its Controlling Effect on the Reservoir and Hydrocarbon Accumulation of Ordovician Carbonate. Natural Gas Geoscience, 26(Suppl. 1): 109-120(in Chinese with English abstract).
      Panien, M., Schreurs, G., Pfiffner, A., 2006. Mechanical Behaviour of Granular Materials Used in Analogue Modelling: Insights from Grain Characterisation, Ring-Shear Tests and Analogue Experiments. Journal of Structural Geology, 28(9): 1710-1724. https://doi.org/10.1016/j.jsg.2006.05.004
      Ramberg, H., 1981. The Role of Gravity in Orogenic Belts. Geological Society, London, Special Publications, 9(1): 125-140. https://doi.org/10.1144/gsl.sp.1981.009.01.11
      Schmid, T. C., Schreurs, G., Adam, J., 2022. Characteristics of Continental Rifting in Rotational Systems: New Findings from Spatiotemporal High Resolution Quantified Crustal Scale Analogue Models. Tectonophysics, 822: 229174. https://doi.org/10.1016/j.tecto.2021.229174
      Tong, H. M., Meng, L. J., Cai, D. S., et al., 2009. Fault Formation and Evolution in Rift Basins: Sandbox Modeling and Cognition. Acta Geologica Sinica, 83(6): 759-774(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2009.06.002
      Wang, L., Maestrelli, D., Corti, G., et al., 2021. Normal Fault Reactivation during Multiphase Extension: Analogue Models and Application to the Turkana Depression, East Africa. Tectonophysics, 811: 228870. https://doi.org/10.1016/j.tecto.2021.228870
      Wang, Z., Tang, D. Q., Kang, Z. J., et al. 2022. Development Characteristics and Its Role in Controlling Oil and Gas Accumulation of the Mid-North Part of Shunbei No. 5 Strike-Slip Fault Zone in Tarim Basin. Earth Science(in Press) (in Chinese with English abstract).
      Wigner, E. P., 1960. The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Communications on Pure and Applied Mathematics, 13(1): 1-14. https://doi.org/10.1002/cpa.3160130102
      Wu, G. H., Ma, B. S., Han, J. F., et al., 2021. Origin and Growth Mechanisms of Strike-Slip Faults in the Central Tarim Cratonic Basin, NW China. Petroleum Exploration and Development, 48(3): 510-520(in Chinese with English abstract).
      Wu, J. E., McClay, K., Whitehouse, P., et al., 2009.4D Analogue Modelling of Transtensional Pull-Apart Basins. Marine and Petroleum Geology, 26(8): 1608-1623. https://doi.org/10.1016/j.marpetgeo.2008.06.007
      Xiao, Y., Wu, G. H., Lei, Y. L., et al., 2017. Analogue Modeling of Through-Going Process and Development Pattern of Strike-Slip Fault Zone. Petroleum Exploration and Development, 44(3): 340-348(in Chinese with English abstract).
      Yang, H. F., Lü, D. Y., Sun, Y. H., et al., 2021. The Fault System and Its Tectonophysics Simulation in the Eastern Huanghekou Sag in Bohai Bay Basin. Earth Science, 46(7): 2391-2402(in Chinese with English abstract).
      Yun, L., Deng, S., 2022. Structural Styles of Deep Strike-Slip Faults in Tarim Basin and the Characteristics of Their Control on Reservoir Formation and Hydrocarbon Accumulation: A Case Study of Shunbei Oil and Gas Field. Acta Petrolei Sinica, 43(6): 770-787(in Chinese with English abstract).
      Zhou, B. W., Chen, H. H., Yun, L., et al., 2022. The Relationship between Fault Displacement and Damage Zone Width of the Paleozoic Strike-Slip Faults in Shunbei Area, Tarim Basin. Earth Science, 47(2): 437-451(in Chinese with English abstract).
      Zwaan, F., Chenin, P., Erratt, D., et al., 2022. Competition between 3D Structural Inheritance and Kinematics during Rifting: Insights from Analogue Models. Basin Research, 34(2): 824-854. https://doi.org/10.1111/bre.12642
      陈兴鹏, 李伟, 吴智平, 等, 2019. 伸展-走滑"复合作用下构造变形的物理模拟. 大地构造与成矿学, 43(6): 1106-1116. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201906003.htm
      邓尚, 李慧莉, 韩俊, 等, 2019. 塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义. 石油与天然气地质, 40(5): 990-998, 1073. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905004.htm
      邓尚, 李慧莉, 张仲培, 等, 2018. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系. 石油与天然气地质, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm
      韩剑发, 苏洲, 陈利新, 等, 2019. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力. 石油学报, 40(11): 1296-1310. doi: 10.7623/syxb201911002
      何登发, 周新源, 杨海军, 等, 2008. 塔里木盆地克拉通内古隆起的成因机制与构造类型. 地学前缘, 15(2): 207-221. doi: 10.3321/j.issn:1005-2321.2008.02.024
      焦方正, 2017. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义. 石油与天然气地质, 38(5): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705001.htm
      焦方正, 2018. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景. 石油与天然气地质, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm
      李萌, 汤良杰, 李宗杰, 等, 2016. 走滑断裂特征对油气勘探方向的选择: 以塔中北坡顺1井区为例. 石油实验地质, 38(1): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201601017.htm
      林波, 云露, 李海英, 等, 2021. 塔里木盆地顺北5号走滑断层空间结构及其油气关系. 石油与天然气地质, 42(6): 1344-1353, 1400. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106009.htm
      吕海涛, 张哨楠, 马庆佑, 2017. 塔里木盆地中北部断裂体系划分及形成机制探讨. 石油实验地质, 39(4): 444-452. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201704003.htm
      孟祥霞, 王宏斌, 姚清洲, 等, 2015. 塔北隆起构造演化特征及对奥陶系碳酸盐岩的控储控藏作用. 天然气地球科学, 26(增刊1): 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX2015S1014.htm
      童亨茂, 孟令箭, 蔡东升, 等, 2009. 裂陷盆地断层的形成和演化: 目标砂箱模拟实验与认识. 地质学报, 83(6): 759-774. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200906003.htm
      王珍, 唐大卿, 康志江, 等, 2022. 塔里木盆地顺北5号走滑断裂带中北段发育特征及控藏作用. 地球科学(待刊).
      邬光辉, 马兵山, 韩剑发, 等, 2021. 塔里木克拉通盆地中部走滑断裂形成与发育机制. 石油勘探与开发, 48(3): 510-520. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103008.htm
      肖阳, 邬光辉, 雷永良, 等, 2017. 走滑断裂带贯穿过程与发育模式的物理模拟. 石油勘探与开发, 44(3): 340-348. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201703004.htm
      杨海风, 吕丁友, 孙永河, 等, 2021. 渤海湾盆地黄河口凹陷东洼断裂体系发育特征及其变形过程的构造物理模拟. 地球科学, 46(7): 2391-2402. doi: 10.3799/dqkx.2020.189
      云露, 邓尚, 2022. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例. 石油学报, 43(6): 770-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206003.htm
      周铂文, 陈红汉, 云露, 等, 2022. 塔里木盆地顺北地区下古生界走滑断裂带断距分段差异与断层宽度关系. 地球科学, 47(2): 437-451. doi: 10.3799/dqkx.2021.073
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  769
    • HTML全文浏览量:  540
    • PDF下载量:  203
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-09-20
    • 刊出日期:  2023-06-25

    目录

      /

      返回文章
      返回