• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    月球正面火山复合体穹窿形貌特征识别和聚类分析

    殷浩林 黄倩 陈雨超 赵健楠

    殷浩林, 黄倩, 陈雨超, 赵健楠, 2024. 月球正面火山复合体穹窿形貌特征识别和聚类分析. 地球科学, 49(3): 1104-1118. doi: 10.3799/dqkx.2023.016
    引用本文: 殷浩林, 黄倩, 陈雨超, 赵健楠, 2024. 月球正面火山复合体穹窿形貌特征识别和聚类分析. 地球科学, 49(3): 1104-1118. doi: 10.3799/dqkx.2023.016
    Yin Haolin, Huang Qian, Chen Yuchao, Zhao Jiannan, 2024. Morphological Identification and Clustering Analysis of Domes in the Lunar Large Volcanic Complexes. Earth Science, 49(3): 1104-1118. doi: 10.3799/dqkx.2023.016
    Citation: Yin Haolin, Huang Qian, Chen Yuchao, Zhao Jiannan, 2024. Morphological Identification and Clustering Analysis of Domes in the Lunar Large Volcanic Complexes. Earth Science, 49(3): 1104-1118. doi: 10.3799/dqkx.2023.016

    月球正面火山复合体穹窿形貌特征识别和聚类分析

    doi: 10.3799/dqkx.2023.016
    基金项目: 

    国家重点研发计划项目 2021YFA0715100

    国家自然科学基金项目 42030108

    地质探测与评估教育部重点实验室主任基金项目 GLAB2022ZR09

    中央高校基本科研业务费专项 CUG2106122

    详细信息
      作者简介:

      殷浩林(1998-),男,硕士研究生,主要从事行星遥感与地球物理的综合研究. ORCID:0000-0002-5467-8023. E-mail:13026159616@163.com

      通讯作者:

      黄倩,ORCID: 0000-0003-0141-7919. E-mail: qianhuang@cug.edu.cn

    • 中图分类号: P691

    Morphological Identification and Clustering Analysis of Domes in the Lunar Large Volcanic Complexes

    • 摘要: 月球火山穹窿是了解月球火山活动的重要窗口.利用高分辨率多源遥感数据,对月球正面的3个火山复合体区(Marius Hills和Rümker Hills位于风暴洋克里普地体,Gardner在风暴洋克里普地体外)里发育的火山穹窿进行形貌和铁钛元素特征提取,利用这些特征参数进行层次聚类分析,并将所有穹窿划分为7个聚类(DC1~DC7);然后结合流变学、年代学和区域地质背景对3个火山复合体区的火山活动特征进行了综合分析.Marius Hills发育的火山穹窿数量多,高度和坡度较高,以中高钛为主,穹窿代表类型为DC7,岩浆活动时间跨度大(约2.6 Ga)、周期长,表明该区域存在多期次不同特征的火山活动.Rümker Hills发育的火山穹窿数量少,高度和坡度居中,以低钛为主,穹窿代表类型为DC1和DC4,活动时间相对集中(约0.8 Ga).Gardner及其周边区域发育的穹窿呈环状和带状分布,高度和坡度较低,以中低钛为主,岩浆活动时间持续约1.0 Ga,穹窿代表类型为DC6,该区域发生了多期次且复杂多样的火山活动.本研究揭示了月球正面火山复合体岩浆活动的复杂性,这种复杂性可能与岩浆源区及生热元素的不均匀分布情况有关.

       

    • 图  1  月球正面高程分布

      图中白色圆圈为8个火山穹窿复合体,黑色虚线内为风暴洋克里普(Procellarum KREEP terrane,简称PKT)区域,红色箭头指示发育有多个火山穹窿的Marius Hills、Rümker Hills和Gardner火山穹窿复合体,据Huang et al.(2020)修改

      Fig.  1.  Elevation map of the lunar nearside

      图  2  火山穹窿识别示意

      a. TC morning影像图;b. 地形图上覆山体阴影图;c. 坡度图;d. 地形和山体阴影叠加图,上覆等高线间隔为50 m;e. 左图为地形和山体阴影叠加图,右图为沿左图中白色直线ABCD方向的高程剖面图.图c~e中黑色曲线为根据底图描绘的火山穹窿轮廓

      Fig.  2.  Schematic diagram of volcanic dome identification

      图  3  三个火山复合体穹窿分布

      图a~c依次为Marius Hills、Rümker Hills、Gardner火山复合体的影像图(Kaguya TC morning);图d~f依次为Marius Hills、Rümker Hills、Gardner火山复合体的地形图(TC DTM).图a~f中白色曲线代表火山穹窿的轮廓

      Fig.  3.  Distribution of the domes in the three volcanic complexes

      图  4  Marius Hills火山穹窿典型参数统计直方图

      a. 穹窿直径(D);b. 穹窿高度(H);c. 穹窿平均侧边坡度(Slope);d. 穹窿表面体积(SV);e. 穹窿熔岩流粘稠度(η);f. 穹窿熔岩流溢流速率(E

      Fig.  4.  Histograms of typical parameters of the volcanic domes in the Marius Hills

      图  5  Rümker Hills火山穹窿典型参数统计直方图

      Fig.  5.  Histograms of typical parameters of the volcanic domes in the Rümker Hills

      图  6  Gardner火山穹窿典型参数统计直方图

      Fig.  6.  Histograms of typical parameters of the volcanic domes in the Gardner

      图  7  火山穹窿参数核密度估计图

      a. 穹窿直径(D);b. 穹窿高度(H);c. 穹窿平均侧边坡度(Slope);d. 穹窿表面体积(SV);e. 穹窿形态因子(f);f. 穹窿熔岩流粘稠度(η);g. 穹窿熔岩流溢流速率(E);h. 穹窿熔岩流溢流持续时间(Te);i. 穹窿FeO含量;j. 穹窿TiO2含量

      Fig.  7.  Kernel density estimation plots of the parameters of the volcanic domes

      图  8  火山穹窿层次聚类结果

      a. Marius Hills;b. Rümker Hills;c. Gardner.图a~c中黑色圆形标识为在每一类中选取的具有代表性的火山穹窿,将在图 9中作细节展示

      Fig.  8.  Hierarchical Clustering results of the volcanic domes

      图  9  典型火山穹窿的三维渲染图、高程图、高程剖面

      图a~g依次为层次聚类结果中DC1~DC7类别的典型火山穹窿(图 8黑色圆形标识),其中图c、g中的穹窿来自Marius Hills地区;图a、d中的穹窿来自Rümker Hills地区;图b、e、f中的穹窿来自Gardner地区.每个穹窿都选取了沿直线ABCD方向具有代表性的高程剖面

      Fig.  9.  3D-rendering images, elevation maps, and profiles of the representative volcanic domes

      图  10  三大火山复合体区穹窿形貌(直径与高程)和元素成分(TiO2与FeO)对比

      Fig.  10.  Comparison of morphology (diameter vs. elevation) and elemental composition (TiO2 vs. FeO) of domes in the three volcanic complexes

    • Arya, A. S., Rajasekhar, R. P., Sur, K., et al., 2018. Morphometric and Rheological Study of Lunar Domes of Marius Hills Volcanic Complex Region Using Chandrayaan-1 and Recent Datasets. Journal of Earth System Science, 127(5): 70. https://doi.org/10.1007/s12040-018-0971-y
      Baratoux, D., Pinet, P., Toplis, M. J., et al., 2009. Shape, Rheology and Emplacement Times of Small Martian Shield Volcanoes. Journal of Volcanology and Geothermal Research, 185(1-2): 47-68. https://doi.org/10.1016/j.jvolgeores.2009.05.003
      Bohnenstiehl, D. R., Howell, J. K., White, S. M., et al., 2012. A Modified Basal Outlining Algorithm for Identifying Topographic Highs from Gridded Elevation Data, Part 1: Motivation and Methods. Computers & Geosciences, 49: 308-314. https://doi.org/10.1016/j.cageo.2012.04.023
      Chen, Y. C., Huang, Q., Zhao, J. N., et al., 2021. Unsupervised Machine Learning on Domes in the Lunar Gardner Region: Implications for Dome Classification and Local Magmatic Activities on the Moon. Remote Sensing, 13(5): 845. https://doi.org/10.3390/rs13050845
      Euillades, L. D., Grosse, P., Euillades, P. A., 2013. NETVOLC: An Algorithm for Automatic Delimitation of Volcano Edifice Boundaries Using DEMs. Computers & Geosciences, 56: 151-160. https://doi.org/10.1016/j.cageo.2013.03.011
      Giguere, T. A., Taylor, G. J., Hawke, B. R., et al., 2000. The Titanium Contents of Lunar Mare Basalts. Meteoritics & Planetary Science, 35(1): 193-200. https://doi.org/10.1111/j.1945-5100.2000.tb01985.x
      Gillis, J. J., Jolliff, B. L., Elphic, R. C., 2003. A Revised Algorithm for Calculating TiO2 from Clementine UVVIS Data: A Synthesis of Rock, Soil, and Remotely Sensed TiO2 Concentrations. Journal of Geophysical Research: Planets, 108(E2): 5009. https://doi.org/10.1029/2001je001515
      Grosse, P., van Wyk de Vries, B., Euillades, P. A., et al., 2012. Systematic Morphometric Characterization of Volcanic Edifices Using Digital Elevation Models. Geomorphology, 136(1): 114-131. https://doi.org/10.1016/j.geomorph.2011.06.001
      Head, J. W., Gifford, A., 1980. Lunar Mare Domes: Classification and Modes of Origin. The Moon and the Planets, 22(2): 235-258. https://doi.org/10.1007/BF00898434
      Heather, D. J., Dunkin, S. K., Wilson, L., 2003. Volcanism on the Marius Hills Plateau: Observational Analyses Using Clementine Multispectral Data. Journal of Geophysical Research (Planets), 108(E3): 5017. https://doi.org/10.1029/2002JE001938
      Hiesinger, H., Gebhart, J., van der Bogert, C. H., et al., 2016. Stratigraphy of Low Shields and Mare Basalts of the Marius Hills Region, Moon. The 47th Lunar and Planetary Science Conference, Houston.
      Hiesinger, H., Jaumann, R., Neukum, G., et al., 2000. Ages of Mare Basalts on the Lunar Nearside. Journal of Geophysical Research: Planets, 105(E12): 29239-29275. https://doi.org/10.1029/2000je001244
      Huang, Q., Zhao, J. N., Wang, X. M., et al., 2020. A Large Long-Lived Central-Vent Volcano in the Gardner Region: Implications for the Volcanic History of the Nearside of the Moon. Earth and Planetary Science Letters, 542: 116301. https://doi.org/10.1016/j.epsl.2020.116301
      Lawrence, D. J., Feldman, W. C., Barraclough, B. L., et al., 1998. Global Elemental Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer. Science, 281(5382): 1484-1489. https://doi.org/10.1126/science.281.5382.1484
      Lawrence, D. J., Feldman, W. C., Elphic, R. C., et al., 2002. Iron Abundances on the Lunar Surface as Measured by the Lunar Prospector Gamma-Ray and Neutron Spectrometers. Journal of Geophysical Research (Planets), 107(E12): 5130. https://doi.org/10.1029/2001JE001530
      Lawrence, S. J., Stopar, J. D., Hawke, B. R., et al., 2013. LRO Observations of Morphology and Surface Roughness of Volcanic Cones and Lobate Lava Flows in the Marius Hills. Journal of Geophysical Research: Planets, 118(4): 615-634. https://doi.org/10.1002/jgre.20060
      Lena, R., Wöhler, C., Phillips, J., et al., 2013. Lunar Domes: Properties and Formation Processes. Springer & Praxis Publishing, Chichester.
      Li, Q. L., Zhou, Q., Liu, Y., et al., 2021. Two-Billion-Year-Old Volcanism on the Moon from Chang'E-5 Basalts. Nature, 600: 54-58. https://doi.org/10.1038/s41586-021-04100-2
      Lin, Y. T., 2010. Key Issues of the Formation and Evolution of the Moon. Geochimica, 39(1): 1-10 (in Chinese with English abstract).
      Liu, J. J., Li, C. L., Wang, W. R., et al., 2019. Extraction of Lunar Domes from Chang'E-2 Data with New Method. Icarus, 321: 29-33. https://doi.org/10.1016/j.icarus.2018.10.030
      Lucey, P. G., Blewett, D. T., Jolliff, B. L., 2000. Lunar Iron and Titanium Abundance Algorithms Based on Final Processing of Clementine Ultraviolet-Visible Images. Journal of Geophysical Research: Planets, 105(E8): 20297-20305. https://doi.org/10.1029/1999je001117
      Morota, T., Haruyama, J., Ohtake, M., et al., 2011. Timing and Characteristics of the Latest Mare Eruption on the Moon. Earth and Planetary Science Letters, 302(3-4): 255-266. https://doi.org/10.1016/j.epsl.2010.12.028
      Podobnikar, T., 2012. Detecting Mountain Peaks and Delineating Their Shapes Using Digital Elevation Models, Remote Sensing and Geographic Information Systems Using Autometric Methodological Procedures. Remote Sensing, 4(3): 784-809. https://doi.org/10.3390/rs4030784
      Qiao, L., Chen, J., Ling, Z. C., 2021. Volcanic Landforms on the Moon. Acta Geologica Sinica, 95(9): 2678-2691 (in Chinese with English abstract).
      Qiao, L., Head, J. W., Wilson, L., et al., 2021. Mare Domes in Mare Tranquillitatis: Identification, Characterization, and Implications for Their Origin. Journal of Geophysical Research (Planets), 126(9): e06888. https://doi.org/10.1029/2021JE006888
      Sato, H., Robinson, M. S., Lawrence, S. J., et al., 2017. Lunar Mare TiO2 Abundances Estimated from UV/Vis Reflectance. Icarus, 296: 216-238. https://doi.org/10.1016/j.icarus.2017.06.013
      Spudis, P. D., McGovern, P. J., Kiefer, W. S., 2013. Large Shield Volcanoes on the Moon. Journal of Geophysical Research: Planets, 118(5): 1063-1081. https://doi.org/10.1002/jgre.20059
      Tian, H. C., Wang, H., Chen, Y., et al., 2021. Non-KREEP Origin for Chang'E-5 Basalts in the Procellarum KREEP Terrane. Nature, 600: 59-63. https://doi.org/10.1038/s41586-021-04119-5
      Weitz, C. M., Head, J. W. Ⅲ, 1999. Spectral Properties of the Marius Hills Volcanic Complex and Implications for the Formation of Lunar Domes and Cones. Journal of Geophysical Research: Planets, 104(E8): 18933-18956. https://doi.org/10.1029/1998je000630
      Whitford-Stark, J. L., Head, J. W., 1977. The Procellarum Volcanic Complexes: Contrasting Styles of Volcanism. Lunar and Planetary Science Conference Proceedings, 3: 2705-2724.
      Wieczorek, M. A., Phillips, R. J., 2000. The "Procellarum KREEP Terrane": Implications for Mare Volcanism and Lunar Evolution. Journal of Geophysical Research: Planets, 105(E8): 20417-20430. https://doi.org/10.1029/1999je001092
      Wilson, L., Head, J. W., 2003. Lunar Gruithuisen and Mairan Domes: Rheology and Mode of Emplacement. Journal of Geophysical Research (Planets), 108(E2): 5012. https://doi.org/10.1029/2002JE001909
      Wöhler, C., Lena, R., 2009. Lunar Intrusive Domes: Morphometric Analysis and Laccolith Modelling. Icarus, 204(2): 381-398. https://doi.org/10.1016/j.icarus.2009.07.031
      Wöhler, C., Lena, R., Lazzarotti, P., et al., 2006. A Combined Spectrophotometric and Morphometric Study of the Lunar Mare Dome Fields near Cauchy, Arago, Hortensius, and Milichius. Icarus, 183(2): 237-264. https://doi.org/10.1016/j.icarus.2006.03.003
      Wöhler, C., Lena, R., Phillips, J., 2007. Formation of Lunar Mare Domes along Crustal Fractures: Rheologic Conditions, Dimensions of Feeder Dikes, and the Role of Magma Evolution. Icarus, 189(2): 279-307. https://doi.org/10.1016/j.icarus.2007.01.011
      Wood, C. A., Higgins, W., Pau, K. C., et al., 2005. The Lamont-Gardner Megadome Alignment: A Lunar Volcano-Tectonic Structure? The 36th Annual Lunar and Planetary Science Conference, League City.
      Xu, Y. G., 2010. Mare Basalts and Lunar Evolution. Geochimica, 39(1): 50-62 (in Chinese with English abstract).
      Yang, W., Hu, S., Li, Q. L., et al., 2022. How Long Has Lunar Volcanism Lasted? Earth Science, 47(10): 3789-3791 (in Chinese).
      Zhang, F., Zhu, M. H., Bugiolacchi, R., et al., 2018. Diversity of Basaltic Lunar Volcanism Associated with Buried Impact Structures: Implications for Intrusive and Extrusive Events. Icarus, 307: 216-234. https://doi.org/10.1016/j.icarus.2017.10.039
      Zhao, J. N., Xiao, L., Qiao, L., et al., 2017. The Mons Rümker Volcanic Complex of the Moon: A Candidate Landing Site for the Chang'E-5 Mission. Journal of Geophysical Research: Planets, 122(7): 1419-1442. https://doi.org/10.1002/2016je005247
      林杨挺, 2010. 月球形成和演化的关键科学问题. 地球化学, 39(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201001004.htm
      乔乐, 陈剑, 凌宗成, 2021. 月球火山作用的地貌学特征. 地质学报, 95(9): 2678-2691. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202109005.htm
      徐义刚, 2010. 月海玄武岩与月球演化. 地球化学, 39(1): 50-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201001010.htm
      杨蔚, 胡森, 李秋立, 等, 2022. 月球火山活动究竟能持续多久? 地球科学, 47(10): 3789-3791. doi: 10.3799/dqkx.2022.810
    • 加载中
    图(10)
    计量
    • 文章访问数:  436
    • HTML全文浏览量:  85
    • PDF下载量:  38
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-11-28
    • 网络出版日期:  2024-04-12
    • 刊出日期:  2024-03-25

    目录

      /

      返回文章
      返回