Sedimentary Characteristics and Development Pattern of Sublacustrine Fan in the Third Member of Dongying Formation in the South-Central Western Slope of Liaozhong Sag
-
摘要: 为明确辽中凹陷中南部西斜坡东三段砂体成因类型、控制因素和分布规律,综合利用钻测井、分析化验以及三维地震等资料,分析砂体沉积响应特征,探讨其控制因素及其发育模式,并通过井震标定、地层切片、属性提取等技术手段,明确高精度层序格架下重力流平面分布和垂向演化特征. 研究结果表明:研究区东三段砂体为湖底扇沉积,在粒度曲线和C-M图上具有重力流的沉积特征;沉积构造以块状砂岩为主,局部发育漂砾、泥岩撕裂屑、波纹层理、平行层理等沉积特征;地震上具有单轴强振幅反射与中弱振幅低频兼具有构型的两类地震相特征. 东三时期湖底扇砂体主要受盆外物源供给、坡折带、次级湖泛面等三因素联合控制. 其中,西部燕山盆外物源形成的大型辫状河三角洲越过“链状岛”式的辽西低凸起,为湖底扇沉积提供了富砂的物质基础;沉积坡折控制湖底扇发育位置和相带边界,盆内顺向断裂坡折与反向断裂坡折对砂体分布和流向具有再分配和调节作用,进一步控制湖底扇平面展布形态和砂体发育程度;湖平面频繁波动变化形成的次级湖泛面,控制湖底扇垂向多期叠加,湖泛泥岩对斜坡带侧向遮挡提供了良好的保存条件. 三因素动态平衡的湖底扇沉积模式控制了斜坡区发育大面积的岩性圈闭群. 湖底扇主要分布在东三层序湖泛体系域内,低位域与高位域少量发育;平面上B构造区湖底扇呈舌状展布,其发育规模与分布范围优于A、C构造区,且垂向叠合性好,油气成藏条件优越,是下步岩性油气藏勘探与评价的有利目标.Abstract: In order to clarify the genetic types, controlling factors and distribution rules of sandbodies in the third member of Dongying Formation of the west slope in the south-central Liaozhong Sag, combining drilling logs, analytical tests and 3D seismic data, the characteristics of sandbodies sedimentary response were analyzed, and its controlling factors and development patterns were discussed, the plane distribution and vertical evolution characteristics of gravity flow under high-precision sequence framework were clarified by means of well seismic calibration, stratum slicing and attribute extraction. The results show that the sandbodies in the third member of Dongying Formation of the study area were sublacustrine fan deposits, which have unique sedimentary characteristics of gravity flow on the grain size curve and C-M map. The sedimentary structure was dominated by massive sandstone, with local gravity flow characteristics such as boulders, mudstone lacerations, corrugated bedding and parallel bedding. There are two kinds of seismic phase characteristics: strong amplitude reflection of a single in-phase axis, low frequency of medium and weak amplitude, and certain configuration. The sublacustrine fan sandbodies were mainly controlled by the source supply outside the basin, the slope break zone and the secondary lake flood surface. Among them, The large braided river delta formed from the source outside the western Yanshan, which crossed the Liaoxi low uplift of "chain island" type, provided the material basis for sublacustrine fan deposition. the development location and facies zone boundary of sublacustrine fan were controled by the sedimentary slope breaks. The forward and reverse fault slope breaks in the basin can redistribute and regulate the distribution and flow direction of sand bodies, and further control the plane distribution morphology and development degree of sublacustrine fan sandbodies. The secondary flood surface formed by the frequent fluctuation of the lake plane controlled the vertical multi-phase superposition of sublacustrine fan, and the flood mudstone provided a good preservation condition for the lateral occlusion of the slope zone. The three-factor dynamic equilibrium sublacustrine fan sedimentation model controled the development of large-area lithologic traps in the slope area. sublacustrine fan are mainly distributed in the trangressive system tract of in the third member of Dongying sequence, a small amount of sublacustrine fan are developed in the lowstand system tract and highstand system tract. In the plane, the sublacustrine fan in the B structure area is tongue like, and its development scale and distribution range are better than those in the A and C structure areas, and the vertical overlap is good, and the oil and gas accumulation conditions are superior, which is a favorable target for the next exploration and evaluation of lithologic reservoirs.
-
图 2 东三段层序地层划分(剖面位置见图 1)
Fig. 2. Sequence stratigraphy division in the third member of the Dongying Formation
图 6 东三段砂体岩心特征
a. C-1,2 811.2 m,泥岩撕裂屑,滑动面;b. C-1,3 236 m,砂岩脉;c. C-1,3 185 m,砂岩脉;d. B-2,3 226.12~3 226.42 m,块状层理;e. B-2,3 230.72~3 231.07 m,泥岩撕裂屑;f. B-2,3 229.79~3 230.34 m,泥砾,局部波状纹层;g. B-2,3 226.57~3 226.70 m,突变面;h. B-2,3 228.12~3 228.30 m,水平层理;i. B-2,3 229.32~3 229.52 m,水平层理,波状纹层
Fig. 6. Sand Characteristics of cores in the third member of the Dongying Formation
图 7 东三段砂体地球物理响应特征
剖面位置见图 1
Fig. 7. Geophysical response of sand characteristics in the third member of the Dongying Formation
-
Cao, Y. C., Jin, J. H., Liu, H. N., et al., 2021. Deep-Water Gravity Flow Deposits in a Lacustrine Rift Basin and Their Oil and Gas Geological Significance in Eastern China. Petroleum Exploration and Development, 48(2): 247-257(in Chinese with English abstract). Cao, Y. C., Liu, H., 2007. Discussion on the Relationship of Fluxoturbidite and Depositional Slope of Delta in Lacustrine Basin. Geological Review, 53(4): 454-459(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2007.04.004 Cao, Y. C., Wang, S. J., Wang, Y. Z., et al., 2017. Sedimentary Characteristics and Depositional Model of Slumping Deep-Water Gravity Flow Deposits: A Case Study from the Middle Member 3 of Paleogene Shahejie Formation in Linnan Subsag, Bohai Bay Basin. Journal of Palaeogeography, 19(3): 419-432(in Chinese with English abstract). Gao, H. C., Zheng, R. C., Wei, Q. L., et al., 2012. Reviews on Fluid Properties and Sedimentary Characteristics of Debris Flow and Turbidity Currents. Advances in Earth Science, 27(8): 815-827(in Chinese with English abstract). Jia, D. H., Zhou, X. H., Li, J. P., et al., 2010. Depositional Model and Controlling Factors of Sedimentary Gravity Flows in the Central-Northern Liaozhong Sag, China. Journal of Chengdu University of Technology(Science & Technology Edition), 37(1): 69-74(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2010.01.011 Kuenen, P. H., Migliorini, C. I., 1950. Turbidity Currents as a Cause of Graded Bedding. The Journal of Geology, 58(2): 91-127. https://doi.org/10.1086/625710 Labaume, P., Mutti, E., Seguret, M., 1987. Megaturbidites: a Depositional Model from the Eocene of the SW-Pyrenean Foreland Basin, Spain. Geo-Marine Letters, 7(2): 91-101. https://doi.org/10.1007/BF02237988 Li, C. L., Ren, W. W., Tang, M. M., 2012. Preliminary Study on Gravity Flow Depositional System Based on Properties Conversion Theory. Geological Review, 58(2) : 285-296(in Chinese with English abstract). doi: 10.3969/j.issn.0371-5736.2012.02.010 Li, X. B., Fu, J. H., Chen, Q. L., et al., 2011. The Concept of Sandy Debris Flow and Its Application in the Yanchang Formation Deep Water Sedimentation of the Ordos Basin. Advances in Earth Science, 26(3): 286-294(in Chinese with English abstract). Li, X. B., Liu, H. Q., Pan, S. X., et al., 2019. The Past, Present and Future of Research on Deep-Water Sedimentary Gravity Flow in Lake Basins of China. Acta Sedimentologica Sinica, 37(5): 385-396(in Chinese with English abstract). Li, X. B., Wei, P. S., Liu, H. Q., et al., 2013. Discussion on the Classification of Sediment Gravity Flow and the Deep-Water Sedimentary Model. Geological Review, 59(4): 607-614(in Chinese with English abstract). doi: 10.3969/j.issn.0371-5736.2013.04.002 Liu, Y. M., Zhang, L., Huang, X. B., et al., 2019. Sedimentary Types and Genetic Mechanism of the Space-Ttime Evolution of Sublacustrine Fans of the Paleogene in Lower Ed2 Formation, Northern Sub-Sag of the Liaozhong Sag. Acta Sedimentologica Sinica, 37(6) : 1280-1295(in Chinese with English abstract). Ma, Z. W., Guan, D. Y., Wang, Q. M., et al., 2022. Sedimentary Characteristics and Controlling Factors of Sublacustrine Fans of the Third Member of Paleogene Dongying Formation in Liaozhong Sag. Lithologic Reservoirs, 34(2): 131-140(in Chinese with English abstract). Niu, C. M., Du, X. F., Wang, Q. M., et al., 2022. Formation Conditions and Exploration Direction of Large-Scale Lithologic Reservoirs of Cenozoic in Bohai Sea. Lithologic Reservoirs, 34(3): 1-14(in Chinese with English abstract). Shanmugam, G., Moiola, R. J., 1995. Reinterpretation of Depositional Processes in a Classic Flysch Sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma. AAPG Bulletin, 79: 672-695. https://doi.org/10.1306/8d2b1b6a-171e-11d7-8645000102c1865d Shanmugam, G., 2002. Ten Turbidite Myths. Earth-Science Reviews, 58(3/4): 311-341. https://doi.org/10.1016/S0012-8252(02)00065-X Wang, H., Zhou, L. H., Han, G. M., et al., 2018. Large Gravity Flow Deposits in the Member 1 of Paleogene Shahejie Formation, Qikou Sag, Bohai Bay Basin. Earth Science, 43(10): 3423-3444(in Chinese with English abstract). Wang, Q. M., Du, X. F., Guan, D. Y., et al., 2021. Differential Tectonic Activities in Paleocene-Eocene and Its Bearing on the Evolution of Sedimentary Fillings in the Southwest Bozhong Sag. Marine Geological Frontiers, 37(11): 30-41(in Chinese with English abstract). Wang, Y., Wang, X. Z., Wang, Y. M., et al., 2009. Depositional Model of Gravity Flow of Slope in Large Downwarped Lake Basins. Acta Sedimentologica Sinica, 27(6): 1076-1083(in Chinese with English abstract). Walker R G., 1978. Deep-Water Sandstone Facies and Ancient Submarine Fans: Models for Exploration for Stratigraphic Traps. AAPG Bulletin, 62: 932-966. . https://doi.org/10.1306/c1ea4f77-16c9-11d7-8645000102c1865d Wu, Z. P., Zhang, J., Ren, J., et al., 2016. Development Characteristic of Strike-Slip Duplex in the Eastern Part of Liaodong Bay Depression and Its Petroleum Geological Significance. Acta Geologica Sinica, 90(5): 848-856(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.05.002 Xian, B. Z., Wan, J. F., Dong, Y. L., et al., 2013. Sedimentary Characteristics, Origin and Model of Lacustrine Deep-Water Massive Sandstone: An Example from Dongying Formation in Nanpu Depression. Acta Petrologica Sinica, 29(9): 3287-3299(in Chinese with English abstract). Xu, W., Li, Z. Y., Liu, Y. M., et al., 2018. Depositional Models and Petroleum Geological Significance of Gravity Flows Deposits of the Third Member of the Shahejie Formation in Bozhong 25-1 Oil Field, Bohai Sea Area. Acta Sedimentologica Sinica, 36(3) : 557-569(in Chinese with English abstract). Yang, T., Cao, Y. C., Wang, Y. Z., et al., 2015. Types, Sedimentary Characteristics and Genetic Mechanisms of Deep-Water Gravity Flows: A Case Study of the Middle Submember in Member 3 of Shahejie Formation in Jiyang Depression. Acta Petrolei Sinica, 36(9): 1048-1059(in Chinese with English abstract). Yang, X. B., Chang, L., Xu, R., 2020. Types and Sand Control Effect of Terrestrial Slope Breaks of Wenchang Sag inside the Pearl River Mouth Basin. Earth Science, 45(3): 899-997(in Chinese with English abstract). Zhang, Q. Q., Cao, Y. C., Liu, K. Y., et al., 2017. Sedimentary Characteristics of Re-Transported Gravity Flow Deposits and Their Distribution: Influence of Deltaic Sedimentation in the Dongying Sag. Earth Science, 42(11): 2025-2039(in Chinese with English abstract). Zhou, X. H., Yu, Y. X., Tang, L. J., et al., 2010. Cenozoic Offshore Basin Architecture and Division of Structural Elements in Bohai Sea. China Offshore Oil and Gas, 22(5): 285-289(in Chinese with English abstract). Zou, C. N., Zhao, Z. Z., Yang, H., et al., 2009. Genetic Mechanism and Distribution of Sandy Debris Flows in Terrestrial Lacustrine Basin. Acta Sedimentologica Sinica, 27 (6): 1065-1075(in Chinese with English abstract). 操应长, 金杰华, 刘海宁, 等, 2021. 中国东部断陷湖盆深水重力流沉积及其油气地质意义. 石油勘探与开发, 48(2): 247-257. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202102003.htm 操应长, 刘晖, 2007. 湖盆三角洲沉积坡度带特征及其与滑塌浊积岩分布关系的初步探讨. 地质论评, 53(4): 454-459. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200704004.htm 操应长, 王思佳, 王艳忠, 等, 2017. 滑塌型深水重力流沉积特征及沉积模式: 以渤海湾盆地临南洼陷古近系沙三中亚段为例. 古地理学报, 19(3): 419-432. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201703003.htm 高红灿, 郑荣才, 魏钦廉, 等, 2012. 碎屑流与浊流的流体性质及沉积特征研究进展. 地球科学进展, 27(8): 815-827. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201208000.htm 加东辉, 周心怀, 李建平, 等, 2010. 辽中凹陷中北段重力流发育模式与控制因素. 成都理工大学学报(自然科学版), 37(1): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201001011.htm 李存磊, 任伟伟, 唐明明, 2012. 流体性质转换机制在重力流沉积体系分析中应用初探. 地质论评, 58(2): 285-296. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201202015.htm 李相博, 付金华, 陈启林, 等, 2011. 砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用. 地球科学进展, 26(3): 286-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201103009.htm 李相博, 刘化清, 潘树新, 等, 2019. 中国湖相沉积物重力流研究的过去、现在与未来. 沉积学报, 37(5): 385-396. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201905003.htm 李相博, 卫平生, 刘化清, 等, 2013. 浅谈沉积物重力流分类与深水沉积模式. 地质论评, 59(4) : 607-614. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201304004.htm 刘艺萌, 张藜, 黄晓波, 等, 2019. 辽中凹陷北洼古近系东二下亚段湖底扇沉积类型及时空演化机理分析. 沉积学报, 37(6): 1280-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201906016.htm 马正武, 官大勇, 王启明, 等, 2022. 辽中凹陷古近系东三段湖底扇沉积特征及控制因素. 岩性油气藏, 34(2): 131-140. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202202012.htm 牛成民, 杜晓峰, 王启明, 等, 2022. 渤海海域新生界大型岩性油气藏形成条件及勘探方向等. 岩性油气藏, 34(3): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202203001.htm 王华, 周立宏, 韩国猛, 等, 2018. 陆相湖盆大型重力流发育的成因机制及其优质储层特征研究: 以歧口凹陷沙河街组一段为例. 地球科学, 43(10): 3423-3444. doi: 10.3799/dqkx.2018.329 王启明, 杜晓峰, 官大勇, 等, 2021. 渤中凹陷西南部古新世-始新世构造差异活动及沉积充填演化. 海洋地质前沿, 37(11): 30-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202111004.htm 王颖, 王晓州, 王英民, 等, 2009. 大型坳陷湖盆坡折带背景下的重力流沉积模式. 沉积学报, 27(6): 1076-1083. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200906008.htm 王元君, 王峻, 周心怀, 等, 2008. 辽东湾辽中凹陷中部古近系东营组震浊积岩特征研究. 矿物岩石, 28(3): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200803014.htm 吴智平, 张婧, 任健, 等, 2016. 辽东湾坳陷东部地区走滑双重构造的发育特征及其石油地质意义. 地质学报, 90(5): 848-856. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201605003.htm 鲜本忠, 万锦峰, 董艳蕾, 等, 2013. 湖相深水块状砂岩特征、成因及发育模式: 以南堡凹陷东营组为例. 岩石学报, 29(9): 3287-3299. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309026.htm 徐长贵, 许效松, 丘东洲, 等, 2005. 辽东湾地区辽西凹陷中南部古近系构造格架与层序地层格架及古地理分析. 古地理学报, 7(4): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200504005.htm 徐伟, 李正宇, 刘艺萌, 等, 2018. 渤中25-1油田沙三段重力流沉积模式及油气地质意义. 沉积学报, 36(3): 557-569. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201803011.htm 杨田, 操应长, 王艳忠, 等, 2015. 深水重力流类型、沉积特征及成因机制: 以济阳坳陷沙河街组三段中亚段为例. 石油学报, 36(9): 1048-1059. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509003.htm 杨希冰, 常露, 徐睿, 等, 2020. 珠江口盆地文昌凹陷陆相坡折带类型及其控砂作用. 地球科学, 45(3): 899-997. doi: 10.3799/dqkx.2019.069 张青青, 操应长, 刘可禹, 等, 2017. 东营凹陷滑塌型重力流沉积分布特征及三角洲沉积对其影响. 地球科学, 42(11): 2025-2039. doi: 10.3799/dqkx.2017.129 周心怀, 余一欣, 汤良杰, 等, 2010. 渤海海域新生代盆地结构与构造单元划分. 中国海上油气, 22(5): 285-289. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201005002.htm 邹才能, 赵政璋, 杨华, 等, 2009. 陆相湖盆深水砂质碎屑流成因机制与分布特征——以鄂尔多斯盆地为例. 沉积学报, 27(6): 1065-1075. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200906007.htm