Prone Sliding Geo-Structure and High-Position Initiating Mechanism of Duolasi Landslide in Nu River Tectonic Mélange Belt
-
摘要: 多拉寺滑坡是位于怒江构造混杂岩带的特大型古滑坡,具有典型的地质构造与特殊岩性联合控制的特点.采用现场调查和地球物理勘查、无人机测绘、岩土力学和年代学测试等技术手段,揭示了多拉寺滑坡的易滑地质结构、多期次发育特征及高位启滑机制.结果表明:(1)厚层大理岩与蛇纹岩交互堆叠及黏土化蚀变带是多拉寺滑坡重要的易滑地质结构,蚀变黏土是影响滑坡高速远程运移的重要因素.(2)多拉寺滑坡具有多期活动特征,可划分出主滑体区、次级滑体区和现代崩积区,主滑体的形成时代为距今19.4±2.8 ka,次级滑体为距今4.24±0.35 ka.(3)主滑坡体的高位启滑过程与陡峻的斜坡地貌、岩溶多重渗透结构、蚀变黏土的软弱基座效应、地震动力促发作用等因素密切相关.(4)主滑坡体呈现上部粗大块石与下部细粒物质分层堆积的伪地层模式,说明滑坡整体以剪切运动为主,滑坡上部物质比下部物质运动得更快.上述认识可为青藏高原东缘构造混杂岩带大型滑坡形成机制研究和风险防控提供参考依据.Abstract: The Duolasi landslide is a super-large scale ancient landslide located in the Nu River tectonic mélange belt, which is characterized by the combination control of typical geological structure and special lithology. In this paper, several technical means, such as field investigation, geophysical exploration, unmanned aerial vehicle mapping, geo-mechanics and chronological testing, were applied to reveal the prone sliding geological structure, multi-stage development characteristics and high-position initiating mechanism of the Duolasi landslide. The results show follows: (1) The thick-bedded marble and ophiolite are stacked alternately and the corresponding clay-altered zone is an important prone-sliding geological structure of the Duolasi landslide. The altered clay is an important factor to the high-speed and long run-out of the landslide. (2) The Duolasi landslide has the characteristics of multi-stage activity, and can be divided into the main sliding body area, the secondary sliding body area and the modern colluvial area. The formation age of the main sliding body is 19.4±2.8 ka, and that of the secondary sliding bodies is 4.24±0.35 ka. (3) The high-position initiating process of the main landslide is closely related to factors such as steep slope landform, multi-permeable karst structure, weak base effect of altered clay, and seismic dynamic triggering. (4) The main landslide presents a pseudo-stratigraphic pattern of layered accumulation, i.e., coarse boulders in the upper part and fine-grained materials in the lower part, indicating that the overall landslide is mainly shear motion, and the material in the upper part of the landslide moves faster than the material in the lower part. The above understanding can provide a reference for the formation mechanism research and risk control of large scale landslides in the tectonic mélange belt on the east Tibetan plateau.
-
图 13 伪地层堆积模式图(据Strom, 1994)
Fig. 13. Pseudo-stratified pattern of layered accumulation (after Strom, 1994)
表 1 多拉寺滑坡黏土化蚀变岩的粒度分析结果
Table 1. Grain-size analysis results of clayey altered rock in the Duolasi landslide
样品编号 地点 岩性 颗粒组成(mm•%) > 2.0 0.075~2.0 0.005~0.075 < 0.005 < 0.002 S01-1 滑坡前缘滑带 灰绿色蚀变黏土 4.6 18.9 37.4 28.9 10.2 S02-1 滑坡中前部东侧边缘 黄褐色蚀变黏土 13.5 32.9 32.7 20.9 11.2 S03-3 滑坡中部冲沟东侧 黄褐色蚀变软岩 33.3 27.9 24.9 13.9 7.3 S09-2 滑坡前缘滑带 黄褐色蚀变黏土 0.4 21.0 46.7 31.9 10.4 S09-3 滑坡前缘滑带 黄褐色夹灰绿色蚀变黏土 0.9 26.3 41.4 31.4 23.1 表 2 多拉寺滑坡黏土化蚀变岩的黏土矿物定量测试结果
Table 2. Quantitative test results of clay mineral composition of clayey altered rock in the Dolasi landslide
样品编号 黏土矿物成分(%) S I/S I K C I/S混层比(% S) S01-1 100 - - - - - S02-1 100 - - - - - S03-3 100 - - - - - S09-2 40 28 32 - - 65 S09-3 29 30 41 - - 65 注:S.蒙脱石;I/S.伊/蒙混层;I.伊利石;K.高岭石;C.绿泥石. -
Bjerga, A., Konopásek, J., Pedersen, R. B., 2015. Talc-Carbonate Alteration of Ultramafic Rocks within the Leka Ophiolite Complex, Central Norway. Lithos, 227: 21-36. https://doi.org/10.1016/j.lithos.2015.03.016 Callahan, O. A., Eichhubl, P., Olson, J. E., et al., 2019. Fracture Mechanical Properties of Damaged and Hydrothermally Altered Rocks, Dixie Valley-Stillwater Fault Zone, Nevada, USA. Journal of Geophysical Research: Solid Earth, 124(4): 4069-4090. https://doi.org/10.1029/2018jb016708 Chen, J. P., Li, H. Z., 2016. Genetic Mechanism and Disasters Features of Complicated Structural Rock Mass along the Rapidly Uplift Section at the Upstream of Jinsha River. Journal of Jilin University (Earth Science Edition), 46(4): 1153-1167(in Chinese with English abstract). Chen, R. C., Chen, J., Xu, H., et al., 2022. The Morphology and Sedimentology of the Walai Rock Avalanche in Southern China, with Implications for Confined Rock Avalanches. Geomorphology, (413): 108346. https://doi.org/10.1016/j.geomorph.2022.108346 Deng, J. H., Gao, Y. J., Yao, X., et al., 2021. Recognition and Implication of Basu Giant Rock Avalanche. Advanced Engineering Sciences, 53(3): 19-28(in Chinese with English abstract). Geological and Mineral Resources Bureau of Tibet Autonomous Region, 1993. Regional Geological Records of Tibet Autonomous Region. Geological Publishing House, Beijing(in Chinese). Han, M. M., Chen, L. C., Li, Y. B., et al., 2022. Geological and Geomorphic Evidence for Late Quaternary Activity of the Bianba-Luolong Fault on the Western Boundary of the Bangong-Nujiang Suture. Earth Science, 47(3): 757-765(in Chinese with English abstract). Hungr, O., Evans, S. G., 2004. Entrainment of Debris in Rock Avalanches: An Analysis of a Long Run-out Mechanism. Geological Society of America Bulletin, 116(9): 1240. https://doi.org/10.1130/b25362.1 Iyer, K., Austrheim, H., John, T., et al., 2008. Serpentinization of the Oceanic Lithosphere and Some Geochemical Consequences: Constraints from the Leka Ophiolite Complex, Norway. Chemical Geology, 249(1-2): 66-90. https://doi.org/10.1016/j.chemgeo.2007.12.005 Kim, C., Snell, C., Medley, E., 2004. Shear Strength of Franciscan Complex Mélange as Calculated from Back-Analysis of a Landslide. Proceedings: Fifth International Conference on Case Histories in Geotechnical Engineering, New York, NY, April 13-17, 1-8. Kohno, M., Maeda, H., 2010. Mechanical Properties of Hydrothermally Altered Rocks from Northeastern Hokkaido, Japan, Based on Point Load Strength Test Results. Journal of MMIJ, 127(1): 14-19. https://doi.org/10.2473/journalofmmij.127.14 Lan, H. X., Zhang, Y. X., Macciotta, R., et al., 2022. The Role of Discontinuities in the Susceptibility, Development, and Runout of Rock Avalanches: A Review. Landslides, 19(6): 1391-1404. https://doi.org/10.1007/s10346-022-01868-w Meller, C., Kontny, A., Kohl, T., 2014. Identification and Characterization of Hydrothermally Altered Zones in Granite by Combining Synthetic Clay Content Logs with Magnetic Mineralogical Investigations of Drilled Rock Cuttings. Geophysical Journal International, 199(1): 465-479. https://doi.org/10.1093/gji/ggu278 Pan, G. T., Ren, F., Yin, F. G., et al., 2020. Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project. Earth Science, 45(7): 2293-2304(in Chinese with English abstract). Shuzui, H. R., 2001. Process of Slip-Surface Development and Formation of Slip-Surface Clay in Landslides in Tertiary Volcanic Rocks, Japan. Engineering Geology, 61(4): 199-220. https://doi.org/10.1016/s0013-7952(01)00025-4 Strom, A., 1994. Mechanism of Stratification and Abnormal Crushing of Rockslide Deposits. Proceeding of 7th Intemational IAEG Congress 3. Rotterdam, Balkema, 1287-1295. Tang, Y., Qin, Y. D., Gong, X. D., et al., 2022. Determination of Material Composition of Jinshajiang Tectonic Mélange Belt in Gonjo-Baiyu Area, Eastern Tibet. Sedimentary Geology and Tethyan Geology, 42(2): 260-278(in Chinese with English abstract). Wang, L. Y., Yang, Z. J., Liu, G., et al., 2021. Dynamic Processes of the Dora Kamiyama Rockslide in the Tibetan Plateau, China: Geomorphic Implication. Bulletin of Engineering Geology and the Environment, 80(2): 933-950. https://doi.org/10.1007/s10064-020-02004-5 Wang, Y. F., Cheng, Q. G., Zhu, Q., 2012. Inverse Grading Analysis of Deposit from Rock Avalanches Triggered by Wenchuan Earthquake. Chinese Journal of Rock Mechanics and Engineering, 31(6): 1089-1106(in Chinese with English abstract). Wen, B. P., Zeng, Q. Q., Yan, T. X., et al., 2020. Preliminary Analysis on Initial Failure Modes of Large Rock Avalanches'Source Slopes in the Southeastern Qinghai-Tibet Plateau. Advanced Engineering Sciences, (5): 38-49(in Chinese with English abstract). Wu, C. H., Cui, P., Li, Y. S., et al., 2021. Tectonic Damage of Crustal Rock Mass around Active Faults and Its Conceptual Model at Eastern Margin of Tibetan Plateau. Journal of Engineering Geology, 29(2): 289-306(in Chinese with English abstract). Yang, C. L., Wang, S. L., Wang, Q. Q., et al., 2019. Analysis of Rock Alteration Characteristics in Dam Site Area of a Hydropower Station in Tibet. Journal of Water Resources and Architectural Engineering, 17(6): 93-98(in Chinese with English abstract). Yang, G. L., Huang, R. Q., Wang, J. Z., et al., 2006. Study on the Pore Characteristics and the Weakness of Altered-Rock for a Project. Journal of Mineralogy and Petrology, 26(4): 111-115(in Chinese with English abstract). Yoshida, H., Metcalfe, R., Seida, Y., et al., 2009. Retardation Capacity of Altered Granitic Rock Distributed along Fractured and Faulted Zones in the Orogenic Belt of Japan. Engineering Geology, 106(3-4): 116-122. https://doi.org/10.1016/j.enggeo.2009.03.008 Zeng, Q. G., Wang, B. D., Xi, L. L. J., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763(in Chinese with English abstract). Zhang, M., McSaveney, M. J., 2017. Rock Avalanche Deposits Store Quantitative Evidence on Internal Shear during Runout. Geophysical Research Letters, 44(17): 8814-8821. https://doi.org/10.1002/2017gl073774 Zhang, Y. S., Li, J. Q., Ren, S. S., et al., 2022. Development Characteristics of Clayey Altered Rocks in the Sichuan-Tibet Traffic Corridor and Their Promotion to Large-Scale Landslides. Earth Science, 47(6): 1945-1956(in Chinese with English abstract). 陈剑平, 李会中, 2016. 金沙江上游快速隆升河段复杂结构岩体灾变特征与机理. 吉林大学学报(地球科学版), 46(4): 1153-1167. 邓建辉, 高云建, 姚鑫, 等, 2021. 八宿巨型滑坡的发现及其意义. 工程科学与技术, 53(3): 19-28. 韩明明, 陈立春, 李彦宝, 等, 2022. 班公湖-怒江缝合带西界边坝-洛隆断裂全新世活动的地质地貌证据. 地球科学, 47(3): 757-765. doi: 10.3799/dqkx.2022.042 潘桂棠, 任飞, 尹福光, 等, 2020. 洋板块地质与川藏铁路工程地质关键区带. 地球科学, 45(7): 2293-2304. doi: 10.3799/dqkx.2020.070 唐渊, 秦雅东, 巩小栋, 等, 2022. 藏东贡觉—白玉地区金沙江构造混杂岩带物质组成的厘定. 沉积与特提斯地质, 42(2): 260-278. 王玉峰, 程谦恭, 朱圻, 2012. 汶川地震触发高速远程滑坡-碎屑流堆积反粒序特征及机制分析. 岩石力学与工程学报, 31(6): 1089-1106. 文宝萍, 曾启强, 闫天玺, 等, 2020. 青藏高原东南部大型岩质高速远程崩滑启动地质力学模式初探. 工程科学与技术, 52(5): 38-49. 伍纯昊, 崔鹏, 李渝生, 等, 2021. 青藏高原东缘活动断裂带地壳岩体构造损伤特征与模式讨论. 工程地质学报, 29(2): 289-306. 西藏自治区地质矿产局, 1993. 西藏自治区区域地质志. 北京: 地质出版社. 杨成龙, 王森林, 王钦权, 等, 2019. 西藏某水电站坝址区岩石蚀变特征分析. 水利与建筑工程学报, 17(6): 93-98. 杨根兰, 黄润秋, 王奖臻, 等, 2006. 某工程蚀变岩孔隙特征及其软弱程度研究. 矿物岩石, 26(4): 111-115. 曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152 张永双, 李金秋, 任三绍, 等, 2022. 川藏交通廊道黏土化蚀变岩发育特征及其对大型滑坡的促滑作用. 地球科学, 47(6): 1945-1956. doi: 10.3799/dqkx.2022.155 -