• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    深俯冲地壳物质如何循环至地表?

    吴魏伟 杨经绥

    吴魏伟, 杨经绥, 2022. 深俯冲地壳物质如何循环至地表?. 地球科学, 47(10): 3772-3775. doi: 10.3799/dqkx.2022.803
    引用本文: 吴魏伟, 杨经绥, 2022. 深俯冲地壳物质如何循环至地表?. 地球科学, 47(10): 3772-3775. doi: 10.3799/dqkx.2022.803
    Wu Weiwei, Yang Jingsui, 2022. How is the Deep Subducted Crustal Material Recycled to Earth Surface?. Earth Science, 47(10): 3772-3775. doi: 10.3799/dqkx.2022.803
    Citation: Wu Weiwei, Yang Jingsui, 2022. How is the Deep Subducted Crustal Material Recycled to Earth Surface?. Earth Science, 47(10): 3772-3775. doi: 10.3799/dqkx.2022.803

    深俯冲地壳物质如何循环至地表?

    doi: 10.3799/dqkx.2022.803
    详细信息
      作者简介:

      吴魏伟(1989-),男,助理研究员,主要从事蛇绿岩铬铁矿及其中超高压强还原矿物成因研究

      通讯作者:

      杨经绥(1950-),男,中国科学院院士,主要从事岩石学与大地构造学研究.E-mail: yangjsui@163.com

    How is the Deep Subducted Crustal Material Recycled to Earth Surface?

    • 图  1  地球地幔中金刚石和铬铁矿的形成和深部物质循环模式(Yang et al., 2021)

      壳源物质(洋壳和陆壳)与大洋岩石圈随板片俯冲进入地幔,可达地幔过渡带甚至下地幔深度.阶段1:古俯冲事件使得再循环岩石圈物质进入地幔深部,不仅造就了地幔内部不同尺度的不均一性,且使地幔中普遍存在由俯冲物质脱水/熔融形成的熔/流体.阶段2:金刚石可在~150 km或更深的深部地幔中从含碳流体中结晶形成.蛇绿岩型金刚石来源于俯冲下去的有机碳,其形成后被高压铬尖晶石捕获.阶段3:含金刚石的铬尖晶石可由地幔上涌携带至浅部,并与其他铬尖晶石(未含金刚石)一起构成豆荚状铬铁矿,并最终出现在洋脊或俯冲带构造环境.部分金刚石亦可被与地幔柱活动相关的金伯利岩、钾镁煌斑岩和科马提岩等岩浆携带就位于大陆中

    • [1] Arai, S., 2013. Conversion of Low-Pressure Chromitites to Ultrahigh-Pressure Chromitites by Deep Recycling: A Good Inference. Earth and Planetary Science Letters, 379: 81-87. https://doi.org/10.1016/j.epsl.2013.08.006
      [2] Arai, S., Miura, M., 2016. Formation and Modification of Chromitites in the Mantle. Lithos, 264: 277-295. https://doi.org/10.1016/j.lithos.2016.08.039
      [3] Butler, J. P., Beaumont, C., 2017. Subduction Zone Decoupling/Retreat Modeling Explains South Tibet (Xigaze) and other Supra-Subduction Zone Ophiolites and Their UHP Mineral Phases. Earth and Planetary Science Letters, 463: 101-117. https://doi.org/10.1016/j.epsl.2017.01.025
      [4] Chen, L. H., Wang, X. J., Liu, S. G., 2022. Probing Recycled Carbonate in the Lower Mantle. National Science Review, 9(6): nwac061. https://doi.org/10.1093/nsr/nwac061
      [5] Courtillot, V., Olson, P., 2007. Mantle Plumes Link Magnetic Superchrons to Phanerozoic Mass Depletion Events. Earth and Planetary Science Letters, 260(3/4): 495-504. https://doi.org/10.1016/j.epsl.2007.06.003
      [6] Das, S., Basu, A. R., Mukherjee, B. K., 2017. In Situ Peridotitic Diamond in Indus Ophiolite Sourced from Hydrocarbon Fluids in the Mantle Transition Zone. Geology, 45(8): 755-758. https://doi.org/10.1130/g39100.1
      [7] Dilek, Y., Furnes, H., 2011. Ophiolite Genesis and Global Tectonics: Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere. Geological Society of America Bulletin, 123(3/4): 387-411. https://doi.org/10.1130/b30446.1
      [8] Dilek, Y., Yang, J. S., 2018. Ophiolites, Diamonds, and Ultrahigh-Pressure Minerals: New Discoveries and Concepts on Upper Mantle Petrogenesis. Lithosphere, 10(1): 3-13. https://doi.org/10.1130/l715.1
      [9] Dobrzhinetskaya, L. F., Wirth, R., Yang, J. S., et al., 2009. High-Pressure Highly Reduced Nitrides and Oxides from Chromitite of a Tibetan Ophiolite. Proceedings of the National Academy of Sciences of the United States of America, 106(46): 19233-19238. https://doi.org/10.1073/pnas.0905514106
      [10] Fukao, Y., Obayashi, M., Nakakuki, T., et al., 2009. Stagnant Slab: A Review. Annual Review of Earth and Planetary Sciences, 37: 19-46. https://doi.org/10.1146/annurev.earth.36.031207.124224
      [11] Grand, S. P., Van Der Hilst, R. D., Widiyantoro, S, 1997. Global Seismic Tomography: a Snapshot of Convection in the Earth. GSA Today, 7(4): 1-7.
      [12] Griffin, W. L., Afonso, J. C., Belousova, E. A., et al., 2016. Mantle Recycling: Transition Zone Metamorphism of Tibetan Ophiolitic Peridotites and Its Tectonic Implications. Journal of Petrology, 57(4): 655-684. https://doi.org/10.1093/petrology/egw011
      [13] Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., et al., 2017. Snowball Earth Climate Dynamics and Cryogenian Geology-Geobiology. Science Advances, 3(11): e1600983. https://doi.org/10.1126/sciadv.1600983
      [14] Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219-229. https://doi.org/10.1038/385219a0
      [15] Howell, D., Griffin, W., Yang, J., et al., 2015. Diamonds in Ophiolites: Contamination or a New Diamond Growth Environment? Earth and Planetary Sciences Letters, 430: 284-295. https://doi.org/10.1016/j.epsl.2015.08.023
      [16] Kusky, T., Huang, Y., Wang, L., et al., 2022. Vestiges of Early Earth's Deep Subduction and CHONSP Cycle Recorded in Archean Ophiolitic Podiform Chromitites. Earth-Science Reviews, 227: 103968. https://doi.org/10.1016/j.earscirev.2022.103968
      [17] Liou, J. G., Tsujimori, T., Yang, J. S., et al., 2014. Recycling of Crustal Materials through Study of Ultrahigh-Pressure Minerals in Collisional Orogens, Ophiolites, and Mantle Xenoliths: a Review. Journal of Asian Earth Sciences, 96: 386-420. https://doi.org/10.1016/j.jseaes.2014.09.011
      [18] McGowan, N. M., Griffin, W. L., González-Jiménez, J. M., et al., 2015. Tibetan Chromitites: Excavating the Slab Graveyard. Geology, 43(2): 179-182. https://doi.org/10.1130/g36245.1
      [19] Moe, K. S., Yang, J. S., Johnson, P., et al., 2018. Spectroscopic Analysis of Microdiamonds in Ophiolitic Chromitite and Peridotite. Lithosphere, 10(1): 133-141. https://doi.org/10.1130/l603.1
      [20] Moresi, L., Solomatov, V., 1998. Mantle Convection with a Brittle Lithosphere: Thoughts on the Global Tectonic Styles of the Earth and Venus. Geophysical Journal International, 133(3): 669-682. https://doi.org/10.1046/j.1365-246X.1998.00521.x
      [21] O'Neill, C., Debaille, V., 2014. The Evolution of Hadean-Eoarchaean Geodynamics. Earth and Planetary Science Letters, 406: 49-58. https://doi.org/10.1016/j.epsl.2014.08.034
      [22] O'Neill, C., Lenardic, A., Moresi, L., et al., 2007. Episodic Precambrian Subduction. Earth and Planetary Science Letters, 262(3/4): 552-562. https://doi.org/10.1016/j.epsl.2007.04.056
      [23] Robinson, P. T., Trumbull, R. B., Schmitt, A., et al., 2015. The Origin and Significance of Crustal Minerals in Ophiolitic Chromitites and Peridotites. Gondwana Research, 27(2): 486-506. https://doi.org/10.1016/j.gr.2014.06.003
      [24] Rubie, D. C., van der Hilst, R. D., 2001. Processes and Consequences of Deep Subduction: Introduction. Physics of the Earth and Planetary Interiors, 127(1): 1-7.
      [25] Sobolev, A. V., Hofmann, A. W., Kuzmin, D. V., et al., 2007. The Amount of Recycled Crust in Sources of Mantle-Derived Melts. Science, 316(5823): 412-417. doi: 10.1126/science.1138113
      [26] Stern, R. J., Gerya, T., 2018. Subduction Initiation in Nature and Models: A Review. Tectonophysics, 746: 173-198. https://doi.org/10.1016/j.tecto.2017.10.014
      [27] Trumbull, R. B., Yang, J. S., Robinson, P. T., et al., 2009. The Carbon Isotope Composition of Natural SiC (Moissanite) from the Earth's Mantle: New Discoveries from Ophiolites. Lithos, 113(3/4): 612-620. https://doi.org/10.1016/j.lithos.2009.06.033
      [28] Walter, M. J., Kohn, S. C., Araujo, D., et al., 2011. Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions. Science, 334(6052): 54-57. https://doi.org/10.1126/science.1209300
      [29] Wirth, R., Dobrzhinetskaya, L., Harte, B., et al., 2014. High-Fe (Mg, Fe)O Inclusion in Diamond Apparently from the Lowermost Mantle. Earth and Planetary Science Letters, 404: 365-375. https://doi.org/10.1016/j.epsl.2014.08.010
      [30] Wu, W. W., Yang, J. S., Lian, D. Y., et al., 2021. New Concepts in Ophiolites, Oceanic Lithosphere (Podiform Chromites). In: Alderton, D., Elias, S. A., eds., Encyclopedia of Geology (Second Edition). Academic Press, Oxford, 968-993.
      [31] Wu, W. W., Yang, J. S., Wirth, R., et al., 2019. Carbon and Nitrogen Isotopes and Mineral Inclusions in Diamonds from Chromitites of the Mirdita Ophiolite (Albania) Demonstrate Recycling of Oceanic Crust into the Mantle. American Mineralogist, 104(4): 485-500. https://doi.org/10.2138/am-2019-6751
      [32] Yamamoto, S., Komiya, T., Hirose, K., et al., 2009. Coesite and Clinopyroxene Exsolution Lamellae in Chromites: In-Situ Ultrahigh-Pressure Evidence from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet. Lithos, 109(3/4): 314-322. https://doi.org/10.1016/j.lithos.2008.05.003
      [33] Yang, J. S., Dobrzhinetskaya, L., Bai, W. J., et al., 2007. Diamond- and Coesite-Bearing Chromitites from the Luobusa Ophiolite, Tibet. Geology, 35(10): 875-878. https://doi.org/10.1130/g23766a.1
      [34] Yang, J. S., Meng, F. C., Xu, X. Z., et al., 2015a. Diamonds, Native Elements and Metal Alloys from Chromitites of the Ray-Iz Ophiolite of the Polar Urals. Gondwana Research, 27(2): 459-485. https://doi.org/10.1016/j.gr.2014.07.004
      [35] Yang, J. S., Robinson, P. T., Dilek, Y., 2015b. Diamond-Bearing Ophiolites and Their Geological Occurrence. Episodes, 38(4): 344-364. https://doi.org/10.18814/epiiugs/2015/v38i4/82430
      [36] Yang, J. S., Wu, W. W., Lian, D. Y., et al., 2021. Peridotites, Chromitites and Diamonds in Ophiolites. Nature Reviews Earth & Environment, 2(3): 198-212. https://doi.org/10.1038/s43017-020-00138-4
      [37] Zhang, Y. F., Wu, Y., Wang, C., et al., 2016. Experimental Constraints on the Fate of Subducted Upper Continental Crust beyond the "Depth of no Return". Geochimica et Cosmochimica Acta, 186: 207-225. https://doi.org/10.1016/j.gca.2016.05.002
      [38] Zhou, M. F., Robinson, P. T., Su, B. X., et al., 2014. Compositions of Chromite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits: The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments. Gondwana Research, 26(1): 262-283. https://doi.org/10.1016/j.gr.2013.12.011
      [39] 纪伟强, 吴福元, 2022. 地球的挥发分循环与宜居环境演变. 岩石学报, 38(5): 1285-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202205001.htm
      [40] 刘佳, 夏群科, 2021. 深部地幔的富水储库. 矿物岩石地球化学通报, 40(5): 1078-1086, 997. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202105009.htm
      [41] 孙卫东, 2020. 地球氧逸度. 地球化学, 49(1): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX202001001.htm
      [42] 许志琴, 曾令森, 梁凤华, 等, 2005. 大陆板片多重性俯冲与折返的动力学模式: 苏鲁高压超高压变质地体的折返年龄限定. 岩石矿物学杂志, 24(5): 357-368. doi: 10.3969/j.issn.1000-6524.2005.05.003
      [43] 杨经绥, 连东洋, 吴魏伟, 等, 2021. 俯冲物质深地幔循环: 地球动力学研究的一个新方向. 地质学报, 95(1): 42-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202101005.htm
      [44] 杨经绥, 连东洋, 吴魏伟, 等, 2022. 蛇绿岩中铬铁矿研究的问题与思考. 地质学报, 96(5): 1608-1634. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202205007.htm
      [45] 杨晓志, 刘汉永, 张凯, 2022. 地球内部的氧化还原地球动力学. 中国科学: 地球科学, 52(5): 842-859. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202205004.htm
    • 加载中
    图(1)
    计量
    • 文章访问数:  302
    • HTML全文浏览量:  143
    • PDF下载量:  304
    • 被引次数: 0
    出版历程
    • 刊出日期:  2022-10-25

    目录

      /

      返回文章
      返回