Spatial-Temporal Activity of Quaternary Faults at Southern End of Nyalam-Coqen Rift, Southern Tibet
-
摘要: 全面认识藏南裂谷近南北向正断层活动的时空特征及其差异性是深入理解其成因机制的关键.通过遥感解译、构造地貌分析、地表调查和无人机测量等方法,结合已有的年代学资料,对藏南聂拉木-措勤裂谷南段主要近南北向地堑及其边界正断层的第四纪活动和时空差异性进行了研究.结果表明,研究区第四纪正断层活动存在明显的时空差异性.在时间上,主要近南北向正断层的活动性存在前第四纪、早-中更新世和晚第四纪3个不同的期次.在空间上,近南北向地堑断陷范围自中新世晚期以来发生了明显萎缩,其活动范围自聂拉木一带逐渐萎缩至佩枯错和穆林错-错戳龙一带.另外,分析藏南裂谷的成因机制需考虑各裂谷近南北向正断层作用的时空差异性和特征.Abstract: A comprehensive understanding of the spatial and temporal differences in the activity of north-south trending normal faults is important to understand the formation of the southern Tibet Rifts. Here, we use the interpretation of high-resolution remote sensing images, structural geomorphology, ground survey, Unmanned Aerial Vehicles (UVA) systems for photogrammetric surveys, and published chronological data to investigate the Quaternary activities and spatial and temporal differences of the main north-south graben and its boundary normal faults at the southern end of the Nyalam-Coqen rift. It is found that the Quaternary activity of normal faults at the southern end of the Nyalam-Coqen rift show obvious spatial and temporal differences. In time, activity of normal faults at the southern end of the Nyalam-Coqen rift presents three periods of pre-Quaternary, Early and Middle Pleistocene, and Late Quaternary. In space, the rifting range of the near north-south grabens has shrunk significantly since the Late Miocene, and its rifting range gradually has shrunk from Nyalam area to Peiku Co and Mulin Co, and Drolung. In addition, the spatial and temporal differences and characteristics of the north-south normal faulting in each rift should be considered to analyze the formation mechanism of the southern Tibet rifts.
-
图 1 藏南主要活动断裂及研究区位置
a. 藏南主要活动断裂、裂谷及地震(M≥5)分布,底图为30 m分辨率的数字高程模型(下载自EARTHDATA),左下角青藏高原断裂格局修改自Tapponnier et al.(2001);裂谷展布根据遥感解译、野外调查并综合Armijo et al.(1986)、Wu et al.(2011)和哈广浩(2019)的结果绘制;COR.错那‒沃卡裂谷,YGR.亚东‒谷露裂谷,DXR.定结‒申扎裂谷,GTR.岗嘎‒当惹雍错裂谷,NCR.聂拉木‒措勤裂谷,ZTR.仲巴‒塔若错裂谷,JGR.江曲藏布‒改则裂谷,BWR.普兰‒文布当桑裂谷;GCR.格仁错断裂,BCR.崩错断裂,KF.喀喇昆仑断裂,JF.嘉黎断裂,MFT.主前锋逆冲断裂;b. 跨越藏南裂谷的横切剖面,地震数据为1900年以来的仪器地震记录,地震数据范围为剖面线两侧各140 km区域内;c. 聂拉木‒措勤裂谷,①聂拉木地堑,②吉隆盆地,③穆林错‒错戳龙地堑,④打加错地堑,⑤惩香错地堑,⑥帕如错地堑,⑦扎日南木错地堑;d. 研究区主要活断层及区域地质概图,地层根据1:250 000吉隆县幅(H45C004001)、聂拉木县幅(H45C004002)、萨嘎县幅(H45C003001)和桑桑区幅(H45C003002)地质图(下载自https://geocloud.cgs.gov.cn)改编,底图为12.5 m分辨率的数字高程模型(下载自EARTHDATA),F1.欧热断裂,F2.云多断裂,F3.柯亚东断裂,F4.柯亚西断裂,F5.浪强错断裂,F6.云多西断裂,F7.扎青断裂,F8.寺龙断裂,F9.佩枯错东缘断裂,F10.罗布断裂,F11.岗彭庆断裂,F12.佩枯错西缘断裂,F13.唐果断裂,F14.穆林错东缘断裂,F15.穆林错西缘断裂,F16.错戳龙断裂,F17.吉隆断裂,F18.吉隆西断裂
Fig. 1. Active faults in the southern Tibet and the location of study area
图 3 岗彭庆断裂断错地貌特征
a、b. 佩枯错西岸山前处该断裂错断洪积扇T3,数据“1~3”(14C)引自Wünnemann et al.(2015);c~e. 佩枯错西岸山前处由小型无人机(UVA)摄影测量获取的30 cm分辨率的数字高程影像和跨断层和洪积扇体的剖面;f ~g. 佩枯错西南岸山前处该断裂错断山前洪积扇面(T3);h、i. 佩枯错南拉曲一带该断裂错动晚更新世晚期冰川侧碛,10Be暴露年龄数据(花岗岩漂砾、宇宙核素暴露年龄)引自刘耕年等(2011);j. 郭强错一带该断裂错动基岩形成断层三角面
Fig. 3. Displaced geomorphic surfaces along the Gangpengqing Fault
图 10 聂拉木‒措勤裂谷南段断裂第四纪活动特征
图中黑色竖直线和灰色阴影代表断裂最新活动时间的范围,虚线代表断裂长度;F1.欧热断裂,F2.云多断裂,F3.柯亚东断裂,F4.柯亚西断裂,F5.浪强错断裂,F6.云多西断裂,F7.扎青断裂,F8.寺龙断裂,F9.佩枯错东缘断裂,F10.罗布断裂,F11.岗彭庆断裂,F12.佩枯错西缘断裂,F13.唐果断裂,F14.穆林错东缘断裂,F15.穆林错西缘断裂,F16.错戳龙断裂,F17.吉隆断裂,F18.吉隆西断裂
Fig. 10. Quaternary activity of the normal faults at the southern end of the Nyalam-Coqen rift, southern Tibet
图 11 聂拉木‒措勤裂谷南段构造变形模式和藏南裂谷主要断裂的晚第四纪垂直滑动速率
a~c. 聂拉木‒措勤裂谷南段构造变形模式,F1.欧热断裂,F3.柯亚东断裂,F4.柯亚西断裂,F5.浪强错断裂,F8.寺龙断裂,F11.岗彭庆断裂,F12.佩枯错西缘断裂,F17.吉隆断裂,F18.吉隆西断裂;d. 藏南裂谷主要断裂晚第四纪垂直活动速率(mm/a),如红色字体标注;“数据1”引自吴中海等(2015);“数据2”引自吴中海等(2006);“数据3”引自Kali et al.(2010);“数据4”引自吴中海等(2008);“数据5”引自Chevalier et al.(2020);“数据6”引自哈广浩(2019);“数据7”引自左嘉梦(2021);“数据8”引自Wang et al.(2020);“数据9”引自田婷婷(2021);“数据10”为本文数据
Fig. 11. Structural deformation model of the southern end of the Nyalam-Coqen rift and the Late Quaternary throw rates of major faults of southern Tibet rifts
表 1 聂拉木‒措勤裂谷南段正断层属性
Table 1. Attribute of normal faults at the southern end of the Nyalam-Coqen rift
所属地堑/盆地 断层名称 编号 断层产状 最新活
动时间断层
性质断层长度(km) 断裂主要活动证据 走向 倾向 倾角 佩枯错地堑 欧热断裂 F1 近南北向 西 60°~70° 早‒中更新世 正断层 41 未错动中更新世洪积台地和晚第四纪洪积扇体 云多东断裂 F2 近南北向 南西西 60°~70° 早‒中更新世 正断层 39 未错动中更新世洪积台地和晚第四纪洪积扇体 柯亚东断裂 F3 近南北向 东 60°~70° 早‒中更新世 正断层 26 未错动中更新世洪积台地和晚第四纪洪积扇体 柯亚西推测断裂 F4 近南北向 西 60°~70° 早‒中更新世 正断层 16 未错动中更新世洪积台地和晚第四纪洪积扇体 浪强错断裂 F5 近南北向 东 60°~70° 早‒中更新世 正断层 18 未错动距今24.8 ka前形成的湖相沉积,也未错动全新世的浪强错湖湘沉积 云多西断裂 F6 近南北向 西 60°~70° 早‒中更新世 正断层 15 未错动晚第四纪洪积扇体 扎青断裂 F7 近南北向 东 60°~70° 早‒中更新世 正断层 6 未错动中更新世洪积台地和晚第四纪洪积扇体 寺龙断裂 F8 近南北向 西 60°~70° 早‒中更新世 正断层 9 未错动晚第四纪洪积扇体 佩枯错东缘断裂 F9 近南北向 西 60°~70° 早‒中更新世 正断层 50 错动古近纪花岗岩形成断层三角面,未错动晚更新世形成的洪积扇体和全新世洪积扇体 罗布断裂 F10 近南北向 西 60°~70° 早‒中更新世 正断层 11 未错动晚第四纪洪积扇体 岗彭庆断裂 F11 近南北向 东 60°~70° 晚更新世末期或全新世 正断层 75 错动山前洪积扇T3和距今14.8 ka前的冰碛垄,但是未错动现代冰川 佩枯错西缘断裂 F12 近南北向 北东 60°~70° 早‒中更新世 正断层 14 未错动晚第四纪洪积扇体 唐果断裂 F13 近南北向 北东东 60°~70° 晚更新世 正断层 20 错动晚更新世早期残坡积物,但未错动全新世洪积扇体和现代冲沟 穆林错‒错戳龙地堑 穆林错东缘断裂 F14 近南北向 北西西 60°~70° 早‒中更新世 正断层 40 未错动晚第四纪洪积扇体 穆林错西缘断裂 F15 近南北向 东 60°~70° 晚更新世 正断层 22 错动山前基岩和晚更新世前的洪积台地,但未错动全新世洪积扇体 错戳龙断裂 F16 近南北向 东 60°~70° 晚更新世 正断层 18 错动山前基岩(维美组(J3w))和早‒中更新世残坡积物,但未错动山前全新世洪积扇体 吉隆盆地 吉隆断裂 F17 近南北向 西 60°~70° 前第四纪 正断层 35 与沃马组(10~1.7 Ma)为同沉积断层,该断裂在沃马组沉积结束前其活动性已趋于停止 吉隆西断裂 F18 近南北向 东 60°~70° 前第四纪 正断层 38 错动山前基岩,但未错动全新世冲积物和早‒晚更新世冲积物 表 2 藏南近南北向裂谷属性
Table 2. Attribute of the north-south trending rifts, southern Tibet
裂谷名称 走向(°) 长度(km) 正断层晚第四纪垂直滑动速率(mm/a) 最新活动时间 错那‒沃卡裂谷(COR) 10 260 1.2~1.5 全新世 亚东‒谷露裂谷(YGR) 30 490 0.8~1.5 全新世 定结‒申扎裂谷(DXR) 20 340 0.3~2.0 全新世 岗嘎‒当惹雍错裂谷(GTR) 0 390 / / 聂拉木‒措勤裂谷(NCR) 350 300 ~0.5(本文) 晚更新世末期或全新世 仲巴‒塔若错裂谷(ZTR) 20 310 / / 江曲藏布‒改则裂谷(JGR) 20 230 / / 普兰‒文布当桑裂谷(BWR) 0 110 / / -
Armijo, R., Tapponnier, P., Han, T. L., 1989. Late Cenozoic Right‐Lateral Strike‐Slip Faulting in Southern Tibet. Journal of Geophysical Research: Solid Earth, 94(B3): 2787-2838. doi: 10.1029/JB094iB03p02787 Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. https://doi.org/10.1029/jb091ib14p13803 Burke, W. B., Laskowski, A. K., Orme, D. A., et al., 2021. Record of Crustal Thickening and Synconvergent Extension from the Dajiamang Tso Rift, Southern Tibet. Geosciences, 11(5): 209. https://doi.org/10.3390/geosciences11050209 Chevalier, M. L., Tapponnier, P., Van Der Woerd, J., et al., 2020. Late Quaternary Extension Rates across the Northern Half of the Yadong‐Gulu Rift: Implication for East‐West Extension in Southern Tibet. Journal of Geophysical Research: Solid Earth, 125(7): e2019JB019106. https://doi.org/10.1029/2019JB019106 Coleman, M., Hodges, K., 1995. Evidence for Tibetan Plateau Uplift before 14 Myr Ago from a New Minimum Age for East-West Extension. Nature, 374(6517): 49-52. doi: 10.1038/374049a0 Dewey, J. F., 1988. Extensional Collapse of Orogens. Tectonics, 7(6): 1123-1139. https://doi.org/10.1029/tc007i006p01123 England, P., Houseman, G., 1989. Extension during Continental Convergence, with Application to the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. https://doi.org/10.1029/jb094ib12p17561 Ha, G. H., 2019. Normal Faulting of Central-Southern Yadong-Gulu Rift since Late Cenozoic, Southern Tibet (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). Hager, C., Stockli, D. F., Dewane, T. J., et al., 2006. Episodic Mio-Pliocene Rifting in South-Central Tibet. Thermochronometric Constraints from the Xainza Rift. In: AGU Fall Meeting. AGU, San Francisco. Han, T. L., 1987. The Active Tectonic in Xizang (Tibet). Geological Publishing House, Beijing (in Chinese). Harrison, T. M., Copeland, P., Kidd, W. S. F., et al., 1995. Activation of the Nyainqentanghla Shear Zone: Implications for Uplift of the Southern Tibetan Plateau. Tectonics, 14(3): 658-676. https://doi.org/10.1029/95TC00608 Kali, E., van der Woerd, J., Leloup, P. H., et al., 2010. Extension in Central-South Tibet, Insight from Cosmogenic Nuclide Dating. In: AGU Fall Meeting. AGU, San Francisco. Kong, P., Na, C. G., Brown, R., et al., 2011. Cosmogenic 10Be and 26Al Dating of Paleolake Shorelines in Tibet. Journal of Asian Earth Sciences, 41(3): 263-273. https://doi.org/10.1016/j.jseaes.2011.02.016 Liu, G. N., Chen, Y. X., Zhang, M., et al., 2011. Glacial Landform Chronology and Environment Reconstruction of Peiku Gangri, Himalayas. Journal of Glaciology and Geocryology, 33(5): 959-970 (in Chinese with English abstract). Liu, L., Shao, Y. X., Wang, W., et al., 2022. Study on the Tectonic Geomorphology and Fault Activity Characteristics of the Zhongba Rift, Southern Tibet. Earth Science, 47(8): 3029-3044 (in Chinese with English abstract). Molnar, P., Tapponnier, P., 1978. Active Tectonics of Tibet. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375. https://doi.org/10.1029/jb083ib11p05361 Ni, J., York, J. E., 1978. Late Cenozoic Tectonics of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 83(B11): 5377-5384. https://doi.org/10.1029/jb083ib11p05377 Ratschbacher, L., Krumrei, I., Blumenwitz, M., et al., 2011. Rifting and Strike-Slip Shear in Central Tibet and the Geometry, Age and Kinematics of Upper Crustal Extension in Tibet. Geological Society, London, Special Publications, 353(1): 127-163. https://doi.org/10.1144/sp353.8 Shen, T. Y., Wang, G. C., Leloup, P. H., et al., 2016. Controls on Cenozoic Exhumation of the Tethyan Himalaya from Fission-Track Thermochronology and Detrital Zircon U-Pb Geochronology in the Gyirong Basin Area, Southern Tibet. Tectonics, 35(7): 1713-1734. https://doi.org/10.1002/2016tc004149 Styron, R., Taylor, M., Sundell, K., 2015. Accelerated Extension of Tibet Linked to the Northward Underthrusting of Indian Crust. Nature Geoscience, 8(2): 131-134. https://doi.org/10.1038/ngeo2336 Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978 Taylor, M., Yin, A., 2009. Active Structures of the Himalayan-Tibetan Orogen and Their Relationships to Earthquake Distribution, Contemporary Strain Field, and Cenozoic Volcanism. Geosphere, 5(3): 199-214. https://doi.org/10.1130/ges00217.1 Research Team of the Qinghai-Tibetan Plateau Scientific Expedition of the Chinese Academy of Sciences, 1983. Geomorphology of Xizang (Tibet). Science Press, Beijing (in Chinese). Tian, T. T., 2021. Dating of Late Quaternary Paleoseismic Events of the Dingmu Cuo Fault in the Southern Section of Shenzha-Dingjie Rift (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). Wang, S. G., Chevalier, M. L., Pan, J. W., et al., 2020. Quantification of the Late Quaternary Throw Rates along the Yadong Rift, Southern Tibet. Tectonophysics, 790: 228545. https://doi.org/10.1016/j.tecto.2020.228545 Williams, H., Turner, S., Kelley, S., et al., 2001. Age and Composition of Dikes in Southern Tibet: New Constraints on the Timing of East-West Extension and Its Relationship to Postcollisional Volcanism. Geology, 29(4): 339-342. https://doi.org/10.1130/0091-7613(2001)0290339: aacodi>2.0.co;2 doi: 10.1130/0091-7613(2001)0290339:aacodi>2.0.co;2 Wu, Z. H., 2022. Active Faults and Engineering Applications Ⅰ: Definition and Classification. Journal of Earth Sciences and Environment, 44(6): 922-947 (in Chinese with English abstract). Wu, Z. H., Wu, Z. H., Hu, D. G., et al., 2006. Holocene Seismogenic Faults along the Tanggula-Lhasa Section of the Qinghai-Tibet Railway, China. Geological Bulletin of China, 25(12): 1387-1401 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2006.12.006 Wu, Z. H., Ye, P. S., Barosh, P. J., et al., 2011. The October 6, 2008 Mw 6.3 Magnitude Damxung Earthquake, Yadong-Gulu Rift, Tibet, and Implications for Present-Day Crustal Deformation within Tibet. Journal of Asian Earth Sciences, 40: 943-957. https://doi.org/10.1016/j.jseaes.2010.05.003 Wu, Z. H., Ye, P. S., Wang, C. M., et al., 2015. The Relics, Ages and Significance of Prehistoric Large Earthquakes in the Angang Graben in South Tibet. Earth Science, 40(10): 1621-1642 (in Chinese with English abstract). Wu, Z. H., Ye, P. S., Wu, Z. H., 2009. The Seismic Intensity, Seismogenic Tectonics and Mechanism of the Ms 6.6 Damxung Earthquake Happened on October 6, 2008 in Southern Tibet, China. Geological Bulletin of China, 28(6): 713-725 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2009.06.005 Wu, Z. H., Zhang, Y. S., Hu, D. G., et al., 2008. The Quaternary Normal Faulting of the Cona-Oiga Rift. Seismology and Geology, 30(1): 144-160 (in Chinese with English abstract). Wünnemann, B., Yan, D. D., Ci, R., 2015. Morphodynamics and Lake Level Variations at Paiku Co, Southern Tibetan Plateau, China. Geomorphology, 246: 489-501. https://doi.org/10.1016/j.geomorph.2015.07.007 Yang, W. C., Liu, X. Y., Chen, Z. X., et al., 2022. Asthenosphere Mass Movement in Qinghai-Tibetan Plateau Revealed by High-Resolution Seismic Tomography. Earth Science, 47(10): 3491-3500 (in Chinese with English abstract). Yin, A., 2000. Mode of Cenozoic East‐West Extension in Tibet Suggesting a Common Origin of Rifts in Asia during the Indo‐Asian Collision. Journal of Geophysical Research: Solid Earth, 105(B9): 21745-21759. https://doi.org/10.1029/2000JB900168 Zhang, J. J., 2007. A Review on the Extensional Structures in the Northern Himalaya and Southern Tibet. Geological Bulletin of China, 26(6): 639-649 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2007.06.003 Zhang, J. J., Santosh, M., Wang, X. X., et al., 2012. Tectonics of the Northern Himalaya since the India-Asia Collision. Gondwana Research, 21(4): 939-960. https://doi.org/10.1016/j.gr.2011.11.004 Zhong, D. L., Ding, L., 1996. Discussion on Uplift Process and Mechanism of Qinghai-Tibet Plateau. Scientia Sinica Terrae, 26(4): 289-295 (in Chinese). Zuo, J. M., 2021. Late Quaternary Activity Characteristics of the Chongba Yumtso Normal Fault in the Southern Section of the Yadong-Gulu Rift, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). 哈广浩, 2019. 藏南亚东-谷露裂谷中-南段晚新生代正断层作用(博士学位论文). 北京: 中国地质科学院. 韩同林, 1987. 西藏活动构造. 北京: 地质出版社. 刘耕年, 陈艺鑫, 张梅, 等, 2011. 喜马拉雅山佩枯岗日冰川地貌的年代学、平衡线高度和气候研究. 冰川冻土, 33(5): 959-970. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201105002.htm 刘璐, 邵延秀, 王伟, 等, 2022. 藏南仲巴裂谷带地貌和断裂活动特征研究. 地球科学, 47(8): 3029-3044. doi: 10.3799/dqkx.2022.086 田婷婷, 2021. 申扎-定结裂谷南段丁木错断裂晚第四纪古地震事件研究(博士学位论文). 北京: 中国地质大学. 吴中海, 2022. 活断层与工程应用Ⅰ: 定义与分类. 地球科学与环境学报, 44(6): 922-947. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202206004.htm 吴中海, 吴珍汉, 胡道功, 等, 2006. 青藏铁路唐古拉山-拉萨段全新世控震断裂研究. 地质通报, 25(12): 1387-1401. doi: 10.3969/j.issn.1671-2552.2006.12.006 吴中海, 叶培盛, 王成敏, 等, 2015. 藏南安岗地堑的史前大地震遗迹、年龄及其地质意义. 地球科学, 40(10): 1621-1642. doi: 10.3799/dqkx.2015.147 吴中海, 叶培盛, 吴珍汉, 2009.2008年10月6日西藏当雄Ms 6.6级强震的地震烈度控震构造和发震机理. 地质通报, 28(6): 713-725. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200906004.htm 吴中海, 张永双, 胡道功, 等, 2008. 藏南错那-沃卡裂谷的第四纪正断层作用及其特征. 地震地质, 30(1): 144-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200801010.htm 杨文采, 刘晓宇, 陈召曦, 等, 2022. 从高分辨率地震层析成像看青藏高原软流圈的物质运动. 地球科学, 47(10): 3491-3500. doi: 10.3799/dqkx.2022.871 张进江, 2007. 北喜马拉雅及藏南伸展构造综述. 地质通报, 26(6): 639-649. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200706003.htm 钟大赉, 丁林, 1996. 青藏高原的隆起过程及其机制探讨. 中国科学: 地球科学, 26(4): 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604000.htm 中国科学院青藏高原综合科学考察队, 1983. 西藏地貌. 北京: 科学出版社. 左嘉梦, 2021. 西藏亚东-谷露裂谷南段冲巴雍错正断层晚第四纪活动特征研究(硕士学位论文). 北京: 中国地质大学. -