Experimental Study on Response of Strength Characteristics of Glacier Tills to Temperature in Southeast Tibet
-
摘要: 为研究气候暖湿化条件下小冰期以来所形成的冰碛土内埋藏冰消融导致强度劣化机理,深入认识高寒区冰川泥石流起动过程,选取帕隆藏布流域天魔沟泥石流源区所采集的冰碛土作为研究对象;采用高精度温控三轴耦合试验系统进行剪切试验,研究冰碛土在不同温度条件下的剪切变形特征,分析温度对冰碛土变形破坏的影响机制,构建冰碛土多相介质强度破坏判据. 试验结果表明,冰碛土变形破坏受温度影响显著,-20 ℃时,冰碛土应变软化和剪切带破坏特征显著;随着温度升高,冰碛土逐渐表现出应变硬化和鼓胀破坏特征. 冰碛土的模量、峰值抗剪强度、内摩擦角和黏聚力均随温度升高而降低,且在-3~-5 ℃下降速率最快,而脆性指数随温度升高而增大. 引入Boltzmann函数对冰碛土抗剪强度参数与温度间的关系进行刻画,发现抗剪强度参数变化的特征温度在-4 ℃附近,并基于摩尔库伦强度准则构建了含有温度参数的冰碛土强度破坏准则.与传统含有构造冰的冻土相比,内部赋存埋藏冰的冰碛土强度主要由颗粒间接触提供,其更易受外界温度变化影响,土体强度对温度响应更为复杂.Abstract: The mechanism of soil strength deterioration caused by the melting of buried ice in glacier tills formed since the Little Ice Age under the climate warming and humidification is of great significance for deeply comprehending the initiation process of glacier debris flow. Taking the soil from the source of Tianmo gully debris flow in Parlung Tsangpo Basin as the research object, the high-precision temperature control triaxial coupling experimental system was used to study the shear deformation characteristics of glacier tills under different temperature conditions, analyze the influence mechanism of temperature on deformation and failure, and construct the strength failure criterion of this multiphase medium. The results show that the deformation and failure of glacier tills were significantly affected by temperature. At -20 ℃, the glacier tills showed strain softening and shear band failure characteristics, and the glacier tills gradually exhibited strain hardening and bulging failure characteristics with the increasing temperature. The modulus, peak shear strength, internal friction angle and cohesion decreased with the increase of temperature, and the rate was fastest at -3 to -5 ℃, while the brittleness index increased with temperature increasing. Boltzmann function was introduced to describe the relationship between shear strength parameters and temperature. Analyses show that the critical temperature of shear strength parameter variation was around -4 ℃. The strength failure criterion of glacier tills containing temperature parameters was constructed based on Mohr-Coulomb theory. Compared with frozen soil containing pore ice, the strength of glacier tills which contain buried ice is mainly provided by the contact between particles, which is easier to be affected by the change of external temperature, and the response of strength to temperature is more complex.
-
图 14 冰碛土与冻土的结构模型及破坏形态
a. 高温条件下的含冰冰碛土;b. 高围压状态下的含冰冰碛土;c. 传统冻土(于皓琳等,2013)
Fig. 14. Structural model and failure pattern of ice-containing glacier tills and frozen soil
表 1 天魔沟冰碛物主要物理指标
Table 1. Basic physical properties of the soil sample in Tianmo gully
比重
Gs天然密度
ρ (g·cm‒3)天然含水率
W(%)干密度
ρr (g·cm‒3)2.65 2.05 5.78 1.80 表 2 冰碛土温控三轴实验方案与结果
Table 2. Condition and results of the temperature control triaxial test
试验组别 样品编号 体积含冰量(%) 加载速率
(mm·min-1)围压
(kPa)温度
(℃)峰值强度
(kPa)内摩擦角(°) 黏聚力
(kPa)① TM1-1 50 0.42 50 ‒20 1 322.79 ② TM2-1 50 0.42 50 ‒10 898.47 34.85 208.60 TM2-2 100 1 087.03 TM2-3 200 1 362.71 TM2-4 400 1 848.16 ③ TM3-1 50 0.42 50 ‒5 529.72 31.68 139.82 TM3-2 100 892.74 TM3-3 200 879.82 TM3-4 400 1 361.74 ④ TM4-1 50 0.42 50 ‒4 462.89 18.35 76.61 TM4-2 100 119.48 TM4-3 200 468.74 TM4-4 400 486.95 ⑤ TM5-1 50 0.42 50 ‒3 136.60 5.84 46.63 TM5-2 100 134.78 TM5-3 200 103.18 TM5-4 400 208.43 ⑥ TM6-1 50 0.42 50 ‒2 87.12 11.58 15.93 TM6-2 100 103.95 TM6-3 200 85.20 TM6-4 400 256.56 ⑦ TM7-1 50 0.42 50 ‒1 3.72 1.11 1.01 TM7-2 100 3.82 TM7-3 200 17.60 TM7-4 400 17.64 表 3 Boltzmann函数参数
Table 3. Boltzmann function parameters
强度参数 E1 E2 Tf Tr Adj.R φ(°) 34.65 5.68 ‒4.11 0.39 0.922 c(kPa) 209.67 0 ‒4.40 0.95 0.997 -
Arenson, L. U., Springman, S. M., 2005. Mathematical Descriptions for the Behaviour of Ice-Rich Frozen Soils at Temperatures Close to 0 ℃. Canadian Geotechnical Journal, 42(2): 431-442. https://doi.org/10.1139/t04-109 Chai, B., Tao, Y. Y., Du, J., et al., 2020. Hazard Assessment of Debris Flow Triggered by Outburst of Jialong Glacial Lake in Nyalam County, Tibet. Earth Science, 45(12): 4630-4639 (in Chinese with English abstract). Chen, S. J., Ma, W., Li, G. Y., 2022. A Novel Approach for Characterizing Frozen Soil Damage Based on Mesostructure. International Journal of Damage Mechanics, 31(3): 444-463. https://doi.org/10.1177/10567895211045422 Clague, J. J., Evans, S. G., 2000. A Review of Catastrophic Drainage of Moraine-Dammed Lakes in British Columbia. Quaternary Science Reviews, 19(17-18): 1763-1783. https://doi.org/10.1016/S0277-3791(00)00090-1 Cudmani, R., Yan, W., Schindler, U., 2023. A Constitutive Model for the Simulation of Temperature-, Stress- and Rate-Dependent Behaviour of Frozen Granular Soils. Géotechnique, 73(12): 1043-1055. https://doi.org/10.1680/jgeot.21.00012 Cui, P., Ge, Y. G., Li, S. J., et al., 2022. Scientific Challenges in Disaster Risk Reduction for the Sichuan-Tibet Railway. Engineering Geology, 309: 106837. https://doi.org/10.1016/j.enggeo.2022.106837 Cui, P., Peng, J. B., Shi, P. J., et al., 2021. Scientific Challenges of Research on Natural Hazards and Disaster Risk. Geography and Sustainability, 2(3): 216-223. https://doi.org/10.1016/j.geosus.2021.09.001 Deng, K., Feng, X. W., Tan, X. J., et al., 2020. Experimental Research on Compressive Mechanical Properties of Ice under Low Strain Rates. Materials Today Communications, 24: 101029. https://doi.org/10.1016/j.mtcomm.2020.101029 Gao, B., Zhang, J. J., Wang, J. C., et al., 2019. Formation Mechanism and Disaster Characteristics of Debris Flow in the Tianmo Gully in Tibet. Hydrogeology & Engineering Geology, 46(5): 144-153 (in Chinese with English abstract). Hu, G. S., Chen, N. S., Deng, M. F., et al., 2011. Classification and Initiation Conditions of Debris Flows in Linzhi Area, Tibet. Bulletin of Soil and Water Conservation, 31(2): 193-197, 221 (in Chinese with English abstract). Jiang, D. W., Cui, P., Wang, J., et al., 2019. Experimental Study on the Effect of Shear Strength of Moraine Soil with Fine Grain Content. Journal of Glaciology and Geocryology, 41(1): 129-139 (in Chinese with English abstract). Lei, L. L., Xie, Y. L., Wang, D. Y., et al., 2018. Laboratory Studies of Frozen Soil Statics: Recent Progress and Prospect. Journal of Glaciology and Geocryology, 40(4): 802-811 (in Chinese with English abstract). Li, C. D., Wang, R., Gu, D. M., et al., 2022. Temperature and Ice Form Effects on Mechanical Behaviors of Ice-Rich Moraine Soil of Tianmo Valley nearby the Sichuan-Tibet Railway. Engineering Geology, 305: 106713. https://doi.org/10.1016/j.enggeo.2022.106713 Li, Q. L., Xu, X. T., Hu, J. J., et al., 2018. Investigation of Unsaturated Frozen Soil Behavior: Phase Transformation State, Post-Peak Strength, and Dilatancy. Soils and Foundations, 58(4): 928-940. https://doi.org/10.1016/j.sandf.2018.05.003 Li, Y., Cui, Y. F., Li, Z. H., et al., 2022. Evolution of Glacier Debris Flow and Its Monitoring System along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 1969-1984 (in Chinese with English abstract). Lin H., Chen X. W., Zeng Y. F., 2022. Experimental Study on Effect of Temperature on Geo-Mechanical Properties of Geomembrane. Earth Science, 47(6): 2165-2174 (in Chinese with English abstract). Liu, D. X., Hua, X. N., 2020. Experimental Study on the Influence of Temperature on Frost Heaving Characteristics of Silt. Building Structure, 50(S2): 797-802 (in Chinese with English abstract). Liu, J. K., Zhang, J. J., Gao, B., et al., 2019. A Summary of Glacial Lake Outburst Disasters in Tibet, China. Journal of Glaciology and Geocryology, 41(6): 1335-1347 (in Chinese with English abstract). Lu, J. Y., Yu, G. A., Huang, H. Q., 2021. Research and Prospect on Formation Mechanism of Debris Flows in High Mountains under the Influence of Climate Change. Journal of Glaciology and Geocryology, 43(2): 555-567 (in Chinese with English abstract). Lyu, C. X., Nishimura, S., Amiri, S., A. G., et al., 2021. Pore-Water Pressure Development in a Frozen Saline Clay under Isotropic Loading and Undrained Shearing. Acta Geotechnica, 16(12): 3831-3847. https://doi.org/10.1007/s11440-021-01338-y Ma, W., Wang, D. Y., 2014. Mechanics of Frozen Soils. Science Press, Beijing, 6-7 (in Chinese). Mu, Q. Y., Zhou, C., Ng, C. W. W., et al., 2019. Stress Effects on Soil Freezing Characteristic Curve: Equipment Development and Experimental Results. Vadose Zone Journal, 18(1): 1-10. https://doi.org/10.2136/vzj2018.11.0199 Poulos, S. J., Castro, G., France, J. W., 1985. Liquefaction Evaluation Procedure. Journal of Geotechnical Engineering, 111(6): 772-792. https://doi.org/10.1061/(asce)0733-9410(1985)111: 6(772) doi: 10.1061/(asce)0733-9410(1985)111:6(772 Qu, Y. P., Xiao, J., Pan, Y. W., 2018. Preliminary Analysis on Formation Conditions of Glacier Debris Flow in Southeast Tibet—A Case of Glacial Debris Flow in Tianmo Gully. Water Resources and Hydropower Engineering, 49(12): 177-184 (in Chinese with English abstract). Shastri, A., Sánchez, M., Gai, X. R., et al., 2021. Mechanical Behavior of Frozen Soils: Experimental Investigation and Numerical Modeling. Computers and Geotechnics, 138: 104361. https://doi.org/10.1016/j.compgeo.2021.104361 Shu, Y. F., 2011. Hazard Assessment of Moraine-Dammed Lake Outbursts in the Himalayas, Tibet and the Propagating Numerical Simulation (Dissertation). Jilin University, Changchun (in Chinese with English abstract). Sun, C., Tang, C. S., Cheng, Q., et al., 2022. Stability of Soil Slope under Soil-Atmosphere Interaction. Earth Science, 47(10): 3701-3722 (in Chinese with English abstract). Tang, M. G., Xu, Q., Deng, W. F., et al., 2022. Degradation Law of Mechanical Properties of Typical Rock in Sichuan-Tibet Traffic Corridor under Freeze-Thaw and Unloading Conditions. Earth Science, 47(6): 1917-1931 (in Chinese with English abstract). Wang, B. X., Wang, Y. B., Fan, C. X., et al., 2021. Energy Distribution and Evolution of Frozen Silty Clay at Subzero Temperatures under Compressive Loading. Transportation Geotechnics, 31: 100656. https://doi.org/10.1016/j.trgeo.2021.100656 Wang, J., Cui, P., Wang, H., et al., 2022a. Novel Approach to Estimating Glacial Moraine Reserves in the Parlung Tsangpo Basin. Frontiers in Earth Science, 10: 853089. https://doi.org/10.3389/feart.2022.853089 Wang, J., Cui, P., Wang, H., et al., 2022b. Insight into Geotechnical Properties of Glacial Tills in a Periglacial Area, Southeast Tibet. Bulletin of Engineering Geology and the Environment, 81(8): 303. https://doi.org/10.1007/s10064-022-02803-y Wang, X., Chen, G., Dai, X. A., et al., 2021. Typical Monitoring of Dangerous Glacial Lakes in Southwestern Tibet, China and Simulation of GLOF Debris Flow. Mountain Research, 39(5): 687-700 (in Chinese with English abstract). Wang, Y. S., Cheng, W. Q., Liu, J. W., 2022. Forming Process and Mechanisms of Geo-Hazards in Luding Section of the Sichuan-Tibet Railway. Earth Science, 47(3): 950-958 (in Chinese with English abstract). Xu, X. T., Yuan, J. H., Bai, R. Q., 2014. Laboratory Investigation on Mechanical Behavior of Artificial Ice under Triaxial Compression. Advanced Materials Research, 887-888: 903-906. https://doi.org/10.4028/www.scientific.net/amr.887-888.903 Yamamoto, Y., Springman, S. M., 2014. Axial Compression Stress Path Tests on Artificial Frozen Soil Samples in a Triaxial Device at Temperatures Just below 0 ℃. Canadian Geotechnical Journal, 51(10): 1178-1195. https://doi.org/10.1139/cgj-2013-0257 Yang, Q. Q., Zheng, X. Y., Su, Z. M., et al., 2022. Review on Rock-Ice Avalanches. Earth Science, 47(3): 935-949 (in Chinese with English abstract). Yu, B., He, Y. X., Liu, Y., 2022. Quantitative Susceptibility Assessment of Breach of Moraine-Dammed Lakes. Earth Science, 47(6): 1999-2014 (in Chinese with English abstract). Yu, H. L., Xu, X. Y., Dong, J. F., et al., 2013. Experimental Study on Uniaxial Compressive Strength in Mohe Permafrost Region. Heilongjiang Electric Power, 35(1): 79-81 (in Chinese with English abstract). doi: 10.3969/j.issn.1002-1663.2013.01.021 Yu, Z. S., De Qing, Z. G., Luo Bu, C. R., et al., 2009. Preliminary Analysis about the Cause of "9.4" Debris Flow Disaster in Tian Mo Gou, Bomi, Tibet. The Chinese Journal of Geological Hazard and Control, 20(1): 6-10 (in Chinese with English abstract). doi: 10.3969/j.issn.1003-8035.2009.01.002 Zhou, C. Y., Xia, X. M., 2003. Regression Analysis of Ductile-Brittle Transition Temperature Curve for CrMo Steel. Pressure Vessel Technology, 20(6): 13-18 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-4837.2003.06.004 柴波, 陶阳阳, 杜娟, 等, 2020. 西藏聂拉木县嘉龙湖冰湖溃决型泥石流危险性评价. 地球科学, 45(12): 4630-4639. doi: 10.3799/dqkx.2020.294 高波, 张佳佳, 王军朝, 等, 2019. 西藏天摩沟泥石流形成机制与成灾特征. 水文地质工程地质, 46(5): 144-153. 胡桂胜, 陈宁生, 邓明枫, 等, 2011. 西藏林芝地区泥石流类型及形成条件分析. 水土保持通报, 31(2): 193-197, 221. 蒋德旺, 崔鹏, 王姣, 等, 2019. 细粒含量对冰碛土抗剪强度影响的实验研究. 冰川冻土, 41(1): 129-139. 雷乐乐, 谢艳丽, 王大雁, 等, 2018. 冻土静力学室内试验研究进展. 冰川冻土, 40(4): 802-811. 李尧, 崔一飞, 李振洪, 等, 2022. 川藏交通廊道林波段冰川泥石流发育动态演化分析及监测预警方案. 地球科学, 47(6): 1969-1984. doi: 10.3799/dqkx.2021.194 林海, 陈薪文, 曾一帆, 2022. 土工膜岩土力学性质的温度影响试验. 地球科学, 47(6): 2165-2174. doi: 10.3799/dqkx.2021.103 刘德欣, 华小宁, 2020. 温度对粉土冻胀特性的影响试验研究. 建筑结构, 50(S2): 797-802. 刘建康, 张佳佳, 高波, 等, 2019. 我国西藏地区冰湖溃决灾害综述. 冰川冻土, 41(6): 1335-1347. 鲁建莹, 余国安, 黄河清, 2021. 气候变化影响下高山区泥石流形成机制研究及展望. 冰川冻土, 43(2): 555-567. 马巍, 王大雁, 2014. 冻土力学. 北京: 科学出版社, 6-7. 屈永平, 肖进, 潘义为, 2018. 藏东南地区冰川泥石流形成条件初步分析: 以天摩沟冰川泥石流为例. 水利水电技术, 49(12): 177-184. 舒有锋, 2011. 西藏喜马拉雅山地区冰碛湖溃决危险性评价及其演进数值模拟(硕士学位论文). 长春: 吉林大学. 孙畅, 唐朝生, 程青, 等, 2022. 土体‒大气相互作用下土质边坡稳定性研究. 地球科学, 47(10): 3701-3722. doi: 10.3799/dqkx.2022.275 汤明高, 许强, 邓文锋, 等, 2022. 冻融及加卸荷条件下川藏交通廊道典型岩石力学特性的劣化规律. 地球科学, 47(6): 1917-1931. doi: 10.3799/dqkx.2021.260 王翔, 陈果, 戴晓爱, 等, 2021. 藏西南典型危险性冰湖监测与泥石流溃决模拟. 山地学报, 39(5): 687-700. 王运生, 程万强, 刘江伟, 2022. 川藏铁路廊道泸定段地质灾害孕育过程及成灾机制. 地球科学, 47(3): 950-958. http://www.cnki.com.cn/Article/CJFDTotal-DQKX202203015.htm 杨情情, 郑欣玉, 苏志满, 等, 2022. 高速远程冰‒岩碎屑流研究进展. 地球科学, 47(3): 935-949. doi: 10.3799/dqkx.2021.158 于皓琳, 徐学燕, 董鉴峰, 等, 2013. 漠河多年冻土单轴抗压强度试验研究. 黑龙江电力, 35(1): 79-81. 余斌, 何元勋, 刘秧, 2022. 冰碛湖溃决易发性的定量评价. 地球科学, 47(6): 1999-2014. doi: 10.3799/dqkx.2021.161 余忠水, 德庆卓嘎, 罗布次仁, 等, 2009. 西藏波密县天摩沟"9·4" 特大泥石流灾害成因初步分析. 中国地质灾害与防治学报, 20(1): 6-10. 周昌玉, 夏翔鸣, 2003. CrMo钢材料韧脆转变温度曲线的回归分析. 压力容器, 20(6): 13-18. -