• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    关于我国天体生物学研究的思考

    林巍 申建勋 潘永信

    林巍, 申建勋, 潘永信, 2022. 关于我国天体生物学研究的思考. 地球科学, 47(11): 4108-4113. doi: 10.3799/dqkx.2022.883
    引用本文: 林巍, 申建勋, 潘永信, 2022. 关于我国天体生物学研究的思考. 地球科学, 47(11): 4108-4113. doi: 10.3799/dqkx.2022.883
    Lin Wei, Shen Jianxun, Pan Yongxin, 2022. On Astrobiological Research in China. Earth Science, 47(11): 4108-4113. doi: 10.3799/dqkx.2022.883
    Citation: Lin Wei, Shen Jianxun, Pan Yongxin, 2022. On Astrobiological Research in China. Earth Science, 47(11): 4108-4113. doi: 10.3799/dqkx.2022.883

    关于我国天体生物学研究的思考

    doi: 10.3799/dqkx.2022.883
    基金项目: 

    国家自然科学基金项目 41621004

    中国科学院重点部署项目 ZDBS-SSW-TLC001

    中国科学院地质与地球物理研究所重点部署项目 IGGCAS-201904

    中国科学院地质与地球物理研究所重点部署项目 IGGCAS-202102

    详细信息
      作者简介:

      林巍(1983-),男,研究员,天体生物学专业. E-mail:weilin@mail.iggcas.ac.cn

    • 中图分类号: P149

    On Astrobiological Research in China

    • 摘要: 探索地外宜居环境和生命信号是深空探测的重要科学目标.天体生物学在宇宙演化的背景下研究生命的起源、演化、分布和未来,是由地球科学、生命科学、空间科学、天文学、化学等多学科融合形成的一门前沿交叉学科.随着人类深空探测的不断进步,天体生物学的研究内涵在不断拓展,其研究方式也更趋于多元和交叉.概述了天体生物学的内涵和发展态势,研判我国天体生物学研究所面临的机遇与挑战,并对我国在该领域的发展提出了建议.

       

    • Baross, J. A., Anderson, R. E., Stüeken, E. E., 2020. The Environmental Roots of the Origin of Life. In: Meadows, V. S., Arney, G. N., Schmidt, B. E., et al., eds., Planetary Astrobiology. University of Arizona Press, Tucson, 71-92.
      Board, S. S., 2019. National Academies of Sciences, Engineering, and Medicine: An Astrobiology Strategy for the Search for Life in the Universe. National Academies Press, Washington.
      Bottke, W. F., Norman, M. D., 2017. The Late Heavy Bombardment. Annu. Rev. Earth Pl. Sc., 45: 619-647. https://doi.org/10.1146/annurev-earth-063016-020131
      Cabrol, N. A., 2018. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures. Astrobiology, 18(1): 1-27. https://doi.org/10.1089/ast.2017.1756
      Chan, M. A., Hinman, N. W., Potter-McIntyre, S. L., et al., 2019. Deciphering Biosignatures in Planetary Contexts. Astrobiology, 19(9): 1075-1102. https://doi.org/10.1089/ast.2018.1903
      Chen, J. W., Ge, J. W., Feng, L., et al., 2020. Methane Flux Characteristics and Its Relationship with Soil Microbial Community Composition of Dajiuhu Peatland in Shennongjia. Earth Science, 45(3): 1082-1092 (in Chinese with English abstract).
      Conrad, P. G., Archer, D., Atreya, S., et al., 2013. Habitability Assessment at Gale Crater: Implications from Initial Results. 44th Lunar and Planetary Science Conference, Woodlands.
      Dundas, C. M., McEwen, A. S., Chojnacki, M., et al., 2017. Granular Flows at Recurring Slope Lineae on Mars Indicate a Limited Role for Liquid Water. Nat. Geosci., 10: 903-907. https://doi.org/10.1038/s41561-017-0012-5
      Ehlmann, B. L., Edwards, C. S., 2014. Mineralogy of the Martian Surface. Annual Review of Earth and Planetary Sciences, 42: 291-315. https://doi.org/10.1146/annurev-earth-060313-055024
      Eigenbrode, J. L., Summons, R. E., Steele, A., et al., 2018. Organic Matter Preserved in 3-Billion-Year-Old Mudstones at Gale Crater, Mars. Science, 360(6393): 1096-1101. https://doi.org/10.1126/science.aas9185
      Geng, Y., Zhang, R. Q., He, R. W., et al., 2022. The Science-Technology and Management Innovation for China's First Mars Exploration Mission. Frontiers of Science and Technology of Engineering Management, 41(1): 3-8 (in Chinese with English abstract).
      Gibney, E., 2022. Asteroids, Hubble Rival and Moon Base: China Sets out Space Agenda. Nature, 603(7899): 19-20. https://doi.org/10.1038/d41586-022-00439-2
      Green, J., Hoehler, T., Neveu, M., et al., 2021. Call for a Framework for Reporting Evidence for Life beyond Earth. Nature, 598(7882): 575-579. https://doi.org/10.1038/s41586-021-03804-9
      Hansen, C. J., Castillo-Rogez, J., Grundy, W., et al., 2021. Triton: Fascinating Moon, Likely Ocean World, Compelling Destination! The Planetary Science Journal, 2: 137. https://doi.org/10.3847/psj/abffd2
      Hays, L., Archenbach, L., Bailey, J., et al., 2015. NASA Astrobiology Strategy. NASA, Washington.
      Hendrix, A. R., Hurford, T. A., Barge, L. M., et al., 2019. The NASA Roadmap to Ocean Worlds. Astrobiology, 19(1): 1-27. https://doi.org/10.1089/ast.2018.1955
      Hoehler, T. M., Bains, W., Davila, A., et al., 2020. Life's Requirements, Habitability, and Biological Potential. In: Meadows, V. S., Arney, G. N., Schmidt, B. E., et al., eds., Planetary Astrobiology. University of Arizona Press, Arizona, 37-70.
      Jakosky, B. M., Brain, D., Chaffin, M., et al., 2018. Loss of the Martian Atmosphere to Space: Present-Day Loss Rates Determined from MAVEN Observations and Integrated Loss through Time. Icarus, 315: 146-157. https://doi.org/10.1016/j.icarus.2018.05.030
      Jia, X., Kivelson, M. G., 2021. The Magnetosphere of Ganymede. In: Maggiolo, R., André, N., Hasegawa, H., et al., eds., Magnetospheres in the Solar System. Wiley, Hoboken, 557-573. https://doi.org/10.1002/9781119815624.ch35
      Kivelson, M. G., Khurana, K. K., Volwerk, M., 2009. Europa's Interaction with the Jovian Magnetosphere. In: Pappalardo, R. T., McKinnon, W. B., Khurana, K. K., eds., Europa. University of Arizona Press, Arizona, 545-570.
      Klein, H. P., Horowitz, N. H., Levin, G. V., et al., 1976. The Viking Biological Investigation: Preliminary Results. Science, 194(4260): 99-105. https://doi.org/10.1126/science.194.4260.99
      Kminek, G., Meyer, M. A., Beaty, D. W., et al., 2022. Mars Sample Return (MSR): Planning for Returned Sample Science. Astrobiology, 22: S1-S4. doi: 10.1089/ast.2021.0198
      Knauth, L. P., Burt, D. M., Wohletz, K. H., 2005. Impact Origin of Sediments at the Opportunity Landing Site on Mars. Nature, 438(7071): 1123-1128. https://doi.org/10.1038/nature04383
      Koonin, E. V., Dolja, V. V., Krupovic, M., et al., 2021. Viruses Defined by the Position of the Virosphere within the Replicator Space. Microbiol. Mol. Biol. Rev., 85(4): e0019320. https://doi.org/10.1128/mmbr.00193-20
      Korablev, O., Vandaele, A. C., Montmessin, F., et al., 2019. No Detection of Methane on Mars from Early ExoMars Trace Gas Orbiter Observations. PLoS One, 568(7753): 517-520. https://doi.org/10.1038/s41586-019-1096-4
      Li, C., Zheng, Y., Wang, X., et al., 2022. Layered Subsurface in Utopia Basin of Mars Revealed by Zhurong Rover Radar. Nature, 610(7931): 308-312. https://doi.org/10.1038/s41586-022-05147-5
      Lin, W., Li, Y. L., Wang, G. H., et al., 2020. Overview and Perspectives of Astrobiology. Chinese Science Bulletin, 65(5): 380-391 (in Chinese). doi: 10.1360/TB-2019-0396
      Liu, J. J., Li, C. L., Zhang, R. Q., et al., 2021. Geomorphic Contexts and Science Focus of the Zhurong Landing Site on Mars. Nature Astronomy, 6: 65-71. https://doi.org/10.1038/s41550-021-01519-5
      Liu, R., Ma, T., Qiu, W., et al., 2020. The Environmental Functions and Ecological Effects of Organic Carbon in Silt. Journal of Earth Science, 31(6): 834-844. https://doi.org/10.1007/s12583-020-1349-z
      Liu, Y., Wu, X., Zhao, Y. S., et al., 2022. Zhurong Reveals Recent Aqueous Activities in Utopia Planitia, Mars. Science Advances, 8(19): eabn8555. https://doi.org/10.1126/sciadv.abn8555
      Lopes, R. M. C., Kirk, R. L., Mitchell, K. L., et al., 2013. Cryovolcanism on Titan: New Results from Cassini RADAR and VIMS. J. Geophys. Res-Planet., 118: 416-435. 10.1002/jgre. 20062 doi: 10.1002/jgre.20062
      McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al., 1996. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001. Science, 273(5277): 924-930. https://doi.org/10.1126/science.273.5277.924
      Ménez, B., Pisapia, C., Andreani, M., et al., 2018. Abiotic Synthesis of Amino Acids in the Recesses of the Oceanic Lithosphere. Nature, 564(7734): 59-63. https://doi.org/10.1038/s41586-018-0684-z
      Mojzsis, S. J., 2021. Habitable Potentials. Nature Astronomy, 5: 1083-1085. https://doi.org/10.1038/s41550-021-01529-3
      Nakamura, E., Kobayashi, K., Tanaka, R., et al., 2022. On the Origin and Evolution of the Asteroid Ryugu: A Comprehensive Geochemical Perspective. Proceedings of the Japan Academy Series B, Physical and Biological Sciences, 98(6): 227-282. https://doi.org/10.2183/pjab.98.015
      Onstott, T. C., Ehlmann, B. L., Sapers, H., et al., 2019. Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration. Astrobiology, 19(10): 1230-1262. https://doi.org/10.1089/ast.2018.1960
      Pan, Y. X., Wang, C., 2021. Developing the Planetary Science Research for the Sustainable Deep Space Exploration of China. Bulletin of National Natural Science Foundation of China, 35(2): 181-185 (in Chinese with English abstract).
      Postberg, F., Khawaja, N., Abel, B., et al., 2018. Macromolecular Organic Compounds from the Depths of Enceladus. Nature, 558(7711): 564-568. https://doi.org/10.1038/s41586-018-0246-4
      Rampe, E. B., Blake, D. F., Bristow, T. F., et al., 2020. Mineralogy and Geochemistry of Sedimentary Rocks and Eolian Sediments in Gale Crater, Mars: A Review after Six Earth Years of Exploration with Curiosity. Geochemistry, 80: 125605. https://doi.org/10.1016/j.chemer.2020.125665
      Schulze-Makuch, D., Mendez, A., Fairen, A. G., et al., 2011. A Two-Tiered Approach to Assessing the Habitability of Exoplanets. Astrobiology, 11: 1041-1052. https://doi.org/10.1089/ast.2010.0592
      Shen, J., Chen, Y., Sun, Y., et al., 2022. Detection of Biosignatures in Terrestrial Analogs of Martian Regions: Strategical and Technical Assessments. Earth and Planetary Physics, 6(5): 431-450. https://doi.org/10.26464/epp2022042
      Soffen, G. A., 1997. Astrobiology from Exobiology: Viking and the Current Mars Probes. Acta Astronautica, 41(4-10): 609-611. https://doi.org/10.1016/s0094-5765(98)00055-1
      Solomon, S. C., Aharonson, O., Aurnou, J. M., et al., 2005. New Perspectives on Ancient Mars. Science, 307: 1214-1220. https://doi.org/10.1126/science.1101812
      Squyres, S. W., Arvidson, R. E., Ruff, S., et al., 2008. Detection of Silica-Rich Deposits on Mars. Science, 320(5879): 1063-1067. https://doi.org/10.1126/science.1155429
      Webster, C. R., Mahaffy, P. R., Atreya, S. K., et al., 2018. Background Levels of Methane in Mars' Atmosphere Show Strong Seasonal Variations. Science, 360(6393): 1093-1096. https://doi.org/10.1126/science.aaq0131
      Weller, M. B., Lenardic, A., 2018. On the Evolution of Terrestrial Planets: Bi-Stability, Stochastic Effects, and the Non-Uniqueness of Tectonic States. Geosci. Front., 9: 91-102. https://doi.org/10.1016/j.gsf.2017.03.001
      Ye, P. J., Zou, L. Y., Wang, D. Y., et al., 2018. Development and Prospect of Chinese Deep Space Exploration. Space International, (10): 4-10 (in Chinese).
      谌佳伟, 葛继稳, 冯亮, 等, 2020. 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系. 地球科学, 45(3): 1082-1092. doi: 10.3799/dqkx.2019.289
      耿言, 张荣桥, 赫荣伟, 等, 2022. 首次火星探测任务的科技与管理创新. 工程管理科技前沿, 41(1): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YUCE202201002.htm
      林巍, 李一良, 王高鸿, 等, 2020. 天体生物学研究进展和发展趋势. 科学通报, 65(5): 380-391. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202005009.htm
      潘永信, 王赤, 2021. 国家深空探测战略可持续发展需求: 行星科学研究. 中国科学基金, 35(2): 181-185. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ202102004.htm
      叶培建, 邹乐洋, 王大轶, 等, 2018. 中国深空探测领域发展及展望. 国际太空, (10): 4-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201810002.htm
    • 加载中
    计量
    • 文章访问数:  1599
    • HTML全文浏览量:  554
    • PDF下载量:  118
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-10-24
    • 网络出版日期:  2022-12-07
    • 刊出日期:  2022-11-25

    目录

      /

      返回文章
      返回