Characteristics of Middle-Deep Faults in the Southern Segment of the Eastern Belt of Yinggehai Basin and Their Controlling Effect on Natural Gas Accumulation
-
摘要: 为了明确莺东斜坡带南段中深层断裂特征及其对天然气成藏控制作用,基于新三维地震资料,首次对莺东斜坡带南段中深层断裂进行了精细刻画. 结合区域构造演化特征,分析了断裂类型、形态及活动性,探讨断裂对天然气成藏的控制作用. 结果表明,渐新世-早中新世莺歌海盆地处于左行走滑引起的构造变形应力场中,莺东斜坡带南段位于①号断裂走滑转换带,发育3组NW-SE走向,具左行右阶特征的张扭(局部压扭)走滑断裂. 剖面上三组断裂自北向南呈断阶状样式,断层产状陡直,局部表现为花状构造;断裂主要为3期活动:(1)始新世-早渐新世,(2)晚渐新世早中期,(3)早中新世;具有“早断早衰”的特征. 莺东斜坡带南段中深层断裂多期活动控制了崖城组陆源三角洲及烃源的发育,“二台阶”聚气背景的形成、三亚组砂体空间展布和圈闭的形成. 莺东斜坡带南段天然气生、运、聚匹配良好,有望成为莺歌海盆地下一个千亿方级的天然气聚集区.Abstract: The purpose of this paper lies in clarifying the characteristics of faults in middle-deep layers in the southern segment of the eastern belt of Yinggehai Basin and their controlling effect on natural gas accumulation. Based on the new 3D seismic data, the faults in middle-deep layers in the southern segment of the eastern belt of Yinggehai Basin are described precisely for the first time. Combined with the characteristics of regional tectonic evolution, the types, shapes and activities of the faults are analyzed, and the controlling effect of the faults on natural gas accumulation is discussed. The results show that the Eocene-Early Miocene Yinggehai Basin is in the tectonic deformation stress field caused by left strike-slip. Located in the strike-slip transition zone of the No. 1 fault, the southern segment of the eastern belt of Yinggehai Basin develops three groups of tension-torsion (partialcompression-torsion) strike-slip faults. On the plane, the faults are NW-SE trending, with a left-lateral and right-step distribution. On the section, three groups of the faults are steep in occurrence, and present fault-step-like style and flower-like structures locally. The faults are mainly active in three phases: (1)Eocene-Early Oligocene, (2)Early and Mid-Late Oligocene, (3)Early Miocene, characterized by "early faults early senescence". The multi-stage activities of the faults in middle-deep layers control the development of land source deltas and hydrocarbon sources in the Yacheng Formation, the formulation of the "second step" gas accumulation background, the spatial distribution of sandstone in the Sanya Formation and the formation of traps. With a good match of production, migration and accumulation, the middle-deep layer in the southern section of the eastern belt of Yinggehai Basin is expected to become a natural gas accumulation area of 100 billion cubic meters in the Yinggehai Basin.
-
图 4 莺东斜坡带南段T70、T60、T52界面断裂平面展布特征与断裂活动性叠合图
a. T70界面断裂平面展布特征与始新统-崖城组断裂活动性叠合图;b. T60界面断裂平面展布特征与三亚组二段断裂活动性叠合图;c. T52界面断裂平面展布特征与三亚组一段断裂活动性叠合图
Fig. 4. Superimposed map of T70, T60, T52 fault plane distribution characteristics and fault activity in the southern segment of the eastern belt of the Yinggehai Basin
-
[1] Deng, Y., Pan, G. C., Li, H., 2020. Analysis on Genesis and Imaging Countermeasures on the Diapir Fuzzy Area in Yinggehai Basin. China Offshore Oil and Gas, 32(3): 59-68(in Chinese with English abstract). [2] Ding, Z. Y., Yang, X. M., Ma, L., 1999. A Study of the Stretching Behavior of the Yinggehai Basin. Chinese Journal of Geophysics, 42(1): 53-61(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.1999.01.006 [3] Fan, C. W., 2018. Tectonic Deformation Features and Petroleum Geological Significance in Yinggehai Large Strike-Slip Basin, South China Sea. Petroleum Exploration and Development, 45(2): 204-214(in Chinese with English abstract). doi: 10.1016/S1876-3804(18)30024-7 [4] Fan, C. W., Cao, J. J., Luo, J. L., et al., 2021. Heterogeneity and Influencing Factors of Marine Gravity Flow Tight Sandstone under Abnormally High Pressure: a Case Study from the Miocene Huangliu Formation Reservoirs in LD10 Area, Yinggehai Basin, South China Sea. Petroleum Exploration and Development, 48(5): 903-915, 949(in Chinese with English abstract). [5] Gibbs, A. D., 1989. Structural Styles in Basin Formation. In: Tankard, A. J., Balkwill, H. R., eds., Extensional Tectonics and Stratigraphy of the North Atlantic margins. AAPG Memoir, 46: 81-93. [6] Guo, X. X., Xu X. D., Xiong X. F., 2017. Gas Accumulation Characteristics and Favorable Exploration Directions in Mid-Deep Strata of the Yinggehai Basin. Natural Gas Geoscience, 28(12): 1864-1872(in Chinese with English abstract). [7] Huang, Y. T., Wen, L., Yao, G. Q., 2018. Sedimentary Characteristics of Thick Fine-Grained Shallow-Marine Gravity Flow Deposits from Huangliu Formation in Dongfang Area, Yinggehai Basin, China. Acta Petrolei Sinica, 39(3): 290-303(in Chinese with English abstract). [8] Hao, F., Li, S. T., Gong, Z. S., 2001. Mechanisms of Bottom Incision Development and Fluid Curtain Filling in the Yinggehai Basin. Science in China (Series D), (6): 471-476(in Chinese with English abstract). [9] He, J. X., Xia, B., Zhang, S. L., et al., 2006. Origin and Distribution of Mud Diapirs in the Yinggehai Basin and Their Relation to the Migration and Accumulation of Natural Gas. Geology in China, 33(6): 1336-1344(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.06.017 [10] He, J. X., Li, M. X., Chen, W. H., 2000. Geotemperature Field and Up-Welling Action of Hot Flow Body and Its Relationship with Natural Gas Migration and Accumulation in Yinggehai Basin. Natural Gas Geoscience, 11(6): 29-43, 6(in Chinese with English abstract). [11] Lai, D., He, Y., Fan, C. W., 2019. Structural Characteristics of Diapir Structure under Distributed Strike-Slip: a Case Study on Yinggehai Basin. Journal of Mineralogy and Petrology, 39(2): 70-80(in Chinese with English abstract). [12] Liu, B. J., Pang, X., Xie, S. W., et al., 2022. Control Effect of Crust-Mantle Detachment Fault Activity on Deep Large Delta Sedimentary System in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 47(7): 2354-2373(in Chinese with English abstract). [13] Mazur, S., Green, C., Stewart, M. G., et al., 2012. Displacement along the Red River Fault Constrained by Extension Estimates and Plate Reconstructions. Tectonics, 31(5): TC5008. https://doi.org/10.1029/2012tc003174 [14] Morley, C. K., Haranya, C., Phoosongsee, W., et al., 2004. Activation of Rift Oblique and Rift Parallel Pre-Existing Fabrics during Extension and Their Effect on Deformation Style: Examples from the Rifts of Thailand. Journal of Structural Geology, 26(10): 1803-1829. https://doi.org/10.1016/j.jsg.2004.02.014 [15] Pei, J. X., Yu, J. F., Wang, L. F., 2011. Key Challenges and Strategies for the Success of Natural Gas Exploration in Mid-Deep Strata of the Yinggehai Basin. Acta Petrolei Sinica, 32(4): 573-579(in Chinese with English abstract). [16] Qi, J. F., Xia Y. P., Yang, Q., 2004. Analysis of the Oil Zone Structure. Petroleum Industry Press, Beijing, 25-59(in Chinese with English abstract). [17] Song, W. Y., 2012. Characteristics and Dynamic Evolution of Inverted Structure in Yinggehai Basin. Marine Geology & Quaternary Geology, 32(2): 77-83(in Chinese with English abstract). [18] Sun, J. Z., Yang, S. G., 1995. Evolution of Transform-Extension Yinggehai Basin. Earth Science, 20(3): 243-249(in Chinese with English abstract). [19] Sun, Z., Zhong, Z. H., Zhou, D., 2007. The Analysis and Analogue Modeling of the Tectonic Evolution and Strong Subsidence in the Yinggehai Basin. Earth Science, 32(3): 347-356(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2007.03.007 [20] Sun, Z., Zhou D., Zhong, Z., et al., 2003. Experimental Evidence for the Dynamics of the Formation of the Yinggehai basin, NW South China Sea. Tectonophysics, 372(1): 41-58(in Chinese with English abstract). [21] Tapponnier, P., Peltzer, G., Armijo, R., et al., 1986. On the Mechanics of the Collision between India and Asia. Geological Society of London Special Publications, 19(1), 113-157(in Chinese with English abstract). doi: 10.1144/GSL.SP.1986.019.01.07 [22] Tong, C. X., Wang, Z. F., Li, X. S., 2012. Pooling Conditions of Gas Reservoirs in the Dongfang 1-1 Gas Field, Y inggehai Basin. Natural Gas Industry, 32(8): 11-15(in Chinese with English abstract). [23] Tong, H. M., Koyi, H., Huang, S., et al., 2014. The Effect of Multiple Pre-Existing Weaknesses on Formation and Evolution of Faults in Extended Sandbox Models. Tectonophysics, 626: 197-212. https://doi.org/10.1016/j.tecto.2014.04.046 [24] Tong, H. M., Nie, J. Y., Meng, L. J., et al., 2009. The Law of Basement Pre-Existing Fabric Controlling Fault Formation and Evolution in Rift Basin. Earth Science Frontiers, 16(4): 97-104(in Chinese with English abstract). [25] Wang, J., Luan, X. W., He, B. S., et al., 2021. Characteristics and Genesis of Faults in Southwestern Pearl River Mouth Basin, Northern South China Sea. Earth Science, 46(3): 916-928(in Chinese with English abstract). [26] Wu, X. D., Liao, J., Sun, W. Z., et al., 2021. Natural Gas Distribution and Reservoir-Forming Law of the Yinggehai Basin, China. Journal of Geomechanics, 27(6): 963-974(in Chinese with English abstract). [27] Xie, Y. H., Zhang, Y. Z., Li, X. S., et al., 2012. Main Controlling Factors and Formation Models of Natural Gas Reservoirs with High Temperature and Overpressure in Yinggehai Basin. Acta Petrolei Sinica, 33(4): 601-609(in Chinese with English abstract). [28] Xie, Y. H., Li, X. S., Tong, C. X., et al., 2015. High Temperature and High Pressure Gas Enrichment Condition, Distribution Law and Accumulation Model in Central Diapir zone of Yinggehai Basin. China Offshore Oil and Gas, 27(4): 1-12(in Chinese with English abstract). [29] Xu, X. D., Zhang, Y. Z., Pei, J. X., et al., 2015. Control Effect of Tectonic Evolution on Gas Accumulation Differencein the Yinggehai Basin. Natural Gas Industry, 35(2): 12-20(in Chinese with English abstract). [30] Yang, J. H., Huang, B. J., Chen D. Y., 2018. Accumulation Condition and Exploration Potential of Low Porosity and Ultra-Low Permeability Sandstone Gas Reservoirs on the Depression Slope Belt of Yinggehai Basin. China Offshore Oil and Gas, 30(1): 11-21(in Chinese with English abstract). [31] Yang, D. H., Tong, H. M., Fan, C. W., et al., 2019. Determination of the Tectonic Transformation Surface in Yinggehai Basin and Its Geological Significance. Geotectonica et Metallogenia, 43(3): 590-602(in Chinese with English abstract). [32] You, L, Fan, C. W., Wu, S. J., et al., 2021. Genesisof Carbonate Cement and its Relationship with Fluid Activity in the Ledong Area, Yinggehai basin. Acta Geologica Sinica, 95(2): 578-587(in Chinese with English abstract). [33] Zhang, Q. L., Zhang, X. T., Li, H. B., 2022. Large Submarine Fan System Controlled by Narrow Continental Shelf-Faulted Continental Slope in Northern South China Sea. Earth Science, 47(7): 2421-2432(in Chinese with English abstract). [34] Zhang, M. Q., 1999. Formation of the Shallow Gas Fields in the Mud Diapir Structure Belt in Yinggehai Basin and their Exploration and Development Potential. Natural Gas Industry, 19(1): 25-27(in Chinese with English abstract). [35] Zhu, M. Z., Graham, S., McHargue, T., 2009. The Red River Fault Zone in the Yinggehai Basin, South China Sea. Tectonophysics, 476(3/4): 397-417. https://doi.org/10.1016/j.tecto.2009.06.015 [36] 邓勇, 潘光超, 李辉, 等, 2020. 莺歌海盆地底辟模糊区成因分析及成像对策. 中国海上油气, 32(3): 10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202003007.htm [37] 丁中一, 杨小毛, 马莉, 等, 1999. 莺歌海盆地拉张性质的研究. 地球物理学报, 42(1): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX901.005.htm [38] 范彩伟, 2018. 莺歌海大型走滑盆地构造变形特征及其地质意义. 石油勘探与开发, 45(2): 10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201802002.htm [39] 范彩伟, 曹江骏, 罗静兰, 等, 2021. 异常高压下海相重力流致密砂岩非均质性特征及其影响因素—以莺歌海盆地LD10区中新统黄流组储集层为例. 石油勘探与开发, 48(5): 903-915+949. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202105004.htm [40] 郭潇潇, 徐新德, 熊小峰, 等, 2017. 莺歌海盆地中深层天然气成藏特征与有利勘探领域. 天然气地球科学, 28(12): 9. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201712010.htm [41] 黄银涛, 文力, 姚光庆, 等, 2018. 莺歌海盆地东方区黄流组细粒厚层重力流砂体沉积特征. 石油学报, 39(3): 290-303. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201803004.htm [42] 郝芳, 李思田, 龚再升, 等, 2001. 莺歌海盆地底辟发育机理与流体幕式充注. 中国科学: D辑, 31(6): 6. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200106004.htm [43] 何家雄, 夏斌, 张树林, 等, 2006. 莺歌海盆地泥底辟成因, 展布特征及其与天然气运聚成藏关系. 中国地质, 33(6): 1336-1344. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200606018.htm [44] 何家雄, 李明兴, 2000. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨. 天然气地球科学, 11(6): 15. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200006005.htm [45] 赖冬, 何宇, 范彩伟, 等, 2019. 弥散性走滑条件下底辟构造特征研究: 以莺歌海盆地为例. 矿物岩石, 39(2): 11. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201902008.htm [46] 柳保军, 庞雄, 谢世文, 等, 2022. 珠江口盆地白云凹陷壳幔拆离断裂活动对深层大型三角洲沉积体系的控制作用. 地球科学, 47(7): 2354-2373. doi: 10.3799/dqkx.2022.035 [47] 裴健翔, 于俊峰, 王立锋, 等, 2011. 莺歌海盆地中深层天然气勘探的关键问题及对策. 石油学报, 32(4): 573-579. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201104004.htm [48] 漆家福, 夏义平, 杨桥, 2004. 油区构造解析. 北京: 石油工业出版社, 25-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200103017.htm [49] 宋维宇, 2012. 莺歌海盆地反转构造变形特征及其动力学演化. 海洋地质与第四纪地质, 32(2): 7. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201202010.htm [50] 孙家振, 杨士恭, 1995. 转换-伸展盆地-莺歌海的演化. 地球科学, 20(3): 7. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX503.001.htm [51] 孙珍, 钟志洪, 周蒂, 2007. 莺歌海盆地构造演化与强烈沉降机制的分析和模拟. 地球科学, 32(3): 10. http://www.earth-science.net/article/id/3460 [52] 童传新, 王振峰, 李绪深, 2012. 莺歌海盆地东方1-1气田成藏条件及其启示. 天然气工业, 32(8): 6. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201208004.htm [53] 童亨茂, 聂金英, 孟令箭, 等, 2009. 基底先存构造对裂陷盆地断层形成和演化的控制作用规律. 地学前缘, 16(4): 99-106 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200904012.htm [54] 王嘉, 栾锡武, 何兵寿, 等, 2021. 南海北部珠江口盆地西南段断裂特征与成因讨论. 地球科学, 46(3): 916-928. doi: 10.3799/dqkx.2020.381 [55] 吴迅达, 廖晋, 孙文钊, 等, 2021. 莺歌海盆地天然气运聚成藏条件与分布富集规律. 地质力学学报, 27(6): 963-974. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202106006.htm [56] 谢玉洪, 张迎朝, 李绪深, 等, 2012. 莺歌海盆地高温超压气藏控藏要素与成藏模式. 石油学报, 33(4): 9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201204010.htm [57] 谢玉洪, 李绪深, 童传新, 等, 2015. 莺歌海盆地中央底辟带高温高压天然气富集条件、分布规律和成藏模式. 中国海上油气, 27(4): 12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201504001.htm [58] 徐新德, 张迎朝, 裴健翔, 等, 2015. 构造演化对莺歌海盆地天然气成藏差异性的控制作用. 天然气工业, 35(02): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201502003.htm [59] 杨计海, 黄保家, 陈殿远, 2018. 莺歌海盆地坳陷斜坡带低孔特低渗气藏形成条件及勘探潜力. 中国海上油气, 30(1): 11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201801002.htm [60] 杨东辉, 童亨茂, 范彩伟, 等, 2019. 莺歌海盆地构造转折界面的确定及其地质意义. 大地构造与成矿学, 43(3): 12. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201903015.htm [61] 尤丽, 范彩伟, 吴仕玖, 等, 2021. 莺歌海盆地乐东区储层碳酸盐胶结物成因机理及与流体活动的关系. 地质学报, 95(2): 10. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202102020.htm [62] 张青林, 张向涛, 李洪博, 等, 2022. 南海北部狭窄陆架-断裂陆坡控制的大型深水扇体系. 地球科学, 47(7): 2421-2432. doi: 10.3799/dqkx.2022.157 [63] 张敏强, 1999. 莺歌海盆地泥底辟构造带浅层气田形成条件与勘探开发前景. 天然气工业(1): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG901.006.htm -