• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    塔里木盆地麦盖提斜坡罗西断裂发育特征、演化及形成机制

    耿锋 易泽军 郝建龙 沙旭光 王海学 冯昌 段宏亮

    耿锋, 易泽军, 郝建龙, 沙旭光, 王海学, 冯昌, 段宏亮, 2023. 塔里木盆地麦盖提斜坡罗西断裂发育特征、演化及形成机制. 地球科学, 48(6): 2087-2103. doi: 10.3799/dqkx.2022.504
    引用本文: 耿锋, 易泽军, 郝建龙, 沙旭光, 王海学, 冯昌, 段宏亮, 2023. 塔里木盆地麦盖提斜坡罗西断裂发育特征、演化及形成机制. 地球科学, 48(6): 2087-2103. doi: 10.3799/dqkx.2022.504
    Geng Feng, Yi Zejun, Hao Jianlong, Sha Xuguang, Wang Haixue, Feng Chang, Duan Hongliang, 2023. Development Characteristics, Evolution and Formation Mechanism of Luoxi Fault in Maigaiti Slope, Tarim Basin. Earth Science, 48(6): 2087-2103. doi: 10.3799/dqkx.2022.504
    Citation: Geng Feng, Yi Zejun, Hao Jianlong, Sha Xuguang, Wang Haixue, Feng Chang, Duan Hongliang, 2023. Development Characteristics, Evolution and Formation Mechanism of Luoxi Fault in Maigaiti Slope, Tarim Basin. Earth Science, 48(6): 2087-2103. doi: 10.3799/dqkx.2022.504

    塔里木盆地麦盖提斜坡罗西断裂发育特征、演化及形成机制

    doi: 10.3799/dqkx.2022.504
    基金项目: 

    国家自然科学基金项目 41972157

    中国石油化工股份有限公司西北油田分公司“玉北中西部-巴楚东段奥陶系规模储层测试分析”项目 34400008-21ZC0613-0016

    详细信息
      作者简介:

      耿锋(1983-),男,博士研究生,高级工程师,主要从事油气勘探与评价方面工作.ORCID:0000-0002-2482-865X. E-mail:dif.xbsj@sinopec.com

      通讯作者:

      易泽军, 讲师, 主要从事盆地构造解析方面工作.ORCID: 0009-0002-4395-3509. E-mail: dkyzj2010@163.com

    • 中图分类号: P618

    Development Characteristics, Evolution and Formation Mechanism of Luoxi Fault in Maigaiti Slope, Tarim Basin

    • 摘要: 塔里木盆地玉北地区发育一系列北东向断裂并获油气发现,断裂带内不同段的构造样式存在显著差异.以罗西断裂为例,结合断层分段特征与活动期次研究,应用砂箱物理模拟和应变分析技术,探讨罗西断裂的演化与形成机制.结果表明:罗西断裂是一个典型的逆冲-走滑复合构造,平面具有“三段式”生长特征,整体表现为隆起特征,局部出现“下凹”现象.基于不整合特征、深度-幅度曲线以及年代地层格架,认为罗西断裂主要经历三期变形:(1)加里东中期Ⅲ幕是罗西断裂雏形的形成时期,逆冲断裂开始微弱抬升;(2)加里东晚期是罗西断裂的主要活动时期,活动强度比加里东中期Ⅲ幕强烈;(3)海西早期是罗西断裂走滑改造的主要时期.砂箱物理模拟实验证实,“三期两向”叠加变形控制着罗西断裂的演化与形成机制,加里东中期Ⅲ幕和加里东晚期控制以斜向逆冲为主的隆起带的形成,海西早期张扭改造控制“下凹”的形成演化.应变分析指示逆冲-走滑复合构造有利储层部位主要集中在边界断层、与边界断层小角度斜交的走滑断层和断层交汇区域,这对塔里木盆地碳酸盐岩逆冲-走滑断裂控储与规模储层勘探有重要意义.

       

    • 图  1  塔里木盆地构造单元与局部地区断裂分布

      a.塔里木盆地构造单元划分;b.研究区主要断裂分布

      Fig.  1.  Structural units and local fault distribution of Tarim basin

      图  2  罗西断裂古构造、断裂分布与分段特征

      a.海西晚期鹰山组顶界(T74)古构造与断裂分布;b.海西晚期阿瓦塔格组底界(T82)古构造与断裂分布

      Fig.  2.  Paleostructure, fault distribution and segmentation characteristics of the Luoxi fault

      图  3  罗西断裂的分段特征

      a.罗西断裂T74断距-距离曲线;b.T74与T82断裂带宽度-距离曲线;横坐标为测线编号

      Fig.  3.  Segmentation characteristics of the Luoxi fault

      图  4  罗西断裂地震地质剖面

      纵向拉伸4.5倍,剖面位置见图 2

      Fig.  4.  Seismic geological section of the Luoxi fault

      图  5  过井年代地层格架

      Fig.  5.  Stratigraphic framework of time by across the wells

      图  6  罗西断裂地层剥蚀量恢复(纵横比1∶1)

      Fig.  6.  Restoration of strata denudation in the Luoxi fault (vertical to horizontal equals 1∶1)

      图  7  罗西断裂典型地震剖面与深度-幅度变化曲线(纵向拉伸2.5倍)

      Fig.  7.  Typical seismic profile and depth-amplitude variation curves in the Luoxi fault (vertical to horizontal equals 2.5∶1)

      图  8  罗西逆冲-走滑复合构造形成演化历史(纵向拉伸36倍)

      Fig.  8.  Formation and evolution history of the Luoxi thrust-strike-slip composite structure (vertical to horizontal equals 36∶1)

      图  9  利用不同期次断层性质变化分析古应力方向

      Fig.  9.  Analysis of paleo-stress direction by using the variation of fault properties at the different times

      图  10  地质模型结构设置与边界参数

      Fig.  10.  Structure setting and boundary parameters of geological model

      图  12  罗西断裂“压隆-下凹”构造的形成机制

      Fig.  12.  Formation mechanism of "uplift-depression" structure of Luoxi fault

      图  11  罗西断裂“两期-异向”叠加变形过程物理模拟

      Fig.  11.  Physical simulation of "two-stages and different direction" superposition deformation process of the Luoxi fault

      图  13  罗西断裂形成过程及其平面应变分布特征

      Fig.  13.  Formation process and characteristics of plane strain distribution of Luoxi fault

      表  1  罗西断裂不同段构造特征

      Table  1.   Structural characteristics of different sections of the Luoxi fault

      构造特征 南段 中段 北段
      走向 75° 70° 67°
      延伸长度 8.6 km 19.7 km 8.7 km
      断距 北支断距 0~50 m 180~480 m 0 m
      南支断距 0 m 130~270 m 0 m
      断裂带宽度 T74 0~1.9 km 1.1~2.2 km 1.6~3.5 km
      T82 0.2~2.0 km 0.5~2.8 km 1.0~2.1 km
      下载: 导出CSV

      表  2  实验采用相似性材料物理性质(实验结果得自Hubbert直剪仪)

      Table  2.   Physical properties of similar materials used in experiments (experimental results obtained from Hubbert direct shear apparatus)

      材料 石英砂 云母粉 石英砂-云母粉混合材料
      粒径(μm) 106~230 106~230 106~230
      铺设方式 筛撒 筛撒 筛撒
      密度(g/cm3) 1.36 1.10 1.24
      内摩擦角φ(°) 27.4 21 24.8
      内摩擦系数μ 0.52 0.38 0.46
      内聚力C(Pa) 149 83 101
      下载: 导出CSV
    • Adam, J., Urai, J.L., Wieneke, B., et al., 2005. Shear Localisation and Strain Distribution during Tectonic Faulting—New Insights from Granular-Flow Experiments and High-Resolution Optical Image Correlation Techniques. Journal of Structural Geology, 27(2): 283-301. https://doi.org/10.1016/j.jsg.2004.08.008
      Barnett, J., Mortimer, J., Rippon, J., et al., 1987. Displacement Geometry in the Volume Containing a Single Normal Fault. AAPG Bulletin, 71(8): 925-937
      Champion, J., Mueller, K., Tate, A., et al., 2001. Geometry, Numerical Models and Revised Slip Rate for the Reelfoot Fault and Trishear Fault-Propagation Fold, New Madrid Seismic Zone. Engineering Geology, 62(1-3): 31-49. https://doi.org/10.1016/s0013-7952(01)00048-5
      Chen, G., Tang, L.J., Yu, T.X., et al., 2014. Poly-Phase Fault Activities and the Control on Hydrocarbon Accumulation of Yubei Thrust Belt, Tarim Basin. Journal of China University of Mining & Technology, 43(5): 870-879(in Chinese with English abstract).
      D'Adda, P., Longoni, R., Magistroni, C., et al., 2017. Extensional Reactivation of a Deep Transpressional Architecture: Insights from Sandbox Analogue Modeling Applied to the Val d'Agri Basin (Southern Apennines, Italy). Interpretation, 5(1): SD55-SD66. https://doi.org/10.1190/int-2016-0078.1
      Deng, S., Liu, Y.Q., Liu, J., et al., 2021. Structural Styles and Evolution Models of Intracratonic Strike-Slip Faults and the Implications for Reservoir Exploration and Appraisal: A Case Study of the Shunbei Area, Tarim Basin. Geotectonica et Metallogenia, 45(6): 1111-1126(in Chinese with English abstract).
      Ding, W.L., Lin, C.S., Qi, L.X., et al., 2008. Structural Framework and Evolution of Bachu Uplift in Tarim Basin. Earth Science Frontiers, 15(2): 242-252(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2008.02.027
      Ding, W.L., Qi, L.X., Yun, L., et al., 2012. The Tectonic Evolution and Its Controlling Effects on the Development of Ordovician Reservoir in Bachu-Markit Tarim Basin. Acta Petrologica Sinica, 28(8): 2542-2556(in Chinese with English abstract).
      Dooley, T.P., Schreurs, G., 2012. Analogue Modelling of Intraplate Strike-Slip Tectonics: A Review and New Experimental Results. Tectonophysics, 574-575: 1-71. https://doi.org/10.1016/j.tecto.2012.05.030
      Du, J.H., 2010. Oil and Gas Exploration Cambrian-Ordovician Carbonate Rocks in Tarim Basin. Petroleum Industry Press, Beijing, 151(in Chinese).
      Duvall, M.J., Waldron, J.W.F., Godin, L., et al., 2020. Active Strike-Slip Faults and an Outer Frontal Thrust in the Himalayan Foreland Basin. Proceedings of the National Academy of Sciences of the United States of America, 117(30): 17615-17621. https://doi.org/10.1073/pnas.2001979117
      Fedorik, J., Zwaan, F., Schreurs, G., et al., 2019. The Interaction between Strike-Slip Dominated Fault Zones and Thrust Belt Structures: Insights from 4D Analogue Models. Journal of Structural Geology, 122: 89-105. https://doi.org/10.1016/j.jsg.2019.02.010
      Fu, X.F., Sun, B., Wang, H.X., et al., 2015. Fault Segmentation Growth Quantitative Characterization and Its Application on Sag Hydrocarbon Accumulation Research. Journal of China University of Mining & Technology, 44(2): 271-281(in Chinese with English abstract).
      Guo, X.S., 2022. Discussion and Research Direction of Future Onshore Oil and Gas Exploration in China. Earth Science, 47(10): 3511-3523(in Chinese with English abstract).
      He, D.F., Zhou, X.Y., Yang, H.J., et al., 2008. Formation Mechanism and Tectonic Types of Intracratonic Paleo-Uplifts in the Tarim Basin. Earth Science Frontiers, 15(2): 207-221(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2008.02.024
      He, W.Y., Li, J.H., Qian, X.L., et al., 2000. The Meso-Cenozoic Evolution of Bachu Fault-Uplift in Tarim Basin. Acta Scicentiarum Naturalum Universitis Pekinesis, 36(4): 539-546(in Chinese with English abstract).
      Hus, R., Acocella, V., Funiciello, R., et al., 2005. Sandbox Models of Relay Ramp Structure and Evolution. Journal of Structural Geology, 27(3): 459-473. https://doi.org/10.1016/j.jsg.2004.09.004
      Jia, C.Z., 1997. Structural Characteristics and Oil and Gas of Tarim Basin in Chinese. Petroleum Industry Press, Beijing(in Chinese).
      Li, Y.T., Qi, L.X., Zhang, S.N., et al., 2019. Characteristics and Development Mode of the Middle and Lower Ordovician Fault-Karst Reservoir in Shunbei Area, Tarim Basin. Acta Petrolei Sinica, 40(12): 1470-1484 (in Chinese with English abstract). doi: 10.7623/syxb201912006
      Liu, S.L., Zhang, Z.P., Yun, J.B., et al., 2018. NE-Trending Fault Belts in Tanggubasi Depression of the Tarim Basin: Features, Genetic Mechanism, and Petroleum Geological Significance. Oil & Gas Geology, 39(5): 964-975(in Chinese with English abstract).
      Liu, Z.B., Gao, S.L., Liu, S.L., et al., 2015. Ordovician Carbonate Sedimentary Characteristics and Models of Bachu-Maigaiti Region in Tarim Basin. Journal of Central South University (Science and Technology), 46(11): 4165-4173(in Chinese with English abstract).
      Ma, H.Q., Wang, S.Y., Lin, J., 2006. Hydrocarbon Migration and Accumulation Characteristics in the Bachu-Maigaiti Area of the Tarim Basin. Petroleum Geology & Experiment, 28(3): 243-248(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2006.03.009
      Ma, H.L., Yu, J.F., Zhang, C.J., et al., 2019. The Characteristics of North-East Strike Slip Faults in Eastern Bachu Uplift of Tarim Basin. Xinjiang Geology, 37(3): 348-353(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2019.03.011
      Ma, Y.S., Li, M.W., Cai, X.Y., et al., 2020. Mechanisms and Exploitation of Deep Marine Petroleum Accumulations in China: Advances, Technological Bottlenecks and Basic Scientific Problems. Oil & Gas Geology, 41(4): 655-672, 683 (in Chinese with English abstract).
      McClay, K., Bonora, M., 2001. Analog Models of Restraining Stepovers in Strike-Slip Fault Systems. AAPG Bulletin, 85(2): 233-260. https://doi.org/10.1306/8626c7ad-173b-11d7-8645000102c1865d
      Qi, L.X., 2014. Exploration Practice and Prospects of Giant Carbonate Field in the Lower Paleozoic of Tarim Basin. Oil & Gas Geology, 35(6): 771-779(in Chinese with English abstract).
      Qi, L.X., 2020. Characteristics and Inspiration of Ultra-Deep Fault-Karst Reservoir in the Shunbei Area of the Tarim Basin. China Petroleum Exploration, 25(1): 102-111(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2020.01.010
      Ritter, M.C., Leever, K., Rosenau, M., et al., 2016. Scaling the Sandbox-Mechanical (Dis) Similarities of Granular Materials and Brittle Rock. Journal of Geophysical Research: Solid Earth, 121(9): 6863-6879. https://doi.org/10.1002/2016JB012915
      Tang, L.J., Qi, L.X., Qiu, H.J., et al., 2012. Poly-Phase Differential Fault Movement and Hydrocarbon Accumulation of the Tarim Basin, NW China. Acta Petrologica Sinica, 28(8): 2569-2583(in Chinese with English abstract).
      Wei, G.Q., Jia, C.Z., Yao, H.J., 1995. The Relation of Thrust-Strike Slip Structure and Hydrocarbon Potential in Late of Hercynian in North Area of Tarim Basin. Xinjiang Petroleum Geology, 16(2) : 96-101(in Chinese with English abstract).
      Wu, G.H., Deng, W., Huang, S.Y., et al., 2020. Tectonic-Paleogeographic Evolution in the Tarim Basin. Chinese Journal of Geology, 55(2): 305-321 (in Chinese with English abstract).
      Zhang, Y., He, D.F., Liu, C.L., 2019. Three-Dimensional Geological Structure and Genetic Mechanism of the Bachu Uplift in the Tarim Basin. Earth Science Frontiers, 26(1): 134-148 (in Chinese with English abstract).
      Zhou, B.W., Chen, H.H., Yun, L., et al., 2022. The Relationship between Fault Displacement and Damage Zone Width of the Paleozoic Strike-Slip Faults in Shunbei Area, Tarim Basin. Earth Science, 47(2): 437-451 (in Chinese with English abstract).
      陈刚, 汤良杰, 余腾孝, 等, 2014. 塔里木盆地玉北冲断带分期活动特征及其控油气作用. 中国矿业大学学报, 43(5): 870-879. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201405016.htm
      邓尚, 刘雨晴, 刘军, 等, 2021. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例. 大地构造与成矿学, 45(6): 1111-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202106003.htm
      丁文龙, 林畅松, 漆立新, 等, 2008. 塔里木盆地巴楚隆起构造格架及形成演化. 地学前缘, 15(2): 242-252. doi: 10.3321/j.issn:1005-2321.2008.02.027
      丁文龙, 漆立新, 云露, 等, 2012. 塔里木盆地巴楚-麦盖提地区古构造演化及其对奥陶系储层发育的控制作用. 岩石学报, 28(8): 2542-2556. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208021.htm
      杜金虎, 王招明, 李启明, 2010. 塔里木盆地寒武-奥陶系碳酸盐岩油气勘探. 北京: 石油工业出版社.
      付晓飞, 孙兵, 王海学, 等, 2015. 断层分段生长定量表征及在油气成藏研究中的应用. 中国矿业大学学报, 44(2): 271-281. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201502011.htm
      郭旭升, 2022. 我国陆上未来油气勘探领域探讨与攻关方向. 地球科学, 47(10): 3511-3523. doi: 10.3799/dqkx.2022.873
      何登发, 周新源, 杨海军, 等, 2008. 塔里木盆地克拉通内古隆起的成因机制与构造类型. 地学前缘, 15(2): 207-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802029.htm
      何文渊, 李江海, 钱祥麟, 等, 2000. 塔里木盆地巴楚断隆中新生代的构造演化. 北京大学学报(自然科学版), 36(4): 539-546. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200004015.htm
      贾承造, 1997. 中国塔里木盆地构造特征与油气. 北京: 石油工业出版社.
      李映涛, 漆立新, 张哨楠, 等, 2019. 塔里木盆地顺北地区中: 下奥陶统断溶体储层特征及发育模式. 石油学报, 40(12): 1470-1484. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201912005.htm
      刘士林, 张仲培, 云金表, 等, 2018. 塔里木盆地塘古巴斯坳陷北东向断裂带特征、成因及石油地质意义. 石油与天然气地质, 39(5): 964-975. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805012.htm
      刘忠宝, 高山林, 刘士林, 等, 2015. 塔里木盆地巴楚-麦盖提地区奥陶系碳酸盐岩沉积特征及模式. 中南大学学报(自然科学版), 46(11): 4165-4173. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201511026.htm
      马海陇, 于静芳, 张长建, 等, 2019. 塔里木盆地巴楚隆起东段北东向走滑断裂特征. 新疆地质, 37(3): 348-353. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201903014.htm
      马红强, 王恕一, 蔺军, 2006. 塔里木盆地巴楚-麦盖提地区油气运聚与成藏. 石油实验地质, 28(3): 243-248. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200603010.htm
      马永生, 黎茂稳, 蔡勋育, 等, 2020. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题. 石油与天然气地质, 41(4): 655-672, 683. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004002.htm
      漆立新, 2014. 塔里木盆地下古生界碳酸盐岩大油气田勘探实践与展望. 石油与天然气地质, 35(6): 771-779. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406006.htm
      漆立新, 2020. 塔里木盆地顺北超深断溶体油藏特征与启示. 中国石油勘探, 25(1): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001010.htm
      汤良杰, 漆立新, 邱海峻, 等, 2012. 塔里木盆地断裂构造分期差异活动及其变形机理. 岩石学报, 28(8): 2569-2583. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208023.htm
      魏国齐, 贾承造, 姚慧君, 1995. 塔北地区海西晚期逆冲—走滑构造与含油气关系. 新疆石油地质, 16(2): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD502.001.htm
      邬光辉, 邓卫, 黄少英, 等, 2020. 塔里木盆地构造—古地理演化. 地质科学, 55(2): 305-321. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202002001.htm
      张永, 何登发, 刘长磊, 2019. 塔里木盆地巴楚隆起的三维地质结构及成因机制. 地学前缘, 26(1): 134-148. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901015.htm
      周铂文, 陈红汉, 云露, 等, 2022. 塔里木盆地顺北地区下古生界走滑断裂带断距分段差异与断层宽度关系. 地球科学, 47(2): 437-451. doi: 10.3799/dqkx.2021.073
    • 加载中
    图(13) / 表(2)
    计量
    • 文章访问数:  734
    • HTML全文浏览量:  851
    • PDF下载量:  165
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-10-04
    • 刊出日期:  2023-06-25

    目录

      /

      返回文章
      返回