Study of Dynamic Response of Soft and Hard Interbedded Rock Slopes under Earthquakes
-
摘要: 软硬互层顺层岩质边坡在我国强震区广泛存在,地震极易诱发该类边坡产生地质灾害. 针对地震作用下软硬互层顺层岩质边坡动力响应关键科学问题开展研究,基于离散元数值模拟法,揭示了软硬互层顺层岩质边坡动力响应规律,分析了不同边坡特征因素对其动力响应的影响. 结果表明:地震作用下软硬互层边坡变形破坏主要受软硬岩间层面控制,坡表剪切口和软岩位移增量明显;地震波在传播过程中,软硬岩层对地震加速度具有放大作用,其中软岩的放大作用更明显;地震波频谱特征显示:当地震波从硬岩传播至软岩时,多个固定频段被显著放大,当从软岩传播至硬岩时,频谱有所降低;坡表位移和加速度放大系数随软岩和层面强度的增加而减小,随层厚比的增加而增大;软岩强度和层厚比会改变地震波中显著放大频段的位置,二者增大时,放大频段的数量不变,频率减小;岩层层面强度降低时,放大频段的数量和频率不变,放大程度增大.Abstract: Soft and hard interbedded rock slopes are widely distributed in meizoseismal areas of China and geological disasters are prone to be induced on such slopes due to earthquakes. In this paper, the key scientific issues of the dynamic response of soft and hard interbedded rock slopes under earthquakes were studied. The discrete element numerical simulation method was used to reveal the dynamic response of soft and hard interbedded rock slopes and influences of different slope factors on the dynamic response. The results show that bedding planes between soft and hard rocks play a main control role in the deformation and failure of the slope. Displacements obviously increase on the shear outlets and soft rock of the slope surface. Accelerations of seismic waves are amplified by soft and hard strata during the propagation of seismic wave and soft rocks have a significant amplification effect on the accelerations. The seismic wave spectra show that multiple fixed frequency bands are obviously amplified when the seismic wave propagates from hard rocks to soft rocks; the spectra decrease when the seismic wave propagates from soft rocks to hard rocks. The displacements and the amplification coefficients of acceleration decrease with the increase of the strength of soft rocks and bedding planes, while increase with the increase of thickness ratio. The locations of obviously amplified frequency bands are influenced by the strength of soft rocks and bedding planes. When the strength of soft rocks and bedding planes increase, the number of amplified bands remains the same and frequencies decrease. The reduction of the strength of bedding planes will not change the number and frequency of the amplified bands, but increase the degree of amplification.
-
表 1 岩石物理力学指标
Table 1. Physical and mechanical indices of rock
序号 密度(kg·m-3) 粘聚力(MPa) 内摩擦角(°) 体积模量(GPa) 剪切模量(GPa) 抗拉强度(MPa) 1
2
3
42 000
2 150
2 350
2 6500.30
0.45
0.60
1.5030
35
40
500.17
0.83
3.48
10.000.11
0.48
1.38
5.400.10
0.22
0.60
0.80表 2 岩层层面物理力学指标
Table 2. Physical and mechanical indices of bedding plane
序号 粘聚力(MPa) 内摩擦角(°) 法向刚度(GPa·m-1) 切向刚度(GPa·m-1) 1
2
30.1
0.1
0.120
30
4012
12
126
6
6表 3 数值模拟加载方案
Table 3. Loading schemes of numerical simulation
工况 软岩强度 岩层层面强度 层厚比 1
2
3
4
5
6
71
2
3
3
3
3
3B
B
B
A
C
B
B1.0
1.0
1.0
1.0
1.0
0.5
1.5 -
Cui, F. P., Xu, Q., Yin, Y. P., et al., 2018. Dynamic Response of Slope Based on Fracture Mechanisms of Strip-Shape Hypocenter. Rock and Soil Mechanics, 39(1): 320-330(in Chinese with English abstract). Dong, M. L., Zhang, F. M., Lv, J. Q., et al., 2020. Study on Deformation and Failure Law of Soft-Hard Rock Interbedding Toppling Slope Base on Similar Test. Bulletin of Engineering Geology and the Environment, 79(9): 4625-4637. https://doi.org/10.1007/s10064-020-01845-4 Du, X. L., Dai, J., Wei, J. S., et al., 2009. Application of Seismic Wave Theory to Analysis of Rock Slope Stability. Journal of China Three Gorges University(Natural Sciences), 31(2): 55-58(in Chinese with English abstract). Feng, J., Zhang, Y. B., He, J. X., et al., 2022. Dynamic Response and Failure Evolution of Low-Angled Interbedding Soft and Hard Stratum Rock Slope under Earthquake. Bulletin of Engineering Geology and the Environment, 81(10): 1-10. https://doi.org/10.1007/s10064-022-02910-w Gao, G., Meguid, M. A., Chouinard, L. E., et al., 2021. Dynamic Disintegration Processes Accompanying Transport of an Earthquake-Induced Landslide. Landslides, 18(3): 909-933. https://doi.org/10.1007/s10346-020-01508-1 Guo, M. Z., Gu, K. S., Zhang, H., et al., 2022. Experimental Study of Dynamic Response Law of Bedding Rock Slopewith Weak Interlayer under Strong Earthquake. Rock and Soil Mechanics, 43(5): 1306-1316(in Chinese with English abstract). Huang, Y. D., Xu, C., Zhang, X. L., et al., 2021. An Updated Database and Spatial Distribution of Landslides Triggered by the Milin, Tibet Mw 6.4 Earthquake of 18 November 2017. Journal of Earth Science, 32(5): 1069-1078. https://doi.org/10.1007/s12583-021-1433-z Li, L. Q., He, W., Wang, T., et al., 2020. Study on Fracture Development Characteristics and Marginal Spectral Entropy Response of Soft and Hard Interbedded Slope with Steep Inclination Subjected to Strong Earthquakes. Rock and Soil Mechanics, 41(10): 3456-3464 (in Chinese with English abstract). Li, Y. J., Chen, L. W., Lu, Y. Z., et al., 2013. Numerical Simulation on Influences of Wenchuan Earthquake onthe Stability of Faults in the Neighborhood. Earth Science, 38(2): 398-410(in Chinese with English abstract). Lin, M. L., Wang, K. L., 2006. Seismic Slope Behavior in a Large-Scale Shaking Table Model Test. Engineering Geology, 86(2/3): 118-133. https://doi.org/10.1016/j.enggeo.2006.02.011 Liu, B., He, K., Han, M., et al., 2021. Dynamic Process Simulation of the Xiaogangjian Rockslide Occurred in Shattered Mountain Based on 3DEC and DFN. Computersand Geotechnics, 134: 104122. https://doi.org/10.1016/j.compgeo.2021.104122 Liu, C. L., Qi, S. W., Tong, L. Q., et al., 2010. Great Landslides in Himalaya Mountain Area and Their Occurrence with Lithology. Journal of Engineering Geology, 18(5): 669-676(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2010.05.010 Liu, X. R., He, C. M., Liu, S. L., et al., 2019. Dynamic Stability of Slopes with Interbeddings of Soft and Hard Layers under High-Frequency Microseims. Chinese Journal of Geotechnical Engineering, 41(3): 430-438(in Chinese with English abstract). Luo, D. G., Liu, J. P., Jin, C., et al., 2017. Instantaneous Seismic Attributes and Response Characteristics of Active Faults. Earth Science, 42(3): 462-470(in Chinese with English abstract). Luo, Y. H., Fan, X. M., Huang, R. Q., et al., 2020. Topographic and Near-Surface Stratigraphic Amplification of the Seismicresponse of a Mountain Slope Revealed by Field Monitoring and Numericalsimulations. Engineering Geology, 271: 105607. https://doi.org/10.1016/j.enggeo.2020.105607 Luo, Y. H., Zhang, Y., Wang, Y. S., et al., 2021. A Unique Failure Model for a Landslide Induced by the Wenchuan Earthquake in the Liujiawan Area, Qingchuan County, China. Engineering Geology, 295: 106412. https://doi.org/10.1016/j.enggeo.2021.106412 Mreyen, A., Donati, D., Elmo, D., et al., 2022. Dynamic Numerical Modelling of Co-Seismic Landslides Using the 3D Distinct Element Method: Insights from the Balta Rockslide (Romania) Engineering Geology, 307: 106774. https://doi.org/10.1016/j.enggeo.2022.106774 Pal, S., Kaynia, A. M., Bhasin, R. K., et al., 2012. Earthquake Stability Analysis of Rock Slopes; A Case Study. Rock Mechanics and Rock Engineering, 45(2): 205-215. https://doi.org/10.1007/s00603-011-0145-6 Qi, S. W., Xu, Q., Lan, H. X., et al., 2010. Spatial Distribution Analysis of Landslides Triggered by 2008.5. 12 Wenchuan Earthquake, China. Engineering Geology, 116(1-2): 95-108. https://doi.org/10.1016/j.enggeo.2010.07.011 Wu, J. H., Chen, C. H., 2011. Application of DDA to Simulate Characteristics of the Tsaoling Landslide. Computersand Geotechnics, 38(5): 741-750. https://doi.org/10.1016/j.compgeo.2011.04.003. Wu, J. H., Hsieh, P. H., 2021. Simulating the Postfailure Behavior of the Seismically- Triggered Chiu-fen-erh-shan Landslide Using 3DEC. Engineering Geology, 287: 106113. https://doi.org/10.1016/j.enggeo.2021.106113 Wu, Q., Kulatilake, P. H. S. W., 2012. REV and Its Properties on Fracture System and Mechanical Properties, and An Orthotropic Constitutive Model for A Jointed Rock Mass in A DamSite in China. Computers and Geotechnics, 43: 124-142. https://doi.org/10.1016/j.compgeo.2012.02.010. Wu, S. B., Wang, L. Q., Wu, Q., et al., 2022. Advance and Prospect for Seismic Dynamic Response of Anchored Rock Slope. Earth Science, 1-13(in Chinese with English abstract). Xu, W. J., Wang, L., Cheng, K., 2022. The Failure and River Blocking Mechanism of Large‑Scale Anti‑dip Rock Landslide Induced by Earthquake. Rock Mechanics and Rock Engineering, 55(8): 4941-4961. https://doi.org/10.1007/s00603-022-02903-x Yan, Z. X., Zhang, S., Zhang, X. D., et al., 2011. Study of Dynamic Response of Bedding Rock Slope under Earthquake and Influence of Ground Motion Parameters. Chinese Journal of Rock Mechanics and Engineering, 30(S2): 3522-3528(in Chinese with English abstract). Zhang, Y. B., Wang, J. M., Xu, Q., et al., 2015. DDAValidation of the Mobility of Earthquake-Induced Landslides. Engineering Geology, 194: 38-51. https://doi.org/10.1016/j.enggeo.2014.08.024 Zhao, F., Yu, S. B., Li, B., et al., 2022. Research Advances on Large-Scale Shaking Table Test for Rocky Slopes under Earthquake. Earth Science, 1-13(in Chinese with English abstract). Zheng, Y. R., Zhao, S. Y., Zhang, L. Y., 2002. Slope Stability Analysis by Strength Reduction FEM. Engineering Science, (10): 57-61(in Chinese with English abstract). Zou, Y., Qi, S. W., Guo, S. F., et al., 2022. Factors Controlling the Spatial Distribution of Coseismic Landslides Triggered by the Mw 6.1 Ludian Earthquake in China. Engineering Geology, 296, 106477. https://doi.org/10.1016/j.enggeo.2021.106477 崔芳鹏, 许强, 殷跃平, 等, 2018. 基于带状震源破裂机制的斜坡动力响应. 岩土力学, 39(1): 320-330. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801040.htm 杜晓丽, 戴俊, 魏京胜, 等, 2009. 岩质边坡稳定性分析中地震波理论的应用研究. 三峡大学学报(自然科学版), 31(2): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200902013.htm 郭明珠, 谷坤生, 张合, 等, 2022. 强震作用下含软弱夹层顺层岩质斜坡动力响应规律试验研究. 岩土力学, 43(5): 1306-1316. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202205016.htm 李龙起, 何川, 王滔, 等, 2020. 陡倾软硬互层顺向坡强震裂隙发育特征及边际谱熵值响应规律. 岩土力学, 41(10): 3456-3464. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010032.htm 李玉江, 陈连旺, 陆远忠, 等, 2013. 汶川地震的发生对周围断层稳定性影响的数值模拟. 地球科学, 38(2): 398-410. doi: 10.3799/dqkx.2013.039 刘春玲, 祁生文, 童立强, 等, 2010. 喜马拉雅山地区重大滑坡灾害及其与地层岩性的关系研究. 工程地质学报, 18(5): 669-676. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201005011.htm 刘新荣, 何春梅, 刘树林, 等, 2019. 高频次微小地震下顺倾软硬互层边坡动力稳定性研究. 岩土工程学报, 41(3): 430-438. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903005.htm 罗登贵, 刘江平, 金聪, 等, 2017. 活断层的地震响应特征与瞬时地震属性. 地球科学, 42(3): 462-470. doi: 10.3799/dqkx.2017.036 吴善百, 王亮清, 吴琼, 等, 2022. 地震作用下锚固岩质边坡动力响应研究进展与展望. 地球科学, 1-13. doi: 10.3799/dqkx.2022.374 言志信, 张森, 张学东, 等, 2011. 顺层岩质边坡地震动力响应及地震动参数影响研究. 岩石力学与工程学报, 30(S2): 3522-3528. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2022.htm 赵飞, 俞松波, 李博, 等, 2022. 地震作用下岩质边坡大型振动台试验研究进展. 地球科学, 1-13. doi: 10.3799/dqkx.2022.317 郑颖人, 赵尚毅, 张鲁渝, 2002. 用有限元强度折减法进行边坡稳定分析. 中国工程科学, (10): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200210010.htm