Sandbox Physical Simulation on "Different Period-Different Direction" Deformation Process of Strike-Slip Faults: A Case Study of Northern Segment of Shunbei No. 5 Fault in Tarim Basin
-
摘要: 塔里木盆地顺北5号走滑断裂是顺北及邻区一条克拉通内小尺度走滑断裂带,整体分为3段:北段、中段和南段.选取顺北5号断层北段为研究对象,结合断层几何学和运动学解析,应用构造物理模拟实验,明确了走滑断层的变形特征与形成机制.结果表明:顺北5号断层北段主体表现为多段式特征,发育平直型、压隆型和拉分型3种类型构造样式.北段主要活动时期为加里东中期Ⅲ幕与加里东晚期,表现为两期异向叠加变形作用,早期(T74界面)表现为多种组合样式分段生长特征,晚期(T70界面)表现为雁列式正断层分布特征.基于顺北5号断层北段砂箱物理模拟证实,早期走滑作用控制断层分段变形特征,晚期张扭作用控制着雁列式断层的分布规律.因此,“分期-异向”叠加变形控制了顺北5号断层北段走滑断层的变形过程和形成机制.Abstract: Shunbei No. 5 strike-slip fault is a small-scale strike-slip fault zone in Shunbei and its surroundings of Tarim basin, which can be divided into three section: north, middle and south. In this paper, the northern segment of Shunbei No. 5 fault is selected as the research object, and the deformation characteristics and formation mechanism of the strike-slip fault are clarified by using the structural physical simulation experiment. The results show that the main features of the northern segment of Shunbei No. 5 fault are multi-segment, and three types of structural styles are developed, i.e., translational strike-slip type, compression-uplift type and pull-apart type. The main active period of the north segment is the Middle Caledonian stage Ⅲ and the Late Caledonian stage, which is characterized by two stages of metasomatic superimposed deformation, and the early stage (T74 interface) is characterized by the segment growth of various combinations, the late stage (T70 interface) shows the distribution characteristics of echelon normal faults. Based on the sandbox physical simulation of the north segment of Shunbei No. 5 fault, it is confirmed that the early strike-slip action controls the deformation characteristics of the fault segments, and the late transtensional action controls the distribution law of the echelon-type fault. Therefore, the "different period-different direction" superimposed deformation controls the deformation process and formation mechanism of strike-slip fault in the northern segment of Shunbei No. 5 fault.
-
图 1 塔里木盆地顺北及邻区下古生界断裂体系分布(据邓尚等,2019)
Fig. 1. A map showing the distribution of major faults in the Lower Paleozoic in Shunbei area and its surroundings, Tarim basin(according to Deng et al., 2019)
表 1 实验相似性参数
Table 1. The experimental similarity parameter
参数 代码 单位 自然原型 模拟模型 比例因子 厚度 h m hn≈4 000 hm≈4 cm h*=hm/hn=10-5 密度 ρ kg/m3 ρn≈2 800 ρm≈1 297 ρ*=ρm/ρn≈0.5 重力加速度 g m/s2 gn=9.8 gm=9.8 g*=gm/gn=1 粘聚力 C Pa Cn=5×106 Cm≈30 Pa C*=σ*=5×10-6 内摩擦角 φ ° 31~38 ≈35 1 垂向应力 σ Pa σn= σm= σ*=ρ*g*h*=5×10-6 表 2 实验变形位移、应力场与地层厚度等参数
Table 2. The experimental parameters such as deformation, displacement, stress field and formation thickness
序号 变形时期 应力场 变形位移(cm) 实验材料 厚度(cm) 累计厚度(cm) 1 第二期变形 与基底断层偏转10° 1.5 绿色标志层 忽略不计 2.0 白色石英砂(100目) 1 绿色标志层 忽略不计 白色石英砂(100目) 1 2 第一期变形 与基底构造平行 2.0 蓝色标志层 忽略不计 1.6 白色石英砂(60目) 1 蓝色标志层 忽略不计 白色石英砂(60目) 0.6 -
Aydin, A., Page, B. M., 1984. Diverse Pliocene-Quaternary Tectonics in a Transform Environment, San Francisco Bay Region, California. Geological Society of America Bulletin, 95(11): 1303. https://doi.org/10.1130/0016-7606(1984)951303:dptiat>2.0.co;2 doi: 10.1130/0016-7606(1984)951303:dptiat>2.0.co;2 Bian, Q., Deng, S., Lin, H. X., et al., 2022. Strike-Slip Salt Tectonics in the Shuntuoguole Low Uplift, Tarim Basin, and the Significance to Petroleum Exploration. Marine and Petroleum Geology, 139: 105600. https://doi.org/10.1016/j.marpetgeo.2022.105600 Chen, X. P., Li, W., Wu, Z. P., et al., 2008. Structural Characteristics of Combined Extension and Strike-Slip: Insights from Analogue Modeling. Geotectonica et Metallogenia, 43(6): 1106-1116(in Chinese with English abstract). Cubas, N., Maillot, B., Barnes, C., 2010. Statistical Analysis of an Experimental Compressional Sand Wedge. Journal of Structural Geology, 32(6): 818-831. https://doi.org/10.1016/j.jsg.2010.05.010 Deng, S., Li, H. L., Han, J., et al., 2019. Characteristics of the Central Segment of Shunbei 5 Strike-Slip Fault Zone in Tarim Basin and Its Geological Significance. Oil & Gas Geology, 40(5): 990-998, 1073(in Chinese with English abstract). Deng, S., Li, H. L., Zhang, Z. P., et al., 2018. Characteristics of Differential Activities in Major Strike-Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Area and Its Surroundings, Tarim Basin. Oil & Gas Geology, 39(5): 878-888(in Chinese with English abstract). Deng, S., Li, H. L., Zhang, Z. P., et al., 2019. Structural Characterization of Intracratonic Strike-Slip Faults in the Central Tarim Basin. AAPG Bulletin, 103(1): 109-137. https://doi.org/10.1306/06071817354 Dooley, T. P., Schreurs, G., 2012. Analogue Modelling of Intraplate Strike-Slip Tectonics: A Review and New Experimental Results. Tectonophysics, 574-575: 1-71. https://doi.org/10.1016/j.tecto.2012.05.030 Han, J. F., Su, Z., Chen, L. X., et al., 2019. Reservoir-Controlling and Accumulation-Controlling of Strike-Slip Faults and Exploration Potential in the Platform of Tarim Basin. Acta Petrolei Sinica, 40(11): 1296-1310(in Chinese with English abstract). doi: 10.7623/syxb201911002 He, D. F., Zhou, X. Y., Yang, H. J., et al., 2008. Formation Mechanism and Tectonic Types of Intracratonic Paleo-Uplifts in the Tarim Basin. Earth Science Frontiers, 15(2): 207-221(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2008.02.024 Hubbert, M. K., 1951. Mechanical Basis for Certain Familiar Geologic Structures. Geological Society of America Bulletin, 62(4): 355-372. https://doi.org/10.1130/0016-7606(1951)62[355:mbfcfg]2.0.co;2 Jiao, F. Z., 2017. Significance of Oil and Gas Exploration in NE Strike-Slip Fault Belts in Shuntuoguole Area of Tarim Basin. Oil & Gas Geology, 38(5): 831-839(in Chinese with English abstract). Jiao, F. Z., 2018. Significance and Prospect of Ultra-Deep Carbonate Fault-Karst Reservoirs in Shunbei Area, Tarim Basin. Oil & Gas Geology, 39(2): 207-216(in Chinese with English abstract). Krantz, R. W., 1991. Measurements of Friction Coefficients and Cohesion for Faulting and Fault Reactivation in Laboratory Models Using Sand and Sand Mixtures. Tectonophysics, 188(1-2): 203-207. https://doi.org/10.1016/0040-1951(91)90323-K Li, M., Tang, L. J., Li, Z. J., et al., 2016. Fault Characteristics and Their Petroleum Geology Significance: A Case Study of Well Shun-1 on the Northern Slope of the Central Tarim Basin. Petroleum Geology and Experiment, 38(1): 113-121(in Chinese with English abstract). Lin, B., Yun, L., Li, H. Y., et al., 2021. Spatial Structure of Shunbei No. 5 Strike-Slip Fault and Its Relationship with Oil and Gas Reservoirs in the Tarim Basin. Oil & Gas Geology, 42(6): 1344-1353, 1400(in Chinese with English abstract). Lü, H. T., Zhang, S. N., Ma, Q. Y., et al., 2017. Classification and Formation Mechanism of Fault Systems in the Central and Northern Tarim Basin. Petroleum Geology and Experiment, 39(4): 444-452(in Chinese with English abstract). Meng, X. X., Wang, H. B., Yao, Q. Z., et al., 2015. Tectonic Evolution Characteristics of Tabei Uplift and Its Controlling Effect on the Reservoir and Hydrocarbon Accumulation of Ordovician Carbonate. Natural Gas Geoscience, 26(Suppl. 1): 109-120(in Chinese with English abstract). Panien, M., Schreurs, G., Pfiffner, A., 2006. Mechanical Behaviour of Granular Materials Used in Analogue Modelling: Insights from Grain Characterisation, Ring-Shear Tests and Analogue Experiments. Journal of Structural Geology, 28(9): 1710-1724. https://doi.org/10.1016/j.jsg.2006.05.004 Ramberg, H., 1981. The Role of Gravity in Orogenic Belts. Geological Society, London, Special Publications, 9(1): 125-140. https://doi.org/10.1144/gsl.sp.1981.009.01.11 Schmid, T. C., Schreurs, G., Adam, J., 2022. Characteristics of Continental Rifting in Rotational Systems: New Findings from Spatiotemporal High Resolution Quantified Crustal Scale Analogue Models. Tectonophysics, 822: 229174. https://doi.org/10.1016/j.tecto.2021.229174 Tong, H. M., Meng, L. J., Cai, D. S., et al., 2009. Fault Formation and Evolution in Rift Basins: Sandbox Modeling and Cognition. Acta Geologica Sinica, 83(6): 759-774(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2009.06.002 Wang, L., Maestrelli, D., Corti, G., et al., 2021. Normal Fault Reactivation during Multiphase Extension: Analogue Models and Application to the Turkana Depression, East Africa. Tectonophysics, 811: 228870. https://doi.org/10.1016/j.tecto.2021.228870 Wang, Z., Tang, D. Q., Kang, Z. J., et al. 2022. Development Characteristics and Its Role in Controlling Oil and Gas Accumulation of the Mid-North Part of Shunbei No. 5 Strike-Slip Fault Zone in Tarim Basin. Earth Science(in Press) (in Chinese with English abstract). Wigner, E. P., 1960. The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Communications on Pure and Applied Mathematics, 13(1): 1-14. https://doi.org/10.1002/cpa.3160130102 Wu, G. H., Ma, B. S., Han, J. F., et al., 2021. Origin and Growth Mechanisms of Strike-Slip Faults in the Central Tarim Cratonic Basin, NW China. Petroleum Exploration and Development, 48(3): 510-520(in Chinese with English abstract). Wu, J. E., McClay, K., Whitehouse, P., et al., 2009.4D Analogue Modelling of Transtensional Pull-Apart Basins. Marine and Petroleum Geology, 26(8): 1608-1623. https://doi.org/10.1016/j.marpetgeo.2008.06.007 Xiao, Y., Wu, G. H., Lei, Y. L., et al., 2017. Analogue Modeling of Through-Going Process and Development Pattern of Strike-Slip Fault Zone. Petroleum Exploration and Development, 44(3): 340-348(in Chinese with English abstract). Yang, H. F., Lü, D. Y., Sun, Y. H., et al., 2021. The Fault System and Its Tectonophysics Simulation in the Eastern Huanghekou Sag in Bohai Bay Basin. Earth Science, 46(7): 2391-2402(in Chinese with English abstract). Yun, L., Deng, S., 2022. Structural Styles of Deep Strike-Slip Faults in Tarim Basin and the Characteristics of Their Control on Reservoir Formation and Hydrocarbon Accumulation: A Case Study of Shunbei Oil and Gas Field. Acta Petrolei Sinica, 43(6): 770-787(in Chinese with English abstract). Zhou, B. W., Chen, H. H., Yun, L., et al., 2022. The Relationship between Fault Displacement and Damage Zone Width of the Paleozoic Strike-Slip Faults in Shunbei Area, Tarim Basin. Earth Science, 47(2): 437-451(in Chinese with English abstract). Zwaan, F., Chenin, P., Erratt, D., et al., 2022. Competition between 3D Structural Inheritance and Kinematics during Rifting: Insights from Analogue Models. Basin Research, 34(2): 824-854. https://doi.org/10.1111/bre.12642 陈兴鹏, 李伟, 吴智平, 等, 2019. 伸展-走滑"复合作用下构造变形的物理模拟. 大地构造与成矿学, 43(6): 1106-1116. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201906003.htm 邓尚, 李慧莉, 韩俊, 等, 2019. 塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义. 石油与天然气地质, 40(5): 990-998, 1073. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905004.htm 邓尚, 李慧莉, 张仲培, 等, 2018. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系. 石油与天然气地质, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm 韩剑发, 苏洲, 陈利新, 等, 2019. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力. 石油学报, 40(11): 1296-1310. doi: 10.7623/syxb201911002 何登发, 周新源, 杨海军, 等, 2008. 塔里木盆地克拉通内古隆起的成因机制与构造类型. 地学前缘, 15(2): 207-221. doi: 10.3321/j.issn:1005-2321.2008.02.024 焦方正, 2017. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义. 石油与天然气地质, 38(5): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705001.htm 焦方正, 2018. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景. 石油与天然气地质, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm 李萌, 汤良杰, 李宗杰, 等, 2016. 走滑断裂特征对油气勘探方向的选择: 以塔中北坡顺1井区为例. 石油实验地质, 38(1): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201601017.htm 林波, 云露, 李海英, 等, 2021. 塔里木盆地顺北5号走滑断层空间结构及其油气关系. 石油与天然气地质, 42(6): 1344-1353, 1400. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106009.htm 吕海涛, 张哨楠, 马庆佑, 2017. 塔里木盆地中北部断裂体系划分及形成机制探讨. 石油实验地质, 39(4): 444-452. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201704003.htm 孟祥霞, 王宏斌, 姚清洲, 等, 2015. 塔北隆起构造演化特征及对奥陶系碳酸盐岩的控储控藏作用. 天然气地球科学, 26(增刊1): 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX2015S1014.htm 童亨茂, 孟令箭, 蔡东升, 等, 2009. 裂陷盆地断层的形成和演化: 目标砂箱模拟实验与认识. 地质学报, 83(6): 759-774. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200906003.htm 王珍, 唐大卿, 康志江, 等, 2022. 塔里木盆地顺北5号走滑断裂带中北段发育特征及控藏作用. 地球科学(待刊). 邬光辉, 马兵山, 韩剑发, 等, 2021. 塔里木克拉通盆地中部走滑断裂形成与发育机制. 石油勘探与开发, 48(3): 510-520. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103008.htm 肖阳, 邬光辉, 雷永良, 等, 2017. 走滑断裂带贯穿过程与发育模式的物理模拟. 石油勘探与开发, 44(3): 340-348. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201703004.htm 杨海风, 吕丁友, 孙永河, 等, 2021. 渤海湾盆地黄河口凹陷东洼断裂体系发育特征及其变形过程的构造物理模拟. 地球科学, 46(7): 2391-2402. doi: 10.3799/dqkx.2020.189 云露, 邓尚, 2022. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例. 石油学报, 43(6): 770-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206003.htm 周铂文, 陈红汉, 云露, 等, 2022. 塔里木盆地顺北地区下古生界走滑断裂带断距分段差异与断层宽度关系. 地球科学, 47(2): 437-451. doi: 10.3799/dqkx.2021.073 -