Asthenosphere Mass Movement in Qinghai-Tibetan Plateau Revealed by High-Resolution Seismic Tomography
-
摘要: 通过分辨率达到0.5°×0.5°×10 km的青藏高原地壳与上地幔三维成像,为研究青藏高原在新生代的动力学作用提供了新的认识.软流圈的波速扰动数据证实,特提斯大洋板块在拆沉后只俯冲到410 km的间断面之上,并不是所有的大洋板块都会俯冲到上地幔底部.这种大洋板块在软流圈拆沉后激发的热流体上涌,造成高原中部大规模的火山喷发,是青藏高原隆升的主要动力来源之一.根据上地幔三维地震层析成像结果定量计算了岩石圈-软流圈界面(LAB)的深度,揭示了软流圈地幔物质的上涌或者岩石圈地块下沉的作用布局,表明青藏高原的东部在新生代动力学作用过程中是一个相对独立的岩石圈地幔块体.Abstract: Through the three-dimensional seismic imaging of the upper mantle of the Qinghai-Tibet Plateau with a resolution of 0.5°×0.5°×10 km, it provides a new understanding for the study of the dynamic evolution of the plateau in the Cenozoic Era. The asthenosphere P-wave velocity disturbance data confirm that the Tethys Oceanic Plate only subducted to the 410 km discontinuity after its delamination, proving that not all oceanic plates were subducting to the bottom of the upper mantle. The upwelling of the thermal fluid, excited by this oceanic plate delamination in the asthenosphere and the rupture process of the continental lithosphere, caused a large-scale volcanic eruption in the middle of the plateau, which is one of the main sources of power for the uplift of the Qinghai-Tibet Plateau. According to the results of three-dimensional seismic tomography of the upper mantle, the depth of the lithosphere-asthenosphere boundary (LAB) was quantitatively calculated, revealing the upwelling locations of asthenosphere material and the sinking of lithosphere mass, indicating that the eastern part of the Qinghai-Tibet Plateau is a relatively independent continental lithosphere-mantle block in the regional dynamic process of Cenozoic dynamics.
-
Key words:
- continental dynamics /
- Qinghai-Tibetan Plateau /
- asthenosphere /
- seismic tomography /
- LAB high-resolution /
- geophysics
-
图 2 青藏高原沿经度92°E的上地幔P波速度剖面
a.2019年用分辨率1°×1°×20 km网格取得的P波速度扰动剖面图;b.2021年用分辨率0.5°×0.5°×10 km网格取得的P波速度剖面图.A-B. 标注和印度大陆岩石圈地幔俯冲有关的高速异常体;C-D.标注和特提斯大洋板块俯冲有关的高速异常体的顶面
Fig. 2. The seismic P-wave velocity disturbance profile computed in 2019 (a) and new velocity profile computed in 2021 (b) along 92°E in Qinghai-Tibetan Plateau
-
Bao, X. W., Song, X. D., Li, J. T., 2015. High-Resolution Lithospheric Structure beneath Mainland China from Ambient Noise and Earthquake Surface-Wave Tomography. Earth and Planetary Science Letters, 417: 132-141. https://doi.org/10.1016/j.epsl.2015.02.024 Chen, M., Niu, F. L., Liu, Q. Y., et al., 2015. Multi-Parameter Adjoint Tomography of the Crust and Upper Mantle beneath East Asia-Part I: Model Construction and Comparisons. Journal of Geophysical Research: Solid Earth, 120(3): 1762-1786. https://doi.org/10.1002/2014JB011638 Hall, R., 2012. Late Jurassic-Cenozoic Reconstructions of the Indonesian Region and the Indian Ocean. Tectonophysics, 570/571: 1-41. https://doi.org/10.1016/j.tecto.2012.04.021 Huang, J. L., Zhao, D. P., 2006. High-Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research: Solid Earth, 111: B09305. https://doi.org/10.1029/2005JB004066 James, D. E., 1989. Encyclopedia of Solid Earth Geophysics. Van Nostrand Reinhold Co., New York. Jolivet, L., Hataf, H. C., 2001. Geodynamics. Lisse, A. A., Balkema, Pub., James, D. E., 1989. Encyclopedia of Solid Earth Geophysics. Van Nostrand Reinhold Co., New York. Laske, G., Masters, G., Ma, Z., et al., 2012. CRUST1.0: An Updated Global Model of Earth's Crust. EGU General Assembly Conference, Vienna, Austria. Ma, L. F., et al., 2005. Acta of Chinese Geology. Geology Publishing House, Beijing (in Chinese). Mavko, G., Mukerji, T., Dvorkin, J., 2009. The Rock Physics Handbook. Cambridge University Press, Cambridge. Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2006. Petrology and Geochemistry of Postcollisional Volcanic Rocks from the Tibetan Plateau: Implications for Lithosphere Heterogeneity and Collision-Induced Asthenospheric Mantle Flow. Special Paper of the Geological Society of America, 409: 507-530. Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2007. Migration of the Tibetan Cenozoic Potassic Volcanism and Its Transition to Eastern Basaltic Province: Implications for Crustal and Mantle Flow. Geoscience, 21(2): 255-264(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2007.02.010 Mooney, W. D., Laske, G., Masters, T. G., et al., 1998. CRUST 5.1: A Global Crustal Model at 5×5 Degrees. Journal of Geophysical Research: Solid Earth, 103(B1): 727-747. https://doi.org/10.1029/97JB02122 Qu, C., Liu, X. Y., Yu, C. Q., et al., 2020. S Wave Velocity and Poisson's Ratio Tomography of the Tibetan Plateau. Chinese Journal of Geophysics, 63(10): 3640-3652(in Chinese with English abstract). doi: 10.6038/cjg2020N0236 Qu, C., Yang, W. C., Yu, C. Q., 2013. Seismic Velocity Tomography and Poisson's Ratio Imaging in Tarim Basin. Earth Science Frontiers, 20(5): 196-206(in Chinese with English abstract). Rogers, J. J., Santosh, M., 2004. Continents and Supercontinents. Oxford University Press, Oxford. Wang, C. Y., Lou, H., Lü, Z. Y., et al., 2008. S-Wave Velocity Structure of Crust and Upper Mantle in Eastern Qinghai-Tibet Plateau: Deep Environment of Lower Crust Flow. Science in China (Series D: Earth Sciences), 38(1): 22-32(in Chinese with English abstract). doi: 10.3321/j.issn:1006-9267.2008.01.003 Woodhouse, J. H., Dziewonski, A. M., 1984. Mapping the Upper Mantle: Three-Dimensional Modeling of Earth Structure by Inversion of Seismic Waveforms. Journal of Geophysical Research: Solid Earth, 89(B7): 5953-5986. https://doi.org/10.1029/jb089ib07p05953 Xu, Y., Liu, F. T., Liu, J. H., et al., 2002. Crust and Upper Mantle Structure beneath Western China from P Wave Travel Time Tomography. Journal of Geophysical Research: Solid Earth, 107(B10): ESE 4-1-ESE 4-15. https://doi.org/10.1029/2001JB000402 Xu, Y., Liu, J. S., Huang, Z. X., et al., 2014. Upper Mantle Velocity Structure and Dynamic Features of the Tibetan Plateau. Chinese Journal of Geophysics, 57(12): 4085-4096(in Chinese with English abstract). doi: 10.6038/cjg20141220 Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2007. The Orogenic Tibetan Plateau. Geology Publishing House, Beijing (in Chinese). Yang, W. C., 1986. Computed Tomography for Seismic Body Waves and Earth Imaging. Earthquake Research in China, 2(3): 1-13(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=ZGZD198603002&dbcode=CJFD&year=1986&dflag=pdfdown Yang, W. C., 1989. Geophysical Inversion and Seismic Tomography. Geological Publishing House, Beijing(in Chinese). Yang, W. C., 2013. Reflection Seismology: Theory, Data Processing and Interpretation. Elsevier, Waltham. Yang, W. C., Zeng, X. Z., 2020a. Continental Dynamics with Cognition of Earth Matter Movement. Geological Review, 66(1): 1-12(in Chinese with English abstract). Yang, W. C., 2020b. On Composition, Attributes Andphases of the Shallow-Mantle System. Geological Review, 66(2): 263-275(in Chinese with English abstract). Yang, W. C., 2020c. On Dynamic Processes of the Shallow-Mantle System. Geological Review, 66(3): 521-532(in Chinese with English abstract). Yang, W. C., Jin, S., Zhang, L. L., et al., 2020d. The Three-Dimensional Resistivity Structures of the Lithosphere beneath the Qinghai-Tibet Plateau. Chinese Journal of Geophysics, 63(3): 817-827(in Chinese with English abstract). Yang, W. C., Du, J. Y., 1993. Approaches to Solve Nonlinear Problems of the Seismic Tomography. Acoustical Imaging. Springer US, Boston, MA: 591-603. https://doi.org/10.1007/978-1-4615-2958-3_81 Yang, W. C., Hou, Z. Z., Xu, Y. X., et al., 2017. A Study on Thermal Deformation and Lower Crust Channel Flows in Qinghai-Xizang(Tibet) Plateau. Geological Review, 63(5): 1141-1152(in Chinese with English abstract). Yang, W. C., Hou, Z. Z., Yu, C. Q., 2015a. Three-Dimensional Density Structure of the Tibetan Plateau and Crustal Mass Movement. Chinese Journal of Geophysics, 58(11): 4223-4234(in Chinese with English abstract). Yang, W. C., Sun, Y. Y., Yu, C. Q., 2015b. Crustal Density Deformation Zones of Qinghai-Tibet Plateau and Their Geological Implications. Chinese Journal of Geophysics, 58(11): 4115-4128(in Chinese with English abstract). Yang, W. C., Qu, C., Ren, H. R., et al., 2019a. Crustal P-Wave Seismic Tomography of the Qinghai-Xizang(Tibetan) Plateau. Geological Review, 65(1): 2-14(in Chinese with English abstract). Yang, W. C., Jiang, J. S., Qu, C., et al., 2019b. A Study on Origin of Cenozoic Rifts in Qinghai-Xizang(Tibetan) Plateau. Geological Review, 65(2): 267-279(in Chinese with English abstract). Yang, W. C., Qu, C., Ren, H. R., et al., 2019c. The Asthenosphere of the Qinghai-Xizang (Tibetan) Plateau and Subduction of the Tethys Ocean. Geological Review, 65(3): 521-532 (in Chinese with English abstract). Yang, W. C., 2019d. A New Mode for Continental Accretion Induced by Interaction between the Lithosphere and Asthenosphere. Geological Review, 65(5): 1039-1053(in Chinese with English abstract). Yang, W. C., Song, H. B., Yang, W. Y., 2008. Crustal Structure and Evolution of the Sichuan-Gansu-Qinghai Flysch Basin. Acta Geologica Sinica, 82(9): 1169-1177(in Chinese with English abstract). Yang, W. C., Yu, C. Q., 2014. Continental Collision Process Reveled by Worldwide Comparison of Crust and Upper Mantle Structures(I). Geological Review, 60(2): 237-259(in Chinese with English abstract). 马丽芳等, 2005. 中国地质图集. 北京: 地质出版社. 莫宣学, 赵志丹, 邓晋福, 等, 2007. 青藏新生代钾质火山活动的时空迁移及向东部玄武岩省的过渡: 壳幔深部物质流的暗示. 现代地质, 21(2): 255-264. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702011.htm 瞿辰, 刘晓宇, 于常青, 等, 2020. 青藏高原S波和泊松比的层析成像. 地球物理学报, 63(10): 3640-3652. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202010005.htm 瞿辰, 杨文采, 于常青, 2013. 塔里木盆地地震波速扰动及泊松比成像. 地学前缘, 20(5): 196-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201305021.htm 王椿镛, 楼海, 吕智勇, 等, 2008. 青藏高原东部地壳上地幔S波速度结构: 下地壳流的深部环境. 中国科学(D辑: 地球科学), 38(1): 22-32. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200801003.htm 胥颐, 刘劲松, 黄忠贤, 等, 2014. 青藏高原上地幔速度结构及其动力学性质. 地球物理学报, 57(12): 4085-4096. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201412021.htm 许志琴, 杨经绥, 李海兵, 等, 2007. 造山的高原-青藏高原的地体拼合、碰撞造山及隆升机制. 北京: 地质出版社. 杨文采, 1986. 应用地震体波的CT技术和地球探查. 中国地震, 2(3): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD198603002.htm 杨文采, 1989. 地球物理反演与地震层析成像. 北京: 地质出版社. 杨文采, 曾祥芝, 2020a. 认知地球物质运动的大陆动力学方法. 地质论评, 66(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202001001.htm 杨文采, 2020b. 浅地幔系统的组成和属性相态. 地质论评, 66(2): 263-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002002.htm 杨文采, 2020c. 浅地幔系统的动力学作用. 地质论评, 66(3): 521-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202003001.htm 杨文采, 金胜, 张罗磊, 等, 2020d. 青藏高原岩石圈三维电性结构. 地球物理学报, 63(3): 817-827. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202003005.htm 杨文采, 侯遵泽, 徐义贤, 等, 2017. 青藏高原下地壳热变形和管道流研究. 地质论评, 63(5): 1141-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201705003.htm 杨文采, 侯遵泽, 于常青, 2015a. 青藏高原地壳的三维密度结构和物质运动. 地球物理学报, 58(11): 4223-4234. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511029.htm 杨文采, 孙艳云, 于常青, 2015b. 青藏高原地壳密度变形带及构造分区. 地球物理学报, 58(11): 4115-4128. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511020.htm 杨文采, 瞿辰, 任浩然, 等, 2019a. 青藏高原地壳地震纵波速度的层析成像. 地质论评, 65(1): 2-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201901002.htm 杨文采, 江金生, 瞿辰, 等, 2019b. 西藏新生代裂谷系成因的探讨. 地质论评, 65(2): 267-279. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201902001.htm 杨文采, 瞿辰, 任浩然, 等, 2019c. 青藏高原软流圈与特提斯洋板块俯冲. 地质论评, 65(3): 521-532. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201903001.htm 杨文采, 2019d. 岩石圈—软流圈物质循环促进大陆增生的新方式. 地质论评, 65(5): 1039-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201905001.htm 杨文采, 宋海斌, 杨午阳, 2008. 川甘青复理石盆地地壳结构与演化. 地质学报, 82(9): 1169-1177. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200809002.htm 杨文采, 于常青, 2014. 从地壳上地幔构造看大陆碰撞作用(上). 地质论评, 60(2): 237-259. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201402001.htm