Development Characteristics, Evolution and Formation Mechanism of Luoxi Fault in Maigaiti Slope, Tarim Basin
-
摘要: 塔里木盆地玉北地区发育一系列北东向断裂并获油气发现,断裂带内不同段的构造样式存在显著差异.以罗西断裂为例,结合断层分段特征与活动期次研究,应用砂箱物理模拟和应变分析技术,探讨罗西断裂的演化与形成机制.结果表明:罗西断裂是一个典型的逆冲-走滑复合构造,平面具有“三段式”生长特征,整体表现为隆起特征,局部出现“下凹”现象.基于不整合特征、深度-幅度曲线以及年代地层格架,认为罗西断裂主要经历三期变形:(1)加里东中期Ⅲ幕是罗西断裂雏形的形成时期,逆冲断裂开始微弱抬升;(2)加里东晚期是罗西断裂的主要活动时期,活动强度比加里东中期Ⅲ幕强烈;(3)海西早期是罗西断裂走滑改造的主要时期.砂箱物理模拟实验证实,“三期两向”叠加变形控制着罗西断裂的演化与形成机制,加里东中期Ⅲ幕和加里东晚期控制以斜向逆冲为主的隆起带的形成,海西早期张扭改造控制“下凹”的形成演化.应变分析指示逆冲-走滑复合构造有利储层部位主要集中在边界断层、与边界断层小角度斜交的走滑断层和断层交汇区域,这对塔里木盆地碳酸盐岩逆冲-走滑断裂控储与规模储层勘探有重要意义.Abstract: A series of NE-trending faults have been developed in the Yubei area of the Tarim basin and oil and gas were discovered. The structural styles of different segments of the fault zone are significantly different. In this paper, the Luoxi fault is taken as an example, the evolution and formation mechanism of the Luoxi thrust-strike-slip composite structure are discussed by means of sand box physical simulation and strain analysis, combined with the study of fault segmentation and active stages. The results show that Luoxi fault is a typical thrus-strike-slip composite strcture, and the plane of the Luoxi fault has a "three-segment" growth pattern, with uplift as a whole and sag as a local phenomenon. Based on the unconformity characteristics, depth-amplitude curves and chronostratigraphic framework, it is considered that the Luoxi fault experienced three stages of deformation: (1) the Middle Caledonian stage Ⅲ was the formative period of the rudiment of the Luoxi fault, and the thrust fault begins to rise weakly; (2) the late Gariton Luoxi fault is the main active stage, and the active intensity is stronger than the stage Ⅲ of Middle Caledonian; (3) the Early Hercynian period is the main period of strike slip reformation of Luoxi fault. The sandbox physical simulation experiment confirmed that the "three stages and two directions" superimposed deformation controlled the evolution and formation mechanism of the Luoxi fault, and the Middle Caledonian Ⅲ episode and the Late Caledonian stage controlled the formation of the oblique thrust uplift belt, the formation and evolution of "sag" was controlled by the early transtensional deformation at the Early Hercynian period. Strain analysis indicates that the favorable reservoir positions of the thrust-strike-slip composite structure are mainly concentrated in the boundary fault, strike-slip fault with small angle oblique intersection with the boundary fault and the fault confluence area, this is of great significance to the exploration of Tarim basin carbonate reservoirs controlled by thrust-strike-slip faults and large-scale reservoirs.
-
Key words:
- fault segmentation /
- fault movement period /
- formation mechanism /
- analogue model /
- Luoxi fault /
- Tarim basin /
- petrolum geology
-
表 1 罗西断裂不同段构造特征
Table 1. Structural characteristics of different sections of the Luoxi fault
构造特征 南段 中段 北段 走向 75° 70° 67° 延伸长度 8.6 km 19.7 km 8.7 km 断距 北支断距 0~50 m 180~480 m 0 m 南支断距 0 m 130~270 m 0 m 断裂带宽度 T74 0~1.9 km 1.1~2.2 km 1.6~3.5 km T82 0.2~2.0 km 0.5~2.8 km 1.0~2.1 km 表 2 实验采用相似性材料物理性质(实验结果得自Hubbert直剪仪)
Table 2. Physical properties of similar materials used in experiments (experimental results obtained from Hubbert direct shear apparatus)
材料 石英砂 云母粉 石英砂-云母粉混合材料 粒径(μm) 106~230 106~230 106~230 铺设方式 筛撒 筛撒 筛撒 密度(g/cm3) 1.36 1.10 1.24 内摩擦角φ(°) 27.4 21 24.8 内摩擦系数μ 0.52 0.38 0.46 内聚力C(Pa) 149 83 101 -
Adam, J., Urai, J.L., Wieneke, B., et al., 2005. Shear Localisation and Strain Distribution during Tectonic Faulting—New Insights from Granular-Flow Experiments and High-Resolution Optical Image Correlation Techniques. Journal of Structural Geology, 27(2): 283-301. https://doi.org/10.1016/j.jsg.2004.08.008 Barnett, J., Mortimer, J., Rippon, J., et al., 1987. Displacement Geometry in the Volume Containing a Single Normal Fault. AAPG Bulletin, 71(8): 925-937 Champion, J., Mueller, K., Tate, A., et al., 2001. Geometry, Numerical Models and Revised Slip Rate for the Reelfoot Fault and Trishear Fault-Propagation Fold, New Madrid Seismic Zone. Engineering Geology, 62(1-3): 31-49. https://doi.org/10.1016/s0013-7952(01)00048-5 Chen, G., Tang, L.J., Yu, T.X., et al., 2014. Poly-Phase Fault Activities and the Control on Hydrocarbon Accumulation of Yubei Thrust Belt, Tarim Basin. Journal of China University of Mining & Technology, 43(5): 870-879(in Chinese with English abstract). D'Adda, P., Longoni, R., Magistroni, C., et al., 2017. Extensional Reactivation of a Deep Transpressional Architecture: Insights from Sandbox Analogue Modeling Applied to the Val d'Agri Basin (Southern Apennines, Italy). Interpretation, 5(1): SD55-SD66. https://doi.org/10.1190/int-2016-0078.1 Deng, S., Liu, Y.Q., Liu, J., et al., 2021. Structural Styles and Evolution Models of Intracratonic Strike-Slip Faults and the Implications for Reservoir Exploration and Appraisal: A Case Study of the Shunbei Area, Tarim Basin. Geotectonica et Metallogenia, 45(6): 1111-1126(in Chinese with English abstract). Ding, W.L., Lin, C.S., Qi, L.X., et al., 2008. Structural Framework and Evolution of Bachu Uplift in Tarim Basin. Earth Science Frontiers, 15(2): 242-252(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2008.02.027 Ding, W.L., Qi, L.X., Yun, L., et al., 2012. The Tectonic Evolution and Its Controlling Effects on the Development of Ordovician Reservoir in Bachu-Markit Tarim Basin. Acta Petrologica Sinica, 28(8): 2542-2556(in Chinese with English abstract). Dooley, T.P., Schreurs, G., 2012. Analogue Modelling of Intraplate Strike-Slip Tectonics: A Review and New Experimental Results. Tectonophysics, 574-575: 1-71. https://doi.org/10.1016/j.tecto.2012.05.030 Du, J.H., 2010. Oil and Gas Exploration Cambrian-Ordovician Carbonate Rocks in Tarim Basin. Petroleum Industry Press, Beijing, 151(in Chinese). Duvall, M.J., Waldron, J.W.F., Godin, L., et al., 2020. Active Strike-Slip Faults and an Outer Frontal Thrust in the Himalayan Foreland Basin. Proceedings of the National Academy of Sciences of the United States of America, 117(30): 17615-17621. https://doi.org/10.1073/pnas.2001979117 Fedorik, J., Zwaan, F., Schreurs, G., et al., 2019. The Interaction between Strike-Slip Dominated Fault Zones and Thrust Belt Structures: Insights from 4D Analogue Models. Journal of Structural Geology, 122: 89-105. https://doi.org/10.1016/j.jsg.2019.02.010 Fu, X.F., Sun, B., Wang, H.X., et al., 2015. Fault Segmentation Growth Quantitative Characterization and Its Application on Sag Hydrocarbon Accumulation Research. Journal of China University of Mining & Technology, 44(2): 271-281(in Chinese with English abstract). Guo, X.S., 2022. Discussion and Research Direction of Future Onshore Oil and Gas Exploration in China. Earth Science, 47(10): 3511-3523(in Chinese with English abstract). He, D.F., Zhou, X.Y., Yang, H.J., et al., 2008. Formation Mechanism and Tectonic Types of Intracratonic Paleo-Uplifts in the Tarim Basin. Earth Science Frontiers, 15(2): 207-221(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2008.02.024 He, W.Y., Li, J.H., Qian, X.L., et al., 2000. The Meso-Cenozoic Evolution of Bachu Fault-Uplift in Tarim Basin. Acta Scicentiarum Naturalum Universitis Pekinesis, 36(4): 539-546(in Chinese with English abstract). Hus, R., Acocella, V., Funiciello, R., et al., 2005. Sandbox Models of Relay Ramp Structure and Evolution. Journal of Structural Geology, 27(3): 459-473. https://doi.org/10.1016/j.jsg.2004.09.004 Jia, C.Z., 1997. Structural Characteristics and Oil and Gas of Tarim Basin in Chinese. Petroleum Industry Press, Beijing(in Chinese). Li, Y.T., Qi, L.X., Zhang, S.N., et al., 2019. Characteristics and Development Mode of the Middle and Lower Ordovician Fault-Karst Reservoir in Shunbei Area, Tarim Basin. Acta Petrolei Sinica, 40(12): 1470-1484 (in Chinese with English abstract). doi: 10.7623/syxb201912006 Liu, S.L., Zhang, Z.P., Yun, J.B., et al., 2018. NE-Trending Fault Belts in Tanggubasi Depression of the Tarim Basin: Features, Genetic Mechanism, and Petroleum Geological Significance. Oil & Gas Geology, 39(5): 964-975(in Chinese with English abstract). Liu, Z.B., Gao, S.L., Liu, S.L., et al., 2015. Ordovician Carbonate Sedimentary Characteristics and Models of Bachu-Maigaiti Region in Tarim Basin. Journal of Central South University (Science and Technology), 46(11): 4165-4173(in Chinese with English abstract). Ma, H.Q., Wang, S.Y., Lin, J., 2006. Hydrocarbon Migration and Accumulation Characteristics in the Bachu-Maigaiti Area of the Tarim Basin. Petroleum Geology & Experiment, 28(3): 243-248(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2006.03.009 Ma, H.L., Yu, J.F., Zhang, C.J., et al., 2019. The Characteristics of North-East Strike Slip Faults in Eastern Bachu Uplift of Tarim Basin. Xinjiang Geology, 37(3): 348-353(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2019.03.011 Ma, Y.S., Li, M.W., Cai, X.Y., et al., 2020. Mechanisms and Exploitation of Deep Marine Petroleum Accumulations in China: Advances, Technological Bottlenecks and Basic Scientific Problems. Oil & Gas Geology, 41(4): 655-672, 683 (in Chinese with English abstract). McClay, K., Bonora, M., 2001. Analog Models of Restraining Stepovers in Strike-Slip Fault Systems. AAPG Bulletin, 85(2): 233-260. https://doi.org/10.1306/8626c7ad-173b-11d7-8645000102c1865d Qi, L.X., 2014. Exploration Practice and Prospects of Giant Carbonate Field in the Lower Paleozoic of Tarim Basin. Oil & Gas Geology, 35(6): 771-779(in Chinese with English abstract). Qi, L.X., 2020. Characteristics and Inspiration of Ultra-Deep Fault-Karst Reservoir in the Shunbei Area of the Tarim Basin. China Petroleum Exploration, 25(1): 102-111(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2020.01.010 Ritter, M.C., Leever, K., Rosenau, M., et al., 2016. Scaling the Sandbox-Mechanical (Dis) Similarities of Granular Materials and Brittle Rock. Journal of Geophysical Research: Solid Earth, 121(9): 6863-6879. https://doi.org/10.1002/2016JB012915 Tang, L.J., Qi, L.X., Qiu, H.J., et al., 2012. Poly-Phase Differential Fault Movement and Hydrocarbon Accumulation of the Tarim Basin, NW China. Acta Petrologica Sinica, 28(8): 2569-2583(in Chinese with English abstract). Wei, G.Q., Jia, C.Z., Yao, H.J., 1995. The Relation of Thrust-Strike Slip Structure and Hydrocarbon Potential in Late of Hercynian in North Area of Tarim Basin. Xinjiang Petroleum Geology, 16(2) : 96-101(in Chinese with English abstract). Wu, G.H., Deng, W., Huang, S.Y., et al., 2020. Tectonic-Paleogeographic Evolution in the Tarim Basin. Chinese Journal of Geology, 55(2): 305-321 (in Chinese with English abstract). Zhang, Y., He, D.F., Liu, C.L., 2019. Three-Dimensional Geological Structure and Genetic Mechanism of the Bachu Uplift in the Tarim Basin. Earth Science Frontiers, 26(1): 134-148 (in Chinese with English abstract). Zhou, B.W., Chen, H.H., Yun, L., et al., 2022. The Relationship between Fault Displacement and Damage Zone Width of the Paleozoic Strike-Slip Faults in Shunbei Area, Tarim Basin. Earth Science, 47(2): 437-451 (in Chinese with English abstract). 陈刚, 汤良杰, 余腾孝, 等, 2014. 塔里木盆地玉北冲断带分期活动特征及其控油气作用. 中国矿业大学学报, 43(5): 870-879. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201405016.htm 邓尚, 刘雨晴, 刘军, 等, 2021. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例. 大地构造与成矿学, 45(6): 1111-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202106003.htm 丁文龙, 林畅松, 漆立新, 等, 2008. 塔里木盆地巴楚隆起构造格架及形成演化. 地学前缘, 15(2): 242-252. doi: 10.3321/j.issn:1005-2321.2008.02.027 丁文龙, 漆立新, 云露, 等, 2012. 塔里木盆地巴楚-麦盖提地区古构造演化及其对奥陶系储层发育的控制作用. 岩石学报, 28(8): 2542-2556. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208021.htm 杜金虎, 王招明, 李启明, 2010. 塔里木盆地寒武-奥陶系碳酸盐岩油气勘探. 北京: 石油工业出版社. 付晓飞, 孙兵, 王海学, 等, 2015. 断层分段生长定量表征及在油气成藏研究中的应用. 中国矿业大学学报, 44(2): 271-281. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201502011.htm 郭旭升, 2022. 我国陆上未来油气勘探领域探讨与攻关方向. 地球科学, 47(10): 3511-3523. doi: 10.3799/dqkx.2022.873 何登发, 周新源, 杨海军, 等, 2008. 塔里木盆地克拉通内古隆起的成因机制与构造类型. 地学前缘, 15(2): 207-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802029.htm 何文渊, 李江海, 钱祥麟, 等, 2000. 塔里木盆地巴楚断隆中新生代的构造演化. 北京大学学报(自然科学版), 36(4): 539-546. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200004015.htm 贾承造, 1997. 中国塔里木盆地构造特征与油气. 北京: 石油工业出版社. 李映涛, 漆立新, 张哨楠, 等, 2019. 塔里木盆地顺北地区中: 下奥陶统断溶体储层特征及发育模式. 石油学报, 40(12): 1470-1484. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201912005.htm 刘士林, 张仲培, 云金表, 等, 2018. 塔里木盆地塘古巴斯坳陷北东向断裂带特征、成因及石油地质意义. 石油与天然气地质, 39(5): 964-975. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805012.htm 刘忠宝, 高山林, 刘士林, 等, 2015. 塔里木盆地巴楚-麦盖提地区奥陶系碳酸盐岩沉积特征及模式. 中南大学学报(自然科学版), 46(11): 4165-4173. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201511026.htm 马海陇, 于静芳, 张长建, 等, 2019. 塔里木盆地巴楚隆起东段北东向走滑断裂特征. 新疆地质, 37(3): 348-353. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201903014.htm 马红强, 王恕一, 蔺军, 2006. 塔里木盆地巴楚-麦盖提地区油气运聚与成藏. 石油实验地质, 28(3): 243-248. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200603010.htm 马永生, 黎茂稳, 蔡勋育, 等, 2020. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题. 石油与天然气地质, 41(4): 655-672, 683. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004002.htm 漆立新, 2014. 塔里木盆地下古生界碳酸盐岩大油气田勘探实践与展望. 石油与天然气地质, 35(6): 771-779. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406006.htm 漆立新, 2020. 塔里木盆地顺北超深断溶体油藏特征与启示. 中国石油勘探, 25(1): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001010.htm 汤良杰, 漆立新, 邱海峻, 等, 2012. 塔里木盆地断裂构造分期差异活动及其变形机理. 岩石学报, 28(8): 2569-2583. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208023.htm 魏国齐, 贾承造, 姚慧君, 1995. 塔北地区海西晚期逆冲—走滑构造与含油气关系. 新疆石油地质, 16(2): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD502.001.htm 邬光辉, 邓卫, 黄少英, 等, 2020. 塔里木盆地构造—古地理演化. 地质科学, 55(2): 305-321. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202002001.htm 张永, 何登发, 刘长磊, 2019. 塔里木盆地巴楚隆起的三维地质结构及成因机制. 地学前缘, 26(1): 134-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901015.htm 周铂文, 陈红汉, 云露, 等, 2022. 塔里木盆地顺北地区下古生界走滑断裂带断距分段差异与断层宽度关系. 地球科学, 47(2): 437-451. doi: 10.3799/dqkx.2021.073