Fluid Inclusion Characteristics and Hydrocarbon Accumulation Process in Lungu Area, Tarim Basin
-
摘要: 明确轮古地区流体包裹体特征与油气成藏过程.通过对轮古地区的岩心样品岩石学观察、流体包裹体系统分析测试和原油荧光测定,结合均一温度‒埋藏史投影法,并模拟烃源岩生烃史,恢复油气成藏过程.结果表明,轮古地区奥陶系发育三期油包裹体,分别发黄褐色、黄绿色和蓝色荧光,伴生的盐水包裹体均一温度范围分别是70~100 ℃、80~110 ℃、100~120 ℃.全区三期油包裹体对应3个充注期,分别是加里东晚期‒海西早期、海西晚期和喜山期.轮古西部地区的原油的主充注期为加里东晚期‒海西早期,轮古中部地区的原油的主充注期为海西晚期,轮古东部地区的原油的主充注期为喜山期.Abstract: The fluid inclusion characteristics and hydrocarbon accumulation process in Lungu area were clarified. Based on the petrological observation of core samples in Lungu area, the analysis and testing of fluid inclusion system and the fluorescence measurement of crude oil, combined with the homogeneous temperature and burial history projection method, the hydrocarbon generation history of source rocks was simulated to restore the hydrocarbon accumulation process. The results show that there are three stages of oil inclusions in the Ordovician in Lunku area, which are yellow brown, yellow green and blue fluorescence, respectively. The homogenization temperature of the associated saline inclusions ranges from 70 ℃ to 100 ℃, 80 ℃ to 110 ℃, and 100 ℃ to 120 ℃, respectively. The three stages of oil inclusions in the whole area correspond to three charging periods, which are Late Caledonian - Early Hercynian, Late Hercynian and Xishan. The western region of Lungu is dominated by Late Caledonian and Early Hercynian oil, the central region of Lungu is dominated by Late Hercynian oil, and the eastern region of Lungu is dominated by Himalayan oil.
-
Key words:
- Tarim Basin /
- Lungu area /
- deep oil and gas reservoir /
- fluid inclusion /
- main accumulation period /
- petroleum geology
-
图 1 塔里木盆地轮古地区奥陶系顶面构造图、东西向剖面图和岩性柱状图(据朱光有等(2020))
Fig. 1. Structure diagram, east-west sectional diagram and lithologic column diagram of the top surface of Ordovician in Lungu area, Tarim Basin
图 2 轮古地区奥陶系岩心和镜下照片
a. 高角度裂缝充填充填方解石,裂缝中可见明显油迹,LG903井,5 536 m,O1‒2y;b. 三期脉体相互切割,LG101井,5 440 m,O1‒2y;c、d. 裂缝切穿溶洞中方解石胶结物,LG201井,5 359.5 m,O1‒2y;e、f. 缝合线切穿裂缝中方解石胶结物,LN10井,5 799.5 m,O1‒2y;g、h. 第三期脉体切割第二期脉体,LG101井,5 440 m,O1‒2y;i、j. 第四期脉体切割第二期脉体,LG101井,5 440 m,O1‒2y;k、l. 第四期脉体切割第三期脉体,LG101井,5 440 m,O1‒2y.c、e、g、i、k. 为单偏光照片,d、f、h、j、l. 为阴极发光照片
Fig. 2. Ordovician cores and microscopical photos in Lungu area
图 4 轮古地区奥陶系包裹体显微荧光照片
a. 团簇状分布的发黄褐色荧光的油包裹体,主峰波长550.23~559.22 nm,LG201井,5 359.5 m,O1‒2y;b. 定向分布的发黄褐色荧光的次生油包裹体,主峰波长550.23~559.22 nm,LG801井,5 183 m,O1‒2y;c、d. 孤立的发黄褐色荧光的油包裹体,主峰波长542.03 nm,LG1井,5 217.9 m,O1‒2y;e. 团簇状分布的发黄绿色荧光的油包裹体,主峰波长514.02~523.26 nm,LG201井,5 359.5 m,O1‒2y;f. 定向分布的发黄绿色荧光的油包裹体,主峰波长511.63~529.82 nm,LG101井,5 440 m,O1‒2y;g、h. 线性分布的发黄绿色荧光的油包裹体,主峰波长519.99~525.42 nm,伴生盐水包裹体,LN631井,5 917.5 m,O2yj;i. 散乱分布的的发黄绿色荧光的油包裹体,主峰波长518.18~519.99 nm,LN10井,5 799.5 m,O1‒2y;j. 沿生长纹分布的发黄绿色荧光的油包裹体,主峰波长519.27~529.03 nm,LG201井,5 359.5 m,O1‒2y;k. 孤立分布的发黄绿色荧光的油包裹体,主峰波长513.44 nm,LG201井,5 359.5 m,O1‒2y;l. 愈合缝中线性分布的发蓝色荧光的次生油包裹体,主峰波长461.38~481.80 nm,LN14井,5 459 m,O1‒2y;m. 片状分布的发蓝色荧光的次生油包裹体,主峰波长440.34~473.69 nm,LG201井,5 359.5 m,O1‒2y;n. 孤立的发蓝色荧光的油包裹体,主峰波长468.18 nm,LN14井,5 459 m,O1‒2y;o、p. 团簇分布的发蓝色荧光的油包裹体,主峰波长472.03~483.67 nm,LN14井,5 459 m,O1‒2y
Fig. 4. Fluorescence photographs of Ordovician inclusions in Lungu area
图 5 轮古地区奥陶系单个油包裹体荧光颜色和荧光光谱图
a、d. 方解石脉体中孤立发育的发黄褐色荧光的油包裹体(a. 单偏光照片,d. 荧光照片),LG7井,5 050 m,O1‒2y;b、e. 方解石脉体中零散发育的发黄绿色荧光的油包裹体井(b. 单偏光照片,e. 荧光照片),LG201井,5 359.5 m,O1‒2y;c、f. 方解石脉体中集群分布的发蓝色荧光的油包裹体(c. 单偏光照片,f. 荧光照片),LN54井,5 450 m,O1‒2y;g. 油包裹体荧光光谱谱图
Fig. 5. Fluorescence color and fluorescence spectra of single oil inclusions of Ordovician in the Lungu area
表 1 轮古地区奥陶系不同期次油包裹体伴生盐水包裹体均一温度分布
Table 1. Homogenization temperature distribution of oil inclusions associated with saline inclusions at different times in the Ordovician system in Lungu area
井名 层位 期次 伴生盐水包裹体均一温度(℃) 井名 层位 期次 伴生盐水包裹体均一温度(℃) LG43 O1‒2y 第一期 84.2~86.1 LN54 O1‒2y 第二期 90.2~111 第三期 107.2~122 LG903 O1‒2y 第一期 84.2~103.9 LN14 O1‒2y 第二期 79~90.5 第二期 91.2~104.5 第三期 110.8~120 LG7 O1‒2y 第一期 75~105.1 LN10 O1‒2y 第二期 89.7~110 第二期 87.8~109.7 第三期 96.7~112 LG201 O1‒2y 第一期 86.5~91.5 LN631 O2yj 第二期 95.1~118.9 第二期 83.5~98.5 第三期 116.2~120.5 第三期 105.4~119.5 LG801 O1‒2y 第一期 83~99.9 LG39 O2yj 第二期 95.3~103 -
Bourdet, J., Burruss, R. C., Chou, I. M., et al., 2014. Evidence for a Palaeo-Oil Column and Alteration of Residual Oil in a Gas-Condensate Field: Integrated Oil Inclusion and Experimental Results. Geochimica et Cosmochimica Acta, 142: 362-385. https://doi.org/10.1016/j.gca.2014.07.022 Cai, J., Lü, X. X., Li, B. Y., 2016. Tectonic Fracture and Its Significance in Hydrocarbon Migration and Accumulation: A Case Study on Middle and Lower Ordovician in Tabei Uplift of Tarim Basin, NW China. Geological Journal, 51(4): 572-583. https://doi.org/10.1002/gj.2656 Chen, H. H., 2014. Microspectrofluorimetric Characterization and Thermal Maturity Assessment of Individual Oil Inclusion. Acta Petrolei Sinica, 35(3): 584-590 (in Chinese with English abstract). Chen, J. Q., Ma, K. Y., Pang, X. Q., et al., 2020. Secondary Migration of Hydrocarbons in Ordovician Carbonate Reservoirs in the Lunnan Area, Tarim Basin. Journal of Petroleum Science and Engineering, 188: 106962. https://doi.org/10.1016/j.petrol.2020.106962 Dieckmann, V., Horsfield, B., Schenk, H. J., 2000. Heating Rate Dependency of Petroleum-Forming Reactions: Implications for Compositional Kinetic Predictions. Organic Geochemistry, 31(12): 1333-1348. https://doi.org/10.1016/s0146-6380(00)00105-4 Fang, Q. F., Zhang, N., Zhang, B. S., et al., 2014. Characteristics of Hydrocarbon Inclusions and Geological Age of Hydrocarbon Accumulation in Ordovician Reservoir of Eastern Lungu Area, Tarim Basin. Natural Gas Geoscience, 25(10): 1558-1567 (in Chinese with English abstract). George, S. C., Ruble, T. E., Dutkiewicz, A., et al., 2001. Assessing the Maturity of Oil Trapped in Fluid Inclusions Using Molecular Geochemistry Data and Visually-Determined Fluorescence Colours. Applied Geochemistry, 16(4): 451-473. https://doi.org/10.1016/s0883-2927(00)00051-2 Gu, Y., 2000. Forming Mechanism of Hydrocarbon Pools inTahe Oilfield of the Northern Tarim Basin. Experimental Petroleum Geology, 22(4): 307-312 (in Chinese with English abstract). Guo, X. W., Liu, K. Y., He, S., et al., 2012. Petroleum Generation and Charge History of the Northern Dongying Depression, Bohai Bay Basin, China: Insight from Integrated Fluid Inclusion Analysis and Basin Modelling. Marine and Petroleum Geology, 32(1): 21-35. https://doi.org/10.1016/j.marpetgeo.2011.12.007 Han, J., Yuan, Y., Hong, T., et al., 2016. The Structure of Crushed Zone near the Lungudong Strike Slip Fault and Its Relationship with the Gas and Oil. Geology in China, 43(4): 1304-1316 (in Chinese with English abstract). Han, J. F., Wang, Z. M., Pan, W. Q., et al., 2006. Petroleum Controlling Theory of Lunnan Paleohigh and Its Buried Hill Pool Exploration Technology, Tarim Basin. Petroleum Exploration and Development, 33(4): 448-453 (in Chinese with English abstract). Li, H. H., Cao, Y. H., Chen, Z. Y., et al., 2020. The Faults and Deep Petroleum Exploration in the Lunnan Lower Uplift of the Tabei Rise, Tarim Basin. Natural Gas Geoscience, 31(12): 1677-1686 (in Chinese with English abstract). Li, M. J., Wang, T. G., Chen, J. F., et al., 2010. Paleo-Heat Flow Evolution of the Tabei Uplift in Tarim Basin, Northwest China. Journal of Asian Earth Sciences, 37(1): 52-66. https://doi.org/10.1016/j.jseaes.2009.07.007 Li, X. L., Liu, S. W., Feng, C. G., 2019. Thermal Properties of Sedimentary Rocks in the Tarim Basin, Northwestern China. AAPG Bulletin, 103(7): 1605-1624. https://doi.org/10.1306/11211817179 Liu, D. H., 1995. Inclusion Study—A Powerful Tool for Basin Fluid Tracking. Earth Science Frontiers, 2(4): 149-154 (in Chinese with English abstract). Lu, Z. Y., Chen, H. H., Yun, L., et al., 2016. The Coupling Relationship between Hydrothermal Fluids and the Hydrocarbon Gas Accumulation in Ordovician of Shunnan Gentle Slope, Northern Slope of Tazhong Uplift. Earth Science, 41(3): 487-498 (in Chinese with English abstract). Ma, D. B., Yang, M., Du, D. D., et al., 2020a. Analysis of the Superposition Process of Multiphase Active Paleo-Uplift: Taking the Lunnan Paleo-Uplift in the Tarim Basin as an Example. Acta Petrologica Sinica, 36(11): 3523-3536 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.11.17 Ma, D. B., Cui, W. J., Tao, X. W., et al., 2020b. Structural Characteristics and Evolution Process of Faults in the Lunnan Low Uplift, Tabei Uplift in the Tarim Basin, NW China. Natural Gas Geoscience, 31(5): 647-657 (in Chinese with English abstract). Munz, I. A., 2001. Petroleum Inclusions in Sedimentary Basins: Systematics, Analytical Methods and Applications. Lithos, 55(1-4): 195-212. https://doi.org/10.1016/s0024-4937(00)00045-1 Pan, W. Q., Zhao, M. J., Zhang, B. M., et al., 2008. Ordovician Buried Hill Oilfield in Western Lunnan Area: An Example of Heavy Oilfield Formation for Hydrocarbon Charging and Degrading in Hercynian Period. Chinese Journal of Geology (Scientia Geologica Sinica), 43(2): 321-332 (in Chinese with English abstract). Shang, P., Chen, H. H., Lu, Z. Y., et al., 2020. The Coupling Relationship between Diagenetic Fluid Evolution and Hydrocarbon Accumulation in the Ordovician of Yubei Area, Tarim Basin. Earth Science, 45(2): 569-582 (in Chinese with English abstract). Sun, L. D., Li, Y. J., 2004. The Lunnan Lower Uplift: A Multiple Oil-Gas Accumulation Play in the Tarim Basin, NW China. Chinese Journal of Geology, 39(2): 296-304 (in Chinese with English abstract). Wang, X. M., Zhang, S. C., 2010. Petroleum Characteristics and Controlling Factors in Lunnan Low Uplift, Tarim Basin. Journal of Earth Science, 21(2): 236-246. https://doi.org/10.1007/s12583-010-0021-4 Wu, M. L., Liu, Y. F., Peng, P., et al., 2021. Characteristics of Strike-Slip Faults in Lunnan Buried Hill and Its Influence on Hydrocarbon Accumulation. Fault-Block Oil & Gas Field, 28(4): 456-462 (in Chinese with English abstract). Yang, H. J., Chen, Y. Q., Tian, J., et al., 2020. Great Discovery and Its Significance of Ultra-Deep Oil and Gas Exploration in Well Luntan-1 of the Tarim Basin. China Petroleum Exploration, 25(2): 62-72 (in Chinese with English abstract). Yang, H. J., Hao, F., Han, J. F., et al., 2007. Fault Systems and Multiple Oil-Gas Accumulation Play of the Lunnan Lower Uplift, Tarim Basin. Chinese Journal of Geology (Scientia Geologica Sinica), 42(4): 795-811 (in Chinese with English abstract). Yang, H. J., Yu, S., Zhang, H. Z., et al., 2020. Geochemical Characteristics of Lower Cambrian Sources Rocks from the Deepest Drilling of Well LT-1 and Their Significance to Deep Oil Gas Exploration of the Lower Paleozoic System in the Tarim Basin. Geochimica, 49(6): 666-682 (in Chinese with English abstract). Zhang, S. C., Zhang, B. M., Li, B. L., et al., 2011a. History of Hydrocarbon Accumulations Spanning Important Tectonic Phases in Marine Sedimentary Basins of China: Taking the Tarim Basin as an Example. Petroleum Exploration and Development, 38(1): 1-15 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60010-4 Zhang, S. C., Zhu, G. Y., Yang, H. J., et al., 2011b. The Phases of Ordovician Hydrocarbon and Their Origin in the Tabei Uplift, Tarim Basin. Acta Petrologica Sinica, 27(8): 2447-2460 (in Chinese with English abstract). Zhao, W. Z., Zhu, G. Y., Su, J., et al., 2012. Study on the Multi-Stage Charging and Accumulation Model of Chinese Marine Petroleum: Example from Eastern Lungu Area in the Tarim Basin. Acta Petrologica Sinica, 28(3): 709-721 (in Chinese with English abstract). Zhu, G. Y., Li, J. F., Chi, L. X., et al., 2020. The Influence of Gas Invasion on the Composition of Crude Oil and the Controlling Factors for the Reservoir Fluid Phase. Energy & Fuels, 34(3): 2710-2725. https://doi.org/10.1021/acs.energyfuels.9b03548 Zhu, G. Y., Sun, C. H., Zhao, B., et al., 2020. Formation, Evaluation Technology and Preservation Lower Limit of Ultra-Deep Ancient Fracture-Cavity Carbonate Reservoirs below 7 000 m. Natural Gas Geoscience, 31(5): 587-601 (in Chinese with English abstract). 陈红汉, 2014. 单个油包裹体显微荧光特性与热成熟度评价. 石油学报, 35(3): 584-590. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201403026.htm 房启飞, 张鼐, 张宝收, 等, 2014. 塔里木盆地轮古东地区奥陶系储层流体包裹体研究及油气成藏史. 天然气地球科学, 25(10): 1558-1567. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201410010.htm 顾忆, 2000. 塔里木盆地北部塔河油田油气藏成藏机制. 石油实验地质, 22(4): 307-312. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200004003.htm 韩杰, 袁源, 洪涛, 等, 2016. 轮古东走滑断裂破碎带结构及与油气关系. 中国地质, 43(4): 1304-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201604017.htm 韩剑发, 王招明, 潘文庆, 等, 2006. 轮南古隆起控油理论及其潜山准层状油气藏勘探. 石油勘探与开发, 33(4): 448-453. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200604010.htm 李洪辉, 曹颖辉, 陈志勇, 等, 2020. 塔里木盆地塔北隆起轮南低凸起断裂与深层油气勘探. 天然气地球科学, 31(12): 1677-1686. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202012002.htm 刘德汉, 1995. 包裹体研究——盆地流体追踪的有力工具. 地学前缘, 2(4): 149-154. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY504.002.htm 鲁子野, 陈红汉, 云露, 等, 2016. 塔中顺南缓坡奥陶系热流体活动与天然气成藏的耦合关系. 地球科学, 41(3): 487-498. doi: 10.3799/dqkx.2016.040 马德波, 杨敏, 杜德道, 等, 2020a. 多期活动古隆起复合叠加过程解析——以塔里木盆地轮南古隆起为例. 岩石学报, 36(11): 3523-3536. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202011017.htm 马德波, 崔文娟, 陶小晚, 等, 2020b. 塔北隆起轮南低凸起断裂构造特征与形成演化. 天然气地球科学, 31(5): 647-657. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202005006.htm 潘文庆, 赵孟军, 张宝民, 等, 2008. 塔里木盆地轮西地区奥陶系潜山油藏: 一个海西期充注并降解的稠油油藏成藏实例分析. 地质科学, 43(2): 321-332. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200802012.htm 尚培, 陈红汉, 鲁子野, 等, 2020. 塔里木盆地玉北地区奥陶系成岩流体演化与油气成藏时期的耦合关系. 地球科学, 45(2): 569-582. doi: 10.3799/dqkx.2018.247 孙龙德, 李曰俊, 2004. 塔里木盆地轮南低凸起: 一个复式油气聚集区. 地质科学, 39(2): 296-304. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200704016.htm 吴梅莲, 刘永福, 彭鹏, 等, 2021. 轮南古潜山走滑断裂特征及其对油气成藏的影响. 断块油气田, 28(4): 456-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104006.htm 杨海军, 陈永权, 田军, 等, 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002007.htm 杨海军, 郝芳, 韩剑发, 等, 2007. 塔里木盆地轮南低凸起断裂系统与复式油气聚集. 地质科学, 42(4): 795-811. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200704016.htm 杨海军, 于双, 张海祖, 等, 2020. 塔里木盆地轮探1井下寒武统烃源岩地球化学特征及深层油气勘探意义. 地球化学, 49(6): 666-682. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX202006007.htm 张水昌, 张宝民, 李本亮, 等, 2011a. 中国海相盆地跨重大构造期油气成藏历史——以塔里木盆地为例. 石油勘探与开发, 38(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201101003.htm 张水昌, 朱光有, 杨海军, 等, 2011b. 塔里木盆地北部奥陶系油气相态及其成因分析. 岩石学报, 27(8): 2447-2460. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201108021.htm 赵文智, 朱光有, 苏劲, 等, 2012. 中国海相油气多期充注与成藏聚集模式研究——以塔里木盆地轮古东地区为例. 岩石学报, 28(3): 709-721. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203002.htm 朱光有, 孙崇浩, 赵斌, 等, 2020.7000m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限. 天然气地球科学, 31(5): 587-601. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202005001.htm -