• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    如何从岩浆侵入体探究火山喷发机制?

    马昌前 刘彬 邹博文 高珂

    马昌前, 刘彬, 邹博文, 高珂, 2022. 如何从岩浆侵入体探究火山喷发机制?. 地球科学, 47(10): 3800-3803. doi: 10.3799/dqkx.2022.815
    引用本文: 马昌前, 刘彬, 邹博文, 高珂, 2022. 如何从岩浆侵入体探究火山喷发机制?. 地球科学, 47(10): 3800-3803. doi: 10.3799/dqkx.2022.815
    Ma Changqian, Liu Bin, Zou Bowen, Gao Ke, 2022. How to Gain an Insight into the Volcano’s Eruption Mechanism from the Study of Magmatic Intrusions?. Earth Science, 47(10): 3800-3803. doi: 10.3799/dqkx.2022.815
    Citation: Ma Changqian, Liu Bin, Zou Bowen, Gao Ke, 2022. How to Gain an Insight into the Volcano’s Eruption Mechanism from the Study of Magmatic Intrusions?. Earth Science, 47(10): 3800-3803. doi: 10.3799/dqkx.2022.815

    如何从岩浆侵入体探究火山喷发机制?

    doi: 10.3799/dqkx.2022.815
    基金项目: 

    国家自然科学基金项目 42130309

    国家自然科学基金项目 41972066

    详细信息
      作者简介:

      马昌前(1958-),教授,博士生导师,主要从事岩石学、岩浆动力学、花岗岩地质学、地球系统科学等的教学和研究工作. E-mail:cqma@cug.edu.cn

    How to Gain an Insight into the Volcano’s Eruption Mechanism from the Study of Magmatic Intrusions?

    • [1] Bachmann, O., Miller, C. F., de Silva, S. L., 2007. The Volcanic-Plutonic Connection as a Stage for Understanding Crustal Magmatism. Journal of Volcanology and Geothermal Research, 167(1/2/3/4): 1-23. https://doi.org/10.1016/j.jvolgeores.2007.08.002
      [2] Black, B. A., Karlstrom, L., Mather, T. A., 2021. The Life Cycle of Large Igneous Provinces. Nature Reviews Earth & Environment, 2(12): 840-857. https://doi.org/10.1038/s43017-021-00221-4
      [3] Cañón-Tapia, E., 2014. Volcanic Eruption Triggers: A Hierarchical Classification. Earth-Science Reviews, 129: 100-119. https://doi.org/10.1016/j.earscirev.2013.11.011
      [4] Caricchi, L., Townsend, M., Rivalta, E., et al., 2021. The Build-up and Triggers of Volcanic Eruptions. Nature Reviews Earth & Environment, 2(7): 458-476. https://doi.org/10.1038/s43017-021-00174-8
      [5] Cassidy, M., Mani, L., 2022. Prepare Now for Big Eruptions. Nature, 608: 469-471. doi: 10.1038/d41586-022-02177-x
      [6] Cooper, K. M., Kent, A. J. R., 2014. Rapid Remobilization of Magmatic Crystals Kept in Cold Storage. Nature, 506(7489): 480-483. https://doi.org/10.1038/nature12991
      [7] de Silva, S., Salas, G., Schubring, S., 2008. Triggering Explosive Eruptions—The Case for Silicic Magma Recharge at Huaynaputina, Southern Peru. Geology, 36(5): 387-390. https://doi.org/10.1130/g24380a.1
      [8] Degruyter, W., Huber, C., Bachmann, O., et al., 2017. Influence of Exsolved Volatiles on Reheating Silicic Magmas by Recharge and Consequences for Eruptive Style at Volcán Quizapu (Chile). Geochemistry, Geophysics, Geosystems, 18(11): 4123–4135.
      [9] Edmonds, M., Mather, T. A., Liu, E. J., 2018. A Distinct Metal Fingerprint in Arc Volcanic Emissions. Nature Geoscience, 11(10): 790-794. https://doi.org/10.1038/s41561-018-0214-5
      [10] Eichelberger, J., 2019. Planning an International Magma Observatory. Eos, 100. https://doi.org/10.1029/2019eo125255
      [11] Gudmundsson, M. T., Jónsdóttir, K., Hooper, A., et al., 2016. Gradual Caldera Collapse at Bárdarbunga Volcano, Iceland, Regulated by Lateral Magma Outflow. Science, 353(6296): aaf8988. https://doi.org/10.1126/science.aaf8988
      [12] Hartung, E., Weber, G., Caricchi, L., 2019. The Role of H2O on the Extraction of Melt from Crystallising Magmas. Earth and Planetary Science Letters, 508: 85-96. https://doi.org/10.1016/j.epsl.2018.12.010
      [13] Hawkesworth, C. J., Kemp, A. I. S., 2006. Evolution of the Continental Crust. Nature, 443(7113): 811-817. https://doi.org/10.1038/nature05191
      [14] Humphreys, M. C. S., Smith, V. C., Coumans, J. P., et al., 2021. Rapid Pre-Eruptive Mush Reorganisation and Atmospheric Volatile Emissions from the 12.9 ka Laacher See Eruption, Determined Using Apatite. Earth and Planetary Science Letters, 576: 117198. https://doi.org/10.1016/j.epsl.2021.117198
      [15] Jellinek, A. M., Bercovici, D., 2011. Seismic Tremors and Magma Wagging during Explosive Volcanism. Nature, 470(7335): 522-525. https://doi.org/10.1038/nature09828
      [16] Lin, J. M., Svensson, A., Hvidberg, C. S., et al., 2021. Magnitude, Frequency and Climate Forcing of Global Volcanism during the Last Glacial Period as Seen in Greenland and Antarctic Ice Cores (60-9 ka). Climate of the Past, 18(3): 485-506. https://doi.org/10.5194/cp-18-485-2022
      [17] Lockwood, J. P., Hazlett, R. W., 2010. Volcanoes: Global Perspectives. Wiley-Blackwell.
      [18] Millán, L., Santee, M. L., Lambert, A., et al., 2022. The Hunga Tonga-Hunga Ha'apai Hydration of the Stratosphere. Geophysical Research Letters, 49(13): e2022GL099381. https://doi.org/10.1029/2022gl099381
      [19] National Academies of Sciences, Engineering, and Medicine, 2020. A Vision for NSF Earth Sciences 2020-2030: Earth in Time. The National Academies Press, Washington, D. C. . https://doi.org/10.17226/25761
      [20] Pan, B., Liu, G. M., Cheng, T., et al., 2021. Development and Status of Active Volcano Monitoring in China. Geological Society, London, Special Publications, 510(1): 227-252. https://doi.org/10.1144/sp510-2020-62
      [21] Pistone, M., Blundy, J., Brooker, R. A., 2017. Water Transfer during Magma Mixing Events: Insights into Crystal Mush Rejuvenation and Melt Extraction Processes. American Mineralogist, 102(4): 766-776. https://doi.org/10.2138/am-2017-5793
      [22] Rasmussen, D. J., Plank, T. A., Roman, D. C., et al., 2022. Magmatic Water Content Controls the Pre-Eruptive Depth of Arc Magmas. Science, 375(6585): 1169-1172. https://doi.org/10.1126/science.abm5174
      [23] Re, G., Corsaro, R. A., D'Oriano, C., et al., 2021. Petrological Monitoring of Active Volcanoes: A Review of Existing Procedures to Achieve Best Practices and Operative Protocols during Eruptions. Journal of Volcanology and Geothermal Research, 419: 107365. https://doi.org/10.1016/j.jvolgeores.2021.107365
      [24] Robock, A., 2015. Climatic Impacts of Volcanic Eruptions. In: Sigurdsson, H., ed., The Encyclopedia of Volcanoes. Elsevier, Amsterdam, 935-942. https://doi.org/10.1016/b978-0-12-385938-9.00053-5
      [25] Ruprecht, P., Bachmann, O., 2010. Pre-Eruptive Reheating during Magma Mixing at Quizapu Volcano and the Implications for the Explosiveness of Silicic Arc Volcanoes. Geology, 38(10): 919-922. https://doi.org/10.1130/g31110.1
      [26] Sigmundsson, F., Hreinsdóttir, S., Hooper, A., et al., 2010. Intrusion Triggering of the 2010 Eyjafjallajökull Explosive Eruption. Nature, 468(7322): 426-430. https://doi.org/10.1038/nature09558
      [27] Sparks, R. S. J., Biggs, J., Neuberg, J. W., 2012. Monitoring Volcanoes. Science, 335(6074): 1310-1311. https://doi.org/10.1126/science.1219485
      [28] Townsend, M., Huber, C., 2020. A Critical Magma Chamber Size for Volcanic Eruptions. Geology, 48(5): 431-435. https://doi.org/10.1130/g47045.1
      [29] Utami, S. B., Costa, F., Lesage, P., et al., 2021. Fluid Fluxing and Accumulation Drive Decadal and Short-Lived Explosive Basaltic Andesite Eruptions Preceded by Limited Volcanic Unrest. Journal of Petrology, 62(11): egab086. https://doi.org/10.1093/petrology/egab086
      [30] Wallace, P. J., Plank, T., Edmonds, M., et al., 2015. Volatiles in Magmas. In: Sigurdsson, H., ed., The Encyclopedia of Volcanoes. Elsevier, Amsterdam, 163-183. https://doi.org/10.1016/b978-0-12-385938-9.00007-9
      [31] Yang, J. F., Faccenda, M., 2020. Intraplate Volcanism Originating from Upwelling Hydrous Mantle Transition Zone. Nature, 579(7797): 88-91. https://doi.org/10.1038/s41586-020-2045-y
      [32] 马昌前, 邹博文, 高珂, 等, 2020. 晶粥储存、侵入体累积组装与花岗岩成因. 地球科学, 45(12): 4332-4351. doi: 10.3799/dqkx.2020.316
    • 加载中
    计量
    • 文章访问数:  209
    • HTML全文浏览量:  171
    • PDF下载量:  262
    • 被引次数: 0
    出版历程
    • 刊出日期:  2022-10-25

    目录

      /

      返回文章
      返回