• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东海盆地丽水凹陷古气候和古环境对有机质富集的约束:来自古新统泥岩的元素地球化学证据

    雷闯 叶加仁 殷世艳 吴景富 静禹钱

    雷闯, 叶加仁, 殷世艳, 吴景富, 静禹钱, 2024. 东海盆地丽水凹陷古气候和古环境对有机质富集的约束:来自古新统泥岩的元素地球化学证据. 地球科学, 49(7): 2359-2372. doi: 10.3799/dqkx.2023.011
    引用本文: 雷闯, 叶加仁, 殷世艳, 吴景富, 静禹钱, 2024. 东海盆地丽水凹陷古气候和古环境对有机质富集的约束:来自古新统泥岩的元素地球化学证据. 地球科学, 49(7): 2359-2372. doi: 10.3799/dqkx.2023.011
    Lei Chuang, Ye Jiaren, Yin Shiyan, Wu Jingfu, Jing Yuqian, 2024. Constraints of Paleoclimate and Paleoenvironment on Organic Matter Enrichment in Lishui Sag, East China Sea Basin: Evidence from Element Geochemistry of Paleocene Mudstones. Earth Science, 49(7): 2359-2372. doi: 10.3799/dqkx.2023.011
    Citation: Lei Chuang, Ye Jiaren, Yin Shiyan, Wu Jingfu, Jing Yuqian, 2024. Constraints of Paleoclimate and Paleoenvironment on Organic Matter Enrichment in Lishui Sag, East China Sea Basin: Evidence from Element Geochemistry of Paleocene Mudstones. Earth Science, 49(7): 2359-2372. doi: 10.3799/dqkx.2023.011

    东海盆地丽水凹陷古气候和古环境对有机质富集的约束:来自古新统泥岩的元素地球化学证据

    doi: 10.3799/dqkx.2023.011
    基金项目: 

    国家科技重大专项子课题 2016ZX05024-002-003

    国家科技重大专项子课题 2017ZX05032-001-004

    构造与油气资源教育部重点实验室开放课题 TPR-2022-11

    构造与油气资源教育部重点实验室开放课题 TPR-2022-24

    唐山市科技计划项目 22130213H

    详细信息
      作者简介:

      雷闯(1985-),男,讲师,主要从事油气地球化学和成藏机理研究. ORCID:0000-0002-7859-0157.E-mail:leichuang119@163.com

      通讯作者:

      叶加仁, E-mail:jrye@cug.edu.cn

    • 中图分类号: P618.13

    Constraints of Paleoclimate and Paleoenvironment on Organic Matter Enrichment in Lishui Sag, East China Sea Basin: Evidence from Element Geochemistry of Paleocene Mudstones

    • 摘要: 为明晰东海盆地丽水凹陷古新统月桂峰组、灵峰组、明月峰组烃源岩的生烃潜力,基于24个泥岩样品主量和微量元素地球化学研究,剖析了古气候和古环境变化过程及其对有机质富集的影响.结果表明,丽水凹陷古新统沉积物相对贫碎屑组分、富自生组分,且主量和微量元素变化未受到成岩蚀变的影响.根据特征元素参数的垂向变化趋势,认为丽水凹陷古新世月桂峰组→灵峰组→明月峰组沉积时期,古气候经历了温湿→干旱→温湿、水体古盐度经历了半咸水→咸水→淡水、水体古深度经历了较深水→较浅水→浅水、水体还原程度经历了弱还原‒还原→氧化→弱氧化‒氧化的变化过程.古气候和古环境协同变化控制着沉积物有机质生产和保存/降解,是月桂峰组、灵峰组、明月峰组泥岩有机质富集程度存在差异性的主要原因.月桂峰组泥岩形成于温湿气候下的半深湖‒深湖环境,水体生产力高,大量藻类和高等植物有机质在分层的贫氧水体介质中得以保存,导致有机质丰度较高.灵峰组泥岩形成于干旱气候下的滨浅海环境,水体生产力低,高盐度且富氧水体介质不利于藻类生存与保存,导致有机质丰度较低.明月峰组煤系泥岩形成于温湿气候下的海陆过渡环境,地表植被发育,地势平坦适宜大量高等植物有机质堆积,形成煤岩与泥岩互层分布.丽水凹陷油气勘探应围绕有机质丰度高且生烃能力强的月桂峰组生烃中心选择有效构造或岩性圈闭进行钻探.

       

    • 图  1  丽水凹陷构造位置及剖面

      Fig.  1.  Structural location and cross section of the Lishui Sag

      图  2  丽水凹陷综合柱状图

      Fig.  2.  Generalized stratigraphic column of the Lishui Sag

      图  3  丽水凹陷古新统泥岩主量和微量元素富集因子

      Fig.  3.  Enrichment factor of major and trace elements for the Paleocene mudstones in the Lishui Sag

      图  4  丽水凹陷古新统泥岩Al-Fe-Mn三角图(改自Adachi et al., 1986)

      Fig.  4.  Al-Fe-Mn diagram of the Paleocene mudstones in the Lishui Sag

      图  5  B井古新统泥岩微量元素比值纵向分布

      TOC含量和藻类含量数据收集于中海石油上海分公司;部分特征元素比值数据(空心圆)收集于姜亮等(2004)

      Fig.  5.  Vertical distribution of trace element ratios for the Palaeocene mudstones in Well B

      图  6  丽水凹陷古新统泥岩SiO2-Al2O3判别图(改自Cullers, 2000)

      Fig.  6.  SiO2-Al2O3 discriminant diagram of the Paleocene mudstones in the Lishui Sag

      图  7  丽水凹陷古新统泥岩TOC值与CIA、Ti/Sr、Rb/Sr、Sr/Cu值关系

      部分月桂峰组CIA数据收集于姜亮等(2004)

      Fig.  7.  Relationship between TOC and CIA, Ti/Sr, Rb/Sr, Sr/Cu of the Palaeocene mudstones in the Lishui Sag

      图  8  丽水凹陷古新统泥岩TOC值与生源Ba浓度关系

      Fig.  8.  Relationship between TOC and biogenic Ba concentration of the Palaeocene mudstones in the Lishui Sag

      图  9  丽水凹陷古新统泥岩B/Ga值与Sr/Ba值关系

      Fig.  9.  Relationship between B/Ga and Sr/Ba of the Palaeocene mudstones in the Lishui Sag

      图  10  丽水凹陷古新统泥岩TOC值与V/(V+Ni)、V/Cr值关系

      部分月桂峰组V/(V+Ni)数据收集于姜亮等(2004)

      Fig.  10.  Relationship between TOC and V/(V+Ni), V/Cr of the Paleocene mudstones in the Lishui Sag

      图  11  丽水凹陷月桂峰组(a)、灵峰组(b)和明月峰组(c)烃源岩发育模式

      Fig.  11.  Development model of source rock for the Yueguifeng (a), Lingfeng (b) and Mingyuefeng (c) Formations in the Lishui Sag

      表  1  丽水凹陷古新统泥岩主量元素含量及相关参数

      Table  1.   Major element concentrations and related parameters for the Paleocene mudstones in the Lishui Sag

      样品编号 深度(m) 层位 岩性 TOC(%) 主量元素含量(%) CIA
      SiO2 TiO2 Al2O3 TFe2O3 MgO CaO Na2O K2O
      1 2 512 E1m 灰色泥岩 0.82 68.05 0.82 16.87 3.54 0.79 0.37 1.51 2.91 73
      2 2 549 E1m 灰色泥岩 1.49 64.48 0.78 17.05 4.64 1.44 0.87 1.80 3.41 67
      3 2 810 E1m 灰色泥岩 1.28 64.74 0.81 16.92 5.25 1.42 0.69 1.78 3.06 69
      4 2 841 E1m 灰色泥岩 0.98 60.59 0.85 17.97 6.50 1.56 1.54 1.64 2.81 75
      5 2 880 E1m 灰色泥岩 1.04 61.73 0.80 17.51 6.28 1.52 1.86 1.41 2.87 73
      6 2 919 E1m 灰色泥岩 0.85 62.31 0.71 16.71 5.01 1.33 2.66 1.68 3.11 65
      7 2 965 E1m 灰色泥岩 0.84 63.73 0.69 16.98 4.90 1.34 2.07 1.43 3.30 67
      8 2 980 E1m 灰色泥岩 0.76 65.94 0.57 14.34 4.00 1.29 2.92 1.26 3.18 65
      9 3 000 E1m 灰色泥岩 0.66 69.83 0.61 14.08 4.67 1.36 3.02 0.91 2.61 71
      10 3 039 E1l 灰色泥岩 0.51 61.12 0.60 13.11 4.84 1.53 5.49 1.82 2.73 59
      11 3 081 E1l 灰色泥岩 0.58 64.47 0.53 11.46 3.54 1.15 6.63 1.22 2.25 64
      12 3 114 E1l 灰色泥岩 0.54 57.40 0.43 9.85 3.24 1.26 12.50 1.15 1.97 62
      13 3 156 E1l 灰色泥岩 0.57 57.31 0.41 10.48 3.26 1.31 12.18 1.35 2.31 60
      14 3 201 E1l 灰色泥岩 0.94 56.94 0.46 11.33 3.52 1.31 10.61 1.61 2.57 58
      15 3 237 E1l 灰色泥岩 0.80 59.43 0.42 10.12 3.27 1.22 10.72 1.26 2.16 61
      16 3 279 E1l 灰色泥岩 0.62 60.41 0.44 9.57 3.41 1.28 10.01 1.43 1.99 58
      17 3 321 E1l 灰色泥岩 0.54 62.38 0.43 9.62 3.23 1.23 9.04 1.37 2.1 59
      18 3 357 E1l 灰色泥岩 0.67 61.38 0.41 8.66 3.27 1.33 10.16 1.13 1.84 60
      19 3 408 E1l 褐色泥岩 0.66 52.66 0.47 10.16 3.44 1.51 12.97 1.71 2.15 56
      20 3 459 E1l 褐色泥岩 1.02 66.05 0.55 12.46 3.44 1.43 4.86 1.44 2.63 62
      21 3 507 E1l 褐色泥岩 0.98 66.04 0.50 11.42 3.59 1.48 5.02 1.45 2.59 60
      22 3 564 E1y 深灰色泥岩 1.54 61.92 0.80 18.05 6.02 1.53 1.54 1.71 3.43 66
      23 3 643 E1y 深灰色泥岩 1.75 63.08 0.91 18.45 5.56 1.42 0.84 1.83 2.71 75
      24 3 646 E1y 深灰色泥岩 1.86 60.76 0.80 18.07 6.27 1.44 0.53 2.35 2.62 70
      PAAS 62.80 1.00 18.90 7.22 2.20 1.30 1.20 3.70
      注:CIA=[Al2O3/(Al2O3+CaO*+K2O+Na2O)]×100%,主量元素氧化物单位为摩尔百分含量;PAAS为后太古宙澳大利亚页岩(Taylor and McLennan, 1985)
      下载: 导出CSV

      表  2  丽水凹陷古新统泥岩微量元素含量及相关参数

      Table  2.   Trace element concentrations and related parameters for the Paleocene mudstones in the Lishui Sag

      样品编号 层位 微量元素含量(10‒6) 相关参数
      Ba Cr Cu Ga Sr B V Ni Mn Rb Mn/Sr Rb/Sr Ti/Sr Sr/Cu Sr/Ba B/Ga Mn/Fe V/V+Ni V/Cr
      1 E1m 612.7 58.0 16.1 20.1 128.9 50.2 93.5 81.6 276.1 117.9 2.14 0.91 38.34 8.01 0.21 2.50 0.011 0.53 1.61
      2 E1m 515.8 42.4 14.6 20.0 133.2 53.4 83.6 41.9 273.9 136.2 2.06 1.02 35.05 9.12 0.26 2.67 0.008 0.67 1.91
      3 E1m 924.1 47.9 18.0 21.5 119.4 50.5 92.2 93.3 325.3 119.7 2.72 1.00 40.50 6.63 0.13 2.34 0.009 0.49 1.92
      4 E1m 860.3 53.4 38.3 21.3 130.5 54.2 103.2 104.5 495.5 93.3 3.80 0.71 38.91 3.41 0.15 2.54 0.011 0.50 1.93
      5 E1m 848.1 53.9 23.4 20.9 142.9 51.5 100.9 83.0 540.3 103.7 3.78 0.73 33.76 6.11 0.17 2.46 0.012 0.55 1.87
      6 E1m 337.4 44.3 20.4 21.2 140.2 52.1 93.2 101.0 376.8 114.3 2.69 0.82 30.37 6.87 0.42 2.46 0.010 0.48 2.10
      7 E1m 416.7 42.1 16.9 21.2 152.9 51.6 94.0 49.8 448.6 126.8 2.93 0.82 27.15 9.04 0.36 2.43 0.013 0.70 2.23
      8 E1m 492.0 36.2 17.6 18.4 167.8 47.5 75.5 41.2 316.0 130.9 1.88 0.78 20.44 9.53 0.34 2.58 0.011 0.64 2.08
      9 E1m 378.5 44.7 21.1 17.5 153.2 40.6 72.9 40.3 347.3 102.4 2.27 0.67 23.74 7.26 0.40 2.32 0.010 0.64 1.63
      10 E1l 428.7 52.0 28.4 17.6 252.1 46.0 72.1 69.9 247.0 103.7 0.98 0.41 14.35 8.88 0.59 2.61 0.007 0.51 1.39
      11 E1l 258.4 34.2 14.8 14.8 264.9 39.9 60.4 40.9 287.2 83.4 1.08 0.31 11.94 17.90 1.03 2.70 0.011 0.60 1.77
      12 E1l 356.1 34.7 15.7 12.7 405.8 34.9 56.2 32.6 468.4 75.2 1.15 0.19 6.40 25.85 1.14 2.75 0.020 0.63 1.62
      13 E1l 333.4 31.3 19.6 13.7 429.1 35.7 55.1 32.2 374.3 91.7 0.87 0.21 5.80 21.89 1.29 2.61 0.016 0.63 1.76
      14 E1l 256.1 34.1 20.4 14.8 447.9 40.5 61.2 36.0 248.6 105.1 0.56 0.23 6.13 21.96 1.75 2.74 0.010 0.63 1.79
      15 E1l 309.8 37.6 18.5 14.0 440.1 36.3 53.9 31.5 292.6 85.7 0.66 0.19 5.67 23.79 1.42 2.59 0.012 0.63 1.43
      16 E1l 380.8 40.4 20.9 13.0 478.2 37.0 56.7 42.6 261.3 75.2 0.55 0.16 5.52 22.88 1.26 2.85 0.011 0.57 1.40
      17 E1l 329.8 34.4 20.1 13.8 427.6 37.1 57.0 29.7 290.0 74.7 0.68 0.17 6.07 21.27 1.30 2.69 0.013 0.66 1.66
      18 E1l 205.3 35.2 19.9 12.1 428.4 35.4 53.2 33.7 361.9 67.7 0.84 0.16 5.69 21.53 2.09 2.93 0.016 0.61 1.51
      19 E1l 317.5 36.7 18.4 12.8 494.2 39.5 57.3 37.1 363.7 79.4 0.74 0.16 5.65 26.86 1.56 3.09 0.015 0.61 1.56
      20 E1l 524.7 35.3 13.1 15.8 229.2 43.3 60.3 29.5 278.8 102.6 1.22 0.45 14.27 17.50 0.44 2.74 0.011 0.67 1.71
      21 E1l 314.8 34.6 12.2 15.4 207.1 41.9 58.1 31.6 348.4 105.4 1.68 0.51 14.51 16.98 0.66 2.72 0.014 0.65 1.68
      22 E1y 301.2 40.3 21.3 22.0 195.7 54.9 99.9 33.4 7 886.9 122.1 40.3 0.62 24.67 9.19 0.50 2.50 0.187 0.75 2.48
      23 E1y 263.1 49.3 21.5 21.1 205.9 51.3 93.9 47.7 2 003.3 97.4 9.94 0.49 26.39 9.57 0.78 2.43 0.051 0.66 1.90
      24 E1y 347.6 40.6 20.7 22.5 231.2 59.0 106.5 36.9 2 299.2 108.4 9.73 0.47 21.59 10.69 0.66 2.62 0.052 0.74 2.62
      下载: 导出CSV
    • Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific: Their Geological Significance as Indication of Ocean Ridge Activity. Sedimentary Geology, 47(1-2): 125-148. https://doi.org/10.1016/0037-0738(86)90075-8
      Adegoke, A. K., Abdullah, W. H., Hakimi, M. H., et al., 2015. Geochemical Characterisation and Organic Matter Enrichment of Upper Cretaceous Gongila Shales from Chad (Bornu) Basin, Northeastern Nigeria: Bioproductivity Versus Anoxia Conditions. Journal of Petroleum Science and Engineering, 135: 73-87. https://doi.org/10.1016/j.petrol.2015.08.012
      Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3-4): 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009
      Cai, X. F., 1994. Paleoclimate as a Necessary Factor in Basin Analysis. Sedimentary Facies and Palaeogeography, 14(2): 42-46 (in Chinese).
      Calvert, S. E., Pedersen, T. F., 2007. Elemental Proxies for Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments: Interpretation and Application. Developments in Marine Geology. Elsevier, Amsterdam, 567-644. https://doi.org/10.1016/s1572-5480(07)01019-6
      Cui, T., Jiao, Y. Q., Du, Y. S., et al., 2013. Analysis on Paleosalinity of Sedimentary Environment of Bauxite in Wuchuan-Zheng'an-Daozhen Area, Northern Guizhou Province. Geological Science and Technology Information, 32(1): 46-51 (in Chinese with English abstract).
      Cullers, R. L., 2000. The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian-Permian Age, Colorado, USA: Implications for Provenance and Metamorphic Studies. Lithos, 51(3): 181-203. https://doi.org/10.1016/s0024-4937(99)00063-8
      Ding, X. J., Liu, G. D., Huang, Z. L., et al., 2016. Controlling Function of Organic Matter Supply and Preservation on Formation of Source Rocks. Earth Science, 41(5): 832-842 (in Chinese with English abstract).
      Fan, Y. H., Qu, H. J., Wang, H., et al., 2012. The Application of Trace Elements Analysis to Identifying Sedimentary Media Environment: A Case Study of Late Triassic Strata in the Middle Part of Western Ordos Basin. Geology in China, 39(2): 382-389 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2012.02.010
      Fu, C., Li, S. L., Li, S. L., et al., 2022. Genetic Types of Mudstone in a Closed-Lacustrine to Open-Marine Transition and Their Organic Matter Accumulation Patterns: A Case Study of the Paleocene Source Rocks in the East China Sea Basin. Journal of Petroleum Science and Engineering, 208: 109343. https://doi.org/10.1016/j.petrol.2021.109343
      Gao, Y. D., Lin, H. M., Wang, X. D., et al., 2022. Geochemical Constraints on the Sedimentary Environment of Wenchang Formation in Pearl River Mouth Basin and Its Paleoenvironmental Implications. Geoscience, 36(1): 118-129 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2022.01.012
      Garzanti, E., Padoan, M., Setti, M., et al., 2013. Weathering Geochemistry and Sr-Nd Fingerprints of Equatorial Upper Nile and Congo Muds. Geochemistry, Geophysics, Geosystems, 14(2): 292-316. https://doi.org/10.1002/ggge.20060
      Ge, H. P., Chen, X. D., Diao, H., et al., 2012. An Analysis of Oil Geochemistry and Sources in Lishui Sag, East China Sea Basin. China Offshore Oil and Gas, 24(4): 8-12, 31 (in Chinese with English abstract).
      Hao, F., Zhou, X. H., Zhu, Y. M., et al., 2011. Lacustrine Source Rock Deposition in Response to Co-Evolution of Environments and Organisms Controlled by Tectonic Subsidence and Climate, Bohai Bay Basin, China. Organic Geochemistry, 42(4): 323-339. https://doi.org/10.1016/j.orggeochem.2011.01.010
      Hatch, J. R., Leventhal, J. S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A. . Chemical Geology, 99(1-3): 65-82. https://doi.org/10.1016/0009-2541(92)90031-y
      Hu, J. J., Ma, Y. S., Wang, Z. X., et al., 2017. Palaeoenvironment and Palaeoclimate of the Middle to Late Jurassic Revealed by Geochemical Records in Northern Margin of Qaidam Basin. Journal of Palaeogeography (Chinese Edition), 19(3): 480-490 (in Chinese with English abstract).
      Jaraula, C. M. B., Siringan, F. P., Klingel, R., et al., 2014. Records and Causes of Holocene Salinity Shifts in Laguna de Bay, Philippines. Quaternary International, 349: 207-220. https://doi.org/10.1016/j.quaint.2014.08.048
      Jiang, L., Li, B. H., Zhong, S. L., et al., 2004. Biostratigraphy and Paleoenvironment of the Yueguifeng Formation in the Taipei Depression of the Continental Shelf Basin of the East China Sea. Marine Geology & Quaternary Geology, 24(1): 37-42 (in Chinese with English abstract).
      Jiang, Z. L., Li, Y. J., Du, H. L., et al., 2015. The Cenozoic Structural Evolution and Its Influences on Gas Accumulation in the Lishui Sag, East China Sea Shelf Basin. Journal of Natural Gas Science and Engineering, 22: 107-118. https://doi.org/10.1016/j.jngse.2014.11.024
      Jin, S., Ma, P. F., Guo, H., et al., 2022. Genesis of Mesoproterozoic Gaoyuzhuang Formation Manganese Ore in Qinjiayu, East Hebei: Constraints from Mineralogical and Geochemical Evidences. Earth Science, 47(1): 277-289 (in Chinese with English abstract).
      Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1-4): 111-129. https://doi.org/10.1016/0009-2541(94)90085-x
      Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic Variations in the C-Isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73: 27-49. https://doi.org/10.1016/0301-9268(94)00070-8
      Lei, C., Yin, S. Y., Ye, J. R., et al., 2021. Characteristics and Deposition Models of the Paleocene Source Rocks in the Lishui Sag, East China Sea Shelf Basin: Evidences from Organic and Inorganic Geochemistry. Journal of Petroleum Science and Engineering, 200: 108342. https://doi.org/10.1016/j.petrol.2021.108342
      Lei, C., Yin, S. Y., Ye, J. R., et al., 2021. Geochemical Characteristics and Hydrocarbon Generation History of Paleocene Source Rocks in Jiaojiang Sag, East China Sea Basin. Earth Science, 46(10): 3575-3587 (in Chinese with English abstract).
      Li, H., Lu, J. L., Li, R. L., et al., 2017. Generation Paleoenvironment and Its Controlling Factors of Lower Cretaceous Lacustrine Hydrocarbon Source Rocks in Changling Depression, South Songliao Basin. Earth Science, 42(10): 1774-1786 (in Chinese with English abstract).
      Li, M. L., Chen, L., Tian, J. C., et al., 2019. Paleoclimate and Paleo-Oxygen Evolution during the Gucheng Period-Early Nantuo Period of Nanhua System in the Zouma Area, West Hubei: Evidence from Elemental Geochemistry of Fine Clastic Rocks. Acta Geologica Sinica, 93(9): 2158-2170 (in Chinese with English abstract).
      Li, Y., Zhang, J. L., Liu, Y., et al., 2019. Organic Geochemistry, Distribution and Hydrocarbon Potential of Source Rocks in the Paleocene, Lishui Sag, East China Sea Shelf Basin. Marine and Petroleum Geology, 107: 382-396. https://doi.org/10.1016/j.marpetgeo.2019.05.025
      Li, Y. H., Xu, X. Y., Zhang, J. F., et al., 2022. Hybrid Sedimentary Conditions of Organic-Rich Shales in Faulted Lacustrine Basin during Volcanic Eruption Episode: A Case Study of Shahezi Formation (K1sh Fm.), Lishu Faulted Depression, South Songliao Basin. Earth Science, 47(5): 1728-1747 (in Chinese with English abstract).
      Liu, Z. H., Hou, Y. L., Chen, S. H., et al., 2022. Early Cenozoic Sedimentary Characteristics and Provenance Evolution of Lishui Depression, East China Sea. Earth Science, 47(7): 2562-2572 (in Chinese with English abstract).
      Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
      Shen, W. L., Qi, B. W., 2020. Definition and Distribution Prediction of Effective Source Rocks in Lishui Sag, East China Sea Basin. Bulletin of Geological Science and Technology, 39(3): 77-88 (in Chinese with English abstract).
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Journal of Geology, 94(4): 632-633.
      Tian, Y., Ye, J. R., Lei, C., et al., 2016. Development Controlling Factors and Forming Model for Source Rock of Yueguifeng Formation in Lishui-Jiaojiang Sag, the East China Sea Continental Shelf Basin. Earth Science, 41(9): 1561-1571 (in Chinese with English abstract).
      Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
      Wang, P. W., Zou, C., Li, X. J., et al., 2021. Geochemical Characteristics of Element Qiongzhusi Group in Dianqianbei Area and Paleoenvironmental Significance. Journal of China University of Petroleum (Edition of Natural Science), 45(2): 51-62 (in Chinese with English abstract).
      Xu, X. T., Shao, L. Y., 2018. Limiting Factors in Utilization of Chemical Index of Alteration of Mudstones to Quantify the Degree of Weathering in Provenance. Journal of Palaeogeography (Chinese Edition), 20(3): 515-522 (in Chinese with English abstract).
      Yu, Z. K., Zhao, H., Diao, H., et al., 2020. Thermal Evolution Modeling and Present Geothermal Field of the Lishui Sag of East China Sea Basin. Marine Geology & Quaternary Geology, 40(2): 124-134 (in Chinese with English abstract).
      Zhang, L. L., Shu, Y., Cai, G. F., et al., 2019. Evolution of Eocene-Oligocene Sedimentary Environment in the Eastern Pearl River Mouth Basin and Its Influence on Hydrocarbon Source Conditions. Acta Petrolei Sinica, 40(S1): 153-165 (in Chinese with English abstract).
      Zhang, N., Wu, Y., Zhang, X., et al., 2021. Geochemical Characteristics and Its Implications of the Third Member of Paleogene Shahejie Formation from the Damintun Sag, Liaohe Depression. Acta Geologica Sinica, 95(2): 517-535 (in Chinese with English abstract).
      Zhu, W. L., Zhong, K., Fu, X. W., et al., 2019. The Formation and Evolution of the East China Sea Shelf Basin: A New View. Earth-Science Reviews, 190: 89-111. https://doi.org/10.1016/j.earscirev.2018.12.009
      蔡雄飞, 1994. 古气候是盆地分析不可缺少的因素. 岩相古地理, 14(2): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD402.004.htm
      崔滔, 焦养泉, 杜远生, 等, 2013. 黔北务正道地区铝土矿形成环境的古盐度识别. 地质科技情报, 32(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201301012.htm
      丁修建, 柳广弟, 黄志龙, 等, 2016. 有机质供给和保存在烃源岩形成中的控制作用. 地球科学, 41(5): 832-842. doi: 10.3799/dqkx.2016.070
      范玉海, 屈红军, 王辉, 等, 2012. 微量元素分析在判别沉积介质环境中的应用: 以鄂尔多斯盆地西部中区晚三叠世为例. 中国地质, 39(2): 382-389. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201906004.htm
      高阳东, 林鹤鸣, 汪旭东, 等, 2022. 珠江口盆地陆丰凹陷文昌组沉积地球化学特征及古环境意义. 现代地质, 36(1): 118-129. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202201011.htm
      葛和平, 陈晓东, 刁慧, 等, 2012. 东海盆地丽水凹陷原油地球化学特征及油源分析. 中国海上油气, 24(4): 8-12, 31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201204003.htm
      胡俊杰, 马寅生, 王宗秀, 等, 2017. 地球化学记录揭示的柴达木盆地北缘地区中‒晚侏罗世古环境与古气候. 古地理学报, 19(3): 480-490. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201703008.htm
      姜亮, 李保华, 钟石兰, 等, 2004. 东海陆架盆地台北坳陷月桂峰组生物地层及古环境. 海洋地质与第四纪地质, 24(1): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200401005.htm
      靳松, 马鹏飞, 郭华, 等, 2022. 冀东秦家峪中元古界高于庄组锰矿成因: 来自矿物学和地球化学的制约. 地球科学, 47(1): 277-289. doi: 10.3799/dqkx.2021.055
      雷闯, 殷世艳, 叶加仁, 等, 2021. 东海盆地椒江凹陷古新统烃源岩地球化学特征及生烃历史. 地球科学, 46(10): 3575-3587. doi: 10.3799/dqkx.2020.399
      李浩, 陆建林, 李瑞磊, 等, 2017. 长岭断陷下白垩统湖相烃源岩形成古环境及主控因素. 地球科学, 42(10): 1774-1786. doi: 10.3799/dqkx.2017.539
      李明龙, 陈林, 田景春, 等, 2019. 鄂西走马地区南华纪古城期‒南沱早期古气候和古氧相演化: 来自细碎屑岩元素地球化学的证据. 地质学报, 93(9): 2158-2170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201909004.htm
      李耀华, 徐兴友, 张君峰, 等, 2022. 火山活动期断陷湖盆富有机质混积页岩形成条件: 以松辽盆地南部梨树断陷沙河子组富有机质页岩为例. 地球科学, 47(5): 1728-1747. doi: 10.3799/dqkx.2022.015
      刘正华, 侯元立, 陈淑慧, 等, 2022. 东海丽水凹陷早新生代沉积特征及物源演化. 地球科学, 47(7): 2562-2572. doi: 10.3799/dqkx.2022.244
      申雯龙, 漆滨汶, 2020. 东海盆地丽水凹陷有效烃源岩判定及分布预测. 地质科技通报, 39(3): 77-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003012.htm
      田杨, 叶加仁, 雷闯, 等, 2016. 东海陆架盆地丽水‒椒江凹陷月桂峰组烃源岩发育控制因素及形成模式. 地球科学, 41(9): 1561-1571. doi: 10.3799/dqkx.2016.116
      王鹏万, 邹辰, 李娴静, 等, 2021. 滇黔北地区筇竹寺组元素地球化学特征及古环境意义. 中国石油大学学报(自然科学版), 45(2): 51-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202102007.htm
      徐小涛, 邵龙义, 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报, 20(3): 515-522. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201803014.htm
      于仲坤, 赵洪, 刁慧, 等, 2020. 东海陆架盆地丽水凹陷热演化模拟及现今地温场特征. 海洋地质与第四纪地质, 40(2): 124-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202002013.htm
      张丽丽, 舒誉, 蔡国富, 等, 2019. 珠江口盆地东部始新世‒渐新世沉积环境演变及对烃源条件的影响. 石油学报, 40(增刊1): 153-165. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1013.htm
      张妮, 武毅, 张霞, 等, 2021. 辽河坳陷大民屯凹陷古近系沙河街组三段地球化学特征及其地质意义. 地质学报, 95(2): 517-535. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202102016.htm
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  528
    • HTML全文浏览量:  156
    • PDF下载量:  64
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-08-07
    • 网络出版日期:  2024-08-03
    • 刊出日期:  2024-07-25

    目录

      /

      返回文章
      返回