• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东昆仑浪木日铜多金属矿床成矿特征及找矿启示

    童海奎 龙灵利 王玉往 祝新友 李顺庭 谷子成 马财 代岩 李杰 于小亮 王成勇 王新雨 张志超

    童海奎, 龙灵利, 王玉往, 祝新友, 李顺庭, 谷子成, 马财, 代岩, 李杰, 于小亮, 王成勇, 王新雨, 张志超, 2023. 东昆仑浪木日铜多金属矿床成矿特征及找矿启示. 地球科学, 48(12): 4349-4369. doi: 10.3799/dqkx.2023.028
    引用本文: 童海奎, 龙灵利, 王玉往, 祝新友, 李顺庭, 谷子成, 马财, 代岩, 李杰, 于小亮, 王成勇, 王新雨, 张志超, 2023. 东昆仑浪木日铜多金属矿床成矿特征及找矿启示. 地球科学, 48(12): 4349-4369. doi: 10.3799/dqkx.2023.028
    Tong Haikui, Long Lingli, Wang Yuwang, Zhu Xinyou, Li Shunting, Gu Zicheng, Ma Cai, Dai Yan, Li Jie, Yu Xiaoliang, Wang Chengyong, Wang Xinyu, Zhang Zhichao, 2023. Metallogenic Characteristics of Langmuri Copper Polymetallic Deposit in East Kunlun and Its Ore Prospecting Enlightenment. Earth Science, 48(12): 4349-4369. doi: 10.3799/dqkx.2023.028
    Citation: Tong Haikui, Long Lingli, Wang Yuwang, Zhu Xinyou, Li Shunting, Gu Zicheng, Ma Cai, Dai Yan, Li Jie, Yu Xiaoliang, Wang Chengyong, Wang Xinyu, Zhang Zhichao, 2023. Metallogenic Characteristics of Langmuri Copper Polymetallic Deposit in East Kunlun and Its Ore Prospecting Enlightenment. Earth Science, 48(12): 4349-4369. doi: 10.3799/dqkx.2023.028

    东昆仑浪木日铜多金属矿床成矿特征及找矿启示

    doi: 10.3799/dqkx.2023.028
    基金项目: 

    青海省省级财政资金地质项目 2019048001ky001

    详细信息
      作者简介:

      童海奎(1973-),男,教授级高工,主要从事矿产勘查及地质科学研究. ORCID:0000-0001-5617-6804. E-mail:464740168@qq.com

      通讯作者:

      龙灵利,教授级高工,E-mail:longlingli799@163.com

    • 中图分类号: P612

    Metallogenic Characteristics of Langmuri Copper Polymetallic Deposit in East Kunlun and Its Ore Prospecting Enlightenment

    • 摘要: 位于东昆仑造山带东段的浪木日铜镍钴多金属矿床,在新近勘查工作中又圈出独立的铂矿体,对该矿床成矿特征的进一步研究有助于指导勘查找矿.通过矿床地质特征分析,结合含矿橄辉岩主微量元素、Sr-Nd同位素及其中橄榄石、云母主量元素测试,以及黑云母花岗岩锆石U-Pb年代学及岩石地球化学特征研究,探讨了浪木日矿床成矿特征、成矿时代及矿床成因.含矿橄辉岩中橄榄石属贵橄榄石(Fo值为86.72~88.39),云母为金云母,其均为幔源岩浆作用产物;含矿橄辉岩稀土元素具右倾型的配分模式,富集Cs、Rb、U等元素,εNdt)值为0.66~2.66,暗示其形成过程中经历了地壳混染.获得黑云母花岗岩U-Pb年龄为414.5±8.8 Ma,其具弧岩浆地球化学特征,(87Sr/86Sr)i(0.718 609~0.719 177)、εNdt)值(1.28~5.36)显示其为壳幔岩浆混合作用产物.本研究认为浪木日铜多金属矿床具叠加成矿特征,在450~439 Ma形成与橄辉岩有关的铜镍钴铂钯矿体的基础上,叠加了415 Ma的与黑云母花岗岩有关的热液脉型铜矿化;本矿床以早期与橄辉岩有关的硫化物成矿为主,岩浆演化过程中的地壳混染及岩浆期后热液活动对成矿具积极贡献.本矿区基性-超基性杂岩体底部及顶部、黑云母花岗岩与之接触部位均为有利找矿空间.

       

    • 图  1  东昆仑造山带及邻区构造单元划分简图

      张炜等(2016)Zhang et al.(2018)修改

      Fig.  1.  Schematic map of tectonic unit division in the eastern Kunlun orogenic belt and its adjacent areas

      图  2  浪木日矿区地质简图

      据青海省有色第三地质勘查院,青海省都兰县浪木日地区镍多金属矿预查工作报告.西宁,2018修改

      Fig.  2.  Geological sketch map of Langmuri mining area

      图  3  浪木日矿区4号岩体24号勘探线剖面图

      Fig.  3.  Profile of exploration line 24 of rock mass 4 in Langmuri mining area

      图  4  浪木日矿区矿石及矿化特征

      a.∑3号岩体17ZK03钻孔中海绵陨铁结构矿石;b.∑3号岩体ZK1201钻孔中块状矿石;c.∑2号岩体ZK0802钻孔中蛇纹石化金云母橄辉岩中发育的浸染状NiCo矿化;d.∑2号岩体ZK0802钻孔中蛇纹石化金云母橄辉岩中发育的磁铁矿-磁黄铁矿脉;e和f.∑4号岩体ZK4901钻孔中蛇纹石化金云母橄辉岩中发育的团块状、浸染状NiCo矿化

      Fig.  4.  Photos of ore and mineralization characteristics in Langmuri mining area

      图  5  浪木日矿区蛇纹石化橄辉岩显微照片

      Fig.  5.  Micrographs of serpentinized olivine pyroxenolites in Langmuri mining area

      图  6  浪木日矿区蛇纹石化橄辉岩中云母Mg-(Al+Fe3++Ti)-(Fe2++Mn)分类图解(据Forster and Nolan,1960)(a)和金云母MgO-FeOT/(FeOT+MgO)图解(据阮林森等,2017)(b)

      Fig.  6.  Mg-(Al+Fe3++Ti)-(Fe2++Mn) classification diagram of mica in serpentinized olivine pyroxenolites in Langmuri mining area (after Forster and Nolan, 1960) (a) and MgO-FeOT/(FeOT+MgO) diagram of phlogopite (after Ruan et al., 2017) (b)

      图  7  浪木日矿区蛇纹石化橄辉岩(a)和黑云母花岗岩(b)稀土元素球粒陨石标准化图

      a. 球粒陨石标准化值据Sun and McDonough(1989); b. 微量元素原始地幔标准化蛛网图原始地幔标准化值据Wood et al.(1979)

      Fig.  7.  The chondrite-normalized REE diagrams and of serpentinized olivine pyroxenolites (a) and biotite granite (b) in Langmuri mining area

      图  8  浪木日矿区黑云母花岗岩及矿化显微照片

      a,b.绢云母化、硅化、碳酸盐化黑云母花岗岩,其中发育石英-磁黄铁矿-方解石细脉;c,d.黑云母花岗岩围岩黑云角闪片麻岩中发育磁黄铁矿-黄铜矿-方解石细脉

      Fig.  8.  Micrographs of biotite granite with mineralization in Langmuri mining area

      图  9  浪木日矿区黑云母花岗岩和橄辉岩εNd(t)-(87Sr/86Sr)i图解(底图据熊富浩等,2011)

      Fig.  9.  εNd(t)-(87Sr/86Sr)i diagram from biotite granite and serpentinized olivine pyroxenolites in Langmuri mining area (after Xiong et al., 2011)

      图  10  浪木日矿区黑云母花岗岩锆石U-Pb谐和年龄图(a,b)及锆石CL图像(c)

      Fig.  10.  Zircon U-Pb ages (a, b) and zircon CL images (c) of biotite granite in Langmuri mining area

      图  11  浪木日矿区构造-热液作用特征

      a.ZK4901钻孔,硅化的片麻岩韧性变形;b.ZK0802钻孔,硅化的片麻岩韧性变形;c.ZK0802钻孔,片麻岩中发育Q-Po矿脉;d.ZK0802钻孔,片麻岩中发育的Q-Bi-Po脉;e.橄辉岩中发育的Q-Bi-Chl脉;f.ZK0802钻孔,片麻岩中发育的Q-Chl脉,脉两侧片麻岩中大量出现Grt;Q.石英;Bi.黑云母;Po.磁黄铁矿;Chl.绿泥石;Grt.石榴子石

      Fig.  11.  Characteristics of tectonic-hydrothermal process in Langmuri mining area

      表  1  浪木日矿区橄辉岩和黑云母花岗岩主量元素(%)和微量元素(10-6)分析结果

      Table  1.   Major elements (%) and trace elements (10-6) of the olivine pyroxenolites and the biotite granite from Langmuri mining area

      岩石类型 橄辉岩 橄辉岩 黑云母花岗岩 黑云母花岗岩 黑云母花岗岩
      样品编号 L9723-1 L9723-5 L9725-14 L9725-16 L9823-8
      SiO2 42.63 42.42 75.30 70.74 73.70
      Al2O3 3.27 2.42 14.19 15.66 14.87
      FeOT 10.33 10.13 0.695 1.42 0.809
      FeO 5.28 3.26 0.570 1.09 0.610
      CaO 1.17 0.475 0.989 2.48 1.38
      MgO 30.9 32.5 0.213 0.545 0.473
      K2O 0.976 0.839 2.73 1.42 2.35
      Na2O 0.035 0.061 4.62 4.82 4.54
      TiO2 0.200 0.149 0.059 0.157 0.096
      P2O5 0.081 0.087 0.051 0.043 0.061
      MnO 0.089 0.074 0.012 0.026 0.013
      LOI 10.28 10.81 1.13 2.27 1.19
      Na2O+K2O 1.01 0.90 7.35 6.24 6.89
      K2O/Na2O 27.89 13.75 0.59 0.29 0.52
      σ -2.76 -1.40 1.67 1.40 1.55
      A/CNK 1.01 1.29 1.15 1.12 1.19
      A/NK 2.94 2.40 1.34 1.65 1.49
      Li 2.77 3.03 2.56 9.79 5.88
      Be 1.04 0.972 2.04 1.26 1.50
      Sc 7.78 6.13 2.99 3.96 2.34
      V 41.9 29.8 1.98 12.7 7.17
      Cr 3 827 3 278 0.945 9.42 4.65
      Co 110 121 1.91 2.38 1.21
      Ni 1 071 1 167 3.97 5.86 2.67
      Cu 10.6 23.7 21.5 2.24 1.33
      Zn 59.0 44.1 17.1 31.5 16.6
      Ga 3.61 2.80 16.8 17.1 15.7
      Rb 76.8 66.2 87.7 59.2 66.3
      Sr 31.4 27.4 153 400 269
      Y 3.04 2.42 15.8 10.5 8.53
      Mo 0.211 0.077 0.10 0.315 0.093
      Cd 0.052 0.014 0.170 0.121 0.060
      In 0.029 0.017 0.013 0.037 0.020
      Sb 0.099 0.062 0.430 0.081 0.110
      Cs 6.46 4.97 1.08 1.96 3.17
      Ba 343 239 606 219 387
      La 5.34 6.01 13.4 11.3 7.23
      Ce 12.1 12.4 31.1 28.1 17.8
      Pr 1.62 1.46 3.01 2.92 1.92
      Nd 6.42 5.82 10.9 12.8 8.19
      Sm 1.20 1.21 2.28 2.43 1.88
      Eu 0.149 0.151 0.496 0.676 0.549
      Gd 0.932 0.931 1.97 2.01 1.49
      Tb 0.159 0.113 0.411 0.351 0.264
      Dy 0.666 0.578 2.46 1.73 1.78
      Ho 0.111 0.091 0.495 0.362 0.289
      Er 0.301 0.236 1.28 0.96 0.721
      Tm 0.043 0.037 0.252 0.167 0.133
      Yb 0.290 0.250 1.55 1.03 0.928
      Lu 0.043 0.034 0.219 0.153 0.128
      W 0.368 0.449 0.163 0.267 0.145
      Re < 0.002 < 0.002 < 0.002 < 0.002 < 0.002
      Tl 0.629 0.636 0.370 0.366 0.338
      Pb 1.88 1.33 50.9 23.7 18.3
      Bi 0.309 0.350 0.051 0.024 0.218
      Th 2.54 2.79 6.58 4.4 2.4
      U 1.12 1.13 4.15 1.14 1.96
      Nb 1.78 1.35 7.09 3.21 2.59
      Ta 0.204 0.165 1.06 0.302 0.377
      Zr 13.5 8.54 43.0 56.0 36.6
      Hf 0.361 0.232 1.72 1.50 1.28
      ∑REE 29.37 29.32 69.82 64.99 43.30
      (La/Yb)N 13.21 17.24 6.20 7.87 5.59
      δEu 0.42 0.42 0.70 0.91 0.97
      注:(La/Yb)N为球粒陨石标准化值,标准化值引自Sun and McDonough(1989).
      下载: 导出CSV

      表  2  浪木日矿区橄辉岩和黑云母花岗岩Sr、Nd同位素组成

      Table  2.   Sr, Nd isotopic compositions of olivine pyroxenolites and biotite granite from Langmuri mining area

      岩石类型 橄辉岩 黑云母花岗岩
      样品 L9723-1 L9725-14 L9725-16
      Rb(10-6) 76.8 87.7 59.2
      Sr(10-6) 31.4 153 400
      87Rb/86Sr 7.082 220 1.659 763 0.428 548
      87Sr/86Sr 0.756 181 0.728 407 0.721 707
      ±2σ 0.000 016 0.000 016 0.000 012
      t(Ma) 438.8 414.5 414.5
      (87Sr/86Sr)i 0.711 914 0.718 609 0.719 177
      Sm(10-6) 1.20 2.28 2.43
      Nd(10-6) 6.42 10.9 12.8
      147Sm/144Nd 0.113 763 0.127 310 0.115 545
      143Nd/144Nd 0.512 536 0.512 724 0.512 483
      ±2σ 0.000 005 0.000 014 0.000 007
      (143Nd/144Nd)i 0.512 209 0.512 378 0.512 169
      εNd(t) 2.66 5.36 1.28
      tDM1(Ga) 0.94 0.75 1.04
      下载: 导出CSV

      表  3  浪木日橄辉岩中橄榄石氧化物化学成分(%)

      Table  3.   Oxide contents (%) of olivine from the olivine pyroxenolites in Langmuri mining area

      样品号 SiO2 TiO2 Al2O3 Cr2O3 FeOT MnO MgO NiO CaO Total Fo
      L9723-1-2 38.779 0 0 0.030 10.421 0.126 45.037 0.15 0.000 0 2.99 88.39
      L9723-1-3 40.608 0 0.015 0.086 11.826 0.174 46.923 0.182 0.004 0 2.99 87.45
      L9723-1-5 40.250 0 0 0 11.993 0.181 46.987 0.208 0.000 0 3.00 87.31
      L9723-1-6 40.282 0.002 0.018 0.022 12.127 0.189 47.381 0.177 0.000 0 3.00 87.27
      L9723-1-7 40.014 0 0 0.016 11.863 0.157 47.399 0.183 0.000 0 3.01 87.54
      L9723-1-8 40.292 0 0 0 11.907 0.168 47.634 0.220 0.017 0 3.00 87.55
      L9723-4-3 39.881 0 0 0.016 12.351 0.152 47.431 0.254 0.017 0 3.01 87.12
      L9723-4-1 40.086 0 0 0.005 12.813 0.160 47.532 0.265 0.015 0 3.01 86.72
      L9723-4-2 40.151 0.012 0 0.002 12.529 0.149 47.244 0.257 0.005 0 3.01 86.91
      L9723-4-4 40.218 0 0 0.007 12.393 0.188 47.582 0.293 0.009 0 3.01 87.08
      L9723-4-5 39.865 0 0.025 0.012 12.502 0.164 47.868 0.241 0.000 0 3.01 87.07
      L9723-4-6 40.093 0 0 0.015 12.631 0.169 47.623 0.233 0.004 0 3.01 86.90
      L9723-4-7 40.283 0 0 0 12.418 0.167 47.656 0.271 0.003 0 3.01 87.09
      L9723-4-8 39.830 0 0 0 12.785 0.152 47.614 0.244 0.003 0 3.01 86.77
      下载: 导出CSV

      表  4  浪木日橄辉岩中金云母氧化物化学成分(%)

      Table  4.   Oxide contents (%) of phlogopite from the olivine pyroxenolites in Langmuri mining area

      样品号 L9723-1-1 L9723-1-2 L9723-1-3 L9723-4-1 L9723-4-2 L9723-4-3 L9723-4-4 L9723-4-5 L9723-4-6 L9724-6-1 L9724-6-2 L9724-6-3 L9724-6-4 L9724-6-5 L9823-2-1 L9823-2-2 L9823-2-3 L9823-2-4 L9823-2-5
      SiO2 40.804 41.377 41.593 40.895 40.825 41.079 40.847 41.148 41.095 41.188 41.579 40.859 41.348 41.521 42.104 42.09 41.503 41.719 42.680
      TiO2 0.801 0.889 0.797 1.095 1.033 0.988 1.077 1.010 0.801 0.776 0.715 0.921 0.872 0.874 0.357 0.303 0.337 0.344 0.313
      Al2O3 14.685 14.440 14.502 15.253 15.138 15.340 15.298 15.190 14.772 15.202 15.30 15.079 14.881 14.837 14.710 14.425 14.04 14.177 13.680
      FeO 2.175 2.175 2.288 2.479 2.412 2.493 2.354 2.332 2.437 2.239 2.340 2.448 2.544 2.287 2.029 1.958 2.329 2.302 2.172
      MnO 0 0.013 0.009 0.020 0.014 0.011 0.028 0.010 0.010 0.011 0.035 0.030 0.037 0.022 0.007 0.024 0.023 0.001 0.014
      MgO 26.116 26.146 26.190 25.623 25.573 25.53 25.553 25.850 26.007 25.592 25.943 26.154 26.393 26.344 27.321 27.091 26.756 26.628 26.993
      CaO 0.045 0 0 0 0.004 0.005 0.014 0 0 0.004 0.008 0.024 0.017 0 0.010 0.018 0 0.003 0.004
      Na2O 0.127 0.086 0.059 0.369 0.356 0.206 0.260 0.439 0.101 0.116 0.094 0.095 0.093 0.057 0.097 0.083 0.067 0.100 0.087
      K2O 9.967 10.005 10.354 9.811 9.992 9.838 9.641 9.599 10.373 10.088 9.897 10.076 9.777 10.181 10.081 9.49 5 9.845 9.951 9.991
      M 0.077 0.077 0.080 0.088 0.086 0.089 0.084 0.083 0.086 0.080 0.083 0.086 0.088 0.080 0.069 0.067 0.080 0.080 0.074
      Si 2.876 2 2.901 0 2.902 2 2.859 7 2.863 2 2.870 9 2.864 4 2.870 0 2.878 5 2.885 7 2.888 2 2.856 0 2.875 7 2.884 5 2.899 8 2.924 1 2.916 5 2.921 3 2.961 2
      Al 1.123 8 1.099 0 1.097 8 1.140 3 1.136 8 1.129 1 1.135 6 1.130 0 1.121 5 1.114 3 1.111 8 1.144 0 1.124 3 1.115 5 1.100 2 1.075 9 1.083 5 1.078 7 1.038 8
      Al 0.096 2 0.094 2 0.094 7 0.116 7 0.114 5 0.134 4 0.128 8 0.118 6 0.098 0 0.141 0 0.140 8 0.098 3 0.095 4 0.099 3 0.093 8 0.105 2 0.079 4 0.091 4 0.079 8
      Ti 0.042 5 0.046 9 0.041 8 0.057 6 0.054 5 0.051 9 0.056 8 0.053 0 0.042 2 0.040 9 0.037 4 0.048 4 0.045 6 0.045 7 0.018 5 0.015 8 0.017 8 0.018 1 0.016 3
      Fe3+ 0.071 8 0.091 2 0.075 5 0.083 2 0.072 2 0.102 1 0.104 5 0.090 5 0.060 1 0.095 5 0.107 0 0.069 9 0.091 2 0.082 6 0.065 9 0.104 1 0.069 9 0.073 2 0.088 8
      Fe2+ 0.056 4 0.036 3 0.058 0 0.061 8 0.069 3 0.043 6 0.033 6 0.045 5 0.082 6 0.035 6 0.028 9 0.073 2 0.056 8 0.050 3 0.050 9 0.009 7 0.067 0 0.061 6 0.037 2
      Mn 0.000 0 0.000 8 0.000 5 0.001 2 0.000 8 0.000 7 0.001 7 0.000 6 0.000 6 0.000 7 0.002 1 0.001 8 0.002 2 0.001 3 0.000 4 0.001 4 0.001 4 0.000 1 0.000 8
      Mg 2.744 3 2.732 8 2.724 3 2.671 1 2.673 8 2.659 8 2.671 3 2.687 8 2.715 7 2.673 0 2.6865 2.725 3 2.736 4 2.728 3 2.805 1 2.805 7 2.803 0 2.779 7 2.791 9
      Ca 0.003 4 0.000 0 0.000 0 0.000 0 0.000 3 0.000 4 0.001 1 0.000 0 0.000 0 0.000 3 0.000 6 0.001 8 0.001 3 0.000 0 0.000 7 0.001 3 0.000 0 0.000 2 0.000 3
      Na 0.017 4 0.011 7 0.008 0 0.050 0 0.048 4 0.027 9 0.035 4 0.059 4 0.013 7 0.015 8 0.012 7 0.012 9 0.012 5 0.007 7 0.013 0 0.011 2 0.009 1 0.013 6 0.011 7
      K 0.896 3 0.894 9 0.921 7 0.875 2 0.894 0 0.877 1 0.862 5 0.854 1 0.926 9 0.901 7 0.877 0 0.898 5 0.867 5 0.902 3 0.885 7 0.841 5 0.882 6 0.888 9 0.884 3
      Total 7.928 2 7.908 8 7.924 5 7.916 8 7.927 8 7.897 9 7.895 5 7.909 5 7.939 9 7.904 5 7.893 0 7.930 1 7.908 8 7.917 4 7.934 1 7.895 9 7.930 1 7.926 8 7.911 2
      OH- 2.000 0 2.000 0 2.000 0 2.000 0 2.000 0 2.000 0 2.000 0 2.000 0 2.000 0 2.000 0 2.000 0 2.000 0 2.000 0 2.000 0 2.000 0 2.000 0 2.000 0 2.000 0 2.000 0
      MF 0.955 4 0.955 2 0.953 1 0.948 1 0.949 5 0.947 8 0.950 3 0.951 6 0.949 9 0.953 0 0.951 1 0.949 5 0.948 0 0.953 1 0.959 9 0.960 6 0.953 0 0.953 7 0.956 5
      M 0.210 5 0.232 3 0.212 1 0.257 5 0.241 2 0.288 4 0.290 1 0.2621 0.200 3 0.277 4 0.285 2 0.216 6 0.232 2 0.227 6 0.178 2 0.225 1 0.167 1 0.182 7 0.184 9
      M 0.056 4 0.037 1 0.058 6 0.063 0 0.070 1 0.044 3 0.035 2 0.046 1 0.083 2 0.036 3 0.031 0 0.075 0 0.059 0 0.051 6 0.051 3 0.011 1 0.068 3 0.061 7 0.038 0
      M 0.014 6 0.016 1 0.014 4 0.020 0 0.019 0 0.018 2 0.019 8 0.018 4 0.014 5 0.014 4 0.013 1 0.016 6 0.015 6 0.015 7 0.006 3 0.005 4 0.006 0 0.006 2 0.005 6
      M 0.173 9 0.170 4 0.170 5 0.179 8 0.179 1 0.180 7 0.180 7 0.178 5 0.174 2 0.179 7 0.178 9 0.177 0 0.173 5 0.173 4 0.169 7 0.167 7 0.165 2 0.166 6 0.159 5
      Mg# 0.98 0.99 0.98 0.98 0.97 0.98 0.99 0.98 0.97 0.99 0.99 0.97 0.98 0.98 0.98 1.00 0.98 0.98 0.99
      注:M表示FeO/(FeO+MgO); M表示Al+Fe3++Ti; M表示Fe2++Mn; M表示Ti/(Mg+Fe+Ti+Mn); M表示Al/(Al+Mg+Fe+Ti+Mn+Si).
      下载: 导出CSV

      表  5  浪木日矿区黑云母花岗岩LA-ICP-MS锆石U-Pb同位素分析结果

      Table  5.   LA-ICP-MS zircon U-Pb analysis of the biotite granite in Langmuri mining area

      Spot U Th Th/U 207Pb/235U 206Pb/238U 206Pb/238U 207Pb/206Pb
      10-6 10-6 比值 比值 年龄 年龄
      1 139 460 0.30 1.422 2 0.039 4 0.130 5 0.002 0 791 11.5 1 124 61.1
      2 166 552 0.30 0.478 0 0.013 5 0.063 3 0.000 6 396 3.6 398 58.3
      3 103 298 0.35 1.735 4 0.044 8 0.159 7 0.002 0 955 11.3 1 161 45.8
      4 103 393 0.26 0.544 3 0.017 7 0.069 5 0.000 6 433 3.8 500 74.1
      5 101 799 0.13 1.188 2 0.030 0 0.127 3 0.001 7 773 9.8 843 44.4
      6 94 273 0.34 1.145 7 0.046 4 0.111 5 0.002 5 681 14.7 1 013 61.1
      7 114 385 0.30 0.652 7 0.018 7 0.069 5 0.000 8 433 4.5 878 60.0
      8 94 574 0.16 2.516 1 0.054 5 0.220 5 0.002 3 1 285 12.0 1 250 45.4
      9 151 389 0.39 0.751 8 0.021 1 0.089 0 0.001 1 549 6.5 643 58.3
      10 160 591 0.27 0.853 0 0.024 5 0.089 3 0.001 1 552 6.8 894 60.3
      11 73 491 0.15 0.512 3 0.018 2 0.069 4 0.000 9 433 5.4 320 77.8
      12 232 422 0.55 0.505 1 0.017 7 0.067 2 0.000 8 419 5.0 365 79.6
      13 280 739 0.38 0.507 6 0.014 8 0.066 9 0.000 7 417 4.5 391 66.7
      14 62 383 0.16 1.541 1 0.040 9 0.162 7 0.001 8 972 9.7 878 55.6
      15 228 869 0.26 0.473 1 0.012 1 0.064 5 0.000 7 403 4.1 324 61.1
      16 233 455 0.51 0.594 3 0.018 1 0.072 0 0.000 7 448 4.2 587 68.5
      17 98 140 0.70 0.521 1 0.022 9 0.070 0 0.000 9 436 5.4 369 106
      18 220 529 0.42 0.538 7 0.015 3 0.068 2 0.000 6 425 3.7 483 63.0
      19 140 410 0.34 0.500 8 0.016 9 0.065 4 0.000 7 408 4.4 420 78.7
      20 112 258 0.43 1.466 0 0.038 0 0.149 6 0.001 4 899 8.0 950 54.2
      21 180 457 0.39 0.491 8 0.015 7 0.064 4 0.000 7 402 4.2 428 72.2
      22 162 458 0.35 0.579 5 0.016 6 0.064 6 0.000 7 404 4.0 769 61.9
      23 157 249 0.63 2.896 5 0.071 9 0.228 7 0.003 1 1 328 16.4 1 450 41.2
      24 140 811 0.17 1.554 5 0.034 1 0.158 1 0.001 6 946 9.1 954 43.1
      25 61 152 0.40 1.561 0 0.048 0 0.154 9 0.001 8 928 10.2 1 017 64.4
      26 71 509 0.14 1.371 9 0.034 0 0.142 5 0.001 5 859 8.7 917 51.9
      27 155 179 0.86 3.054 8 0.075 5 0.236 1 0.002 3 1 367 11.9 1 502 48.1
      28 67 101 0.66 1.542 3 0.055 8 0.156 1 0.001 7 935 9.6 965 67.6
      29 384 741 0.52 0.509 0 0.012 5 0.065 0 0.000 6 406 3.5 472 53.7
      30 121 460 0.26 0.527 0 0.015 2 0.069 5 0.000 6 433 3.7 467 60.2
      31 93 531 0.17 0.494 2 0.012 6 0.065 5 0.000 5 409 2.8 383 57.4
      32 34.2 462 0.07 1.112 8 0.024 9 0.119 3 0.001 2 726 6.9 856 -154.2
      下载: 导出CSV
    • Chai, Y. Q., Shang, S. M., 2018. Prospecting Potential of Magmatic Melt Copper Nickel Sulfide Deposits in the Remote Area of the Langmuri. World Nonferrous Metals, (8): 124-127(in Chinese).
      Chen, B. W., Wang, Y. B., 1996. Some Characteristics of the Orogenic Belts in Qinghai-Tibet Plateau. Journal of Southeast Asian Earth Sciences, 13(3-5): 237-242. https://doi.org/10.1016/0743-9547(96)83685-3
      Chen, G. C., Pei, X. Z., Li, R. B., et al., 2020. Late Palaeozoic-Early Mesozoic Tectonic-Magmatic Evolution and Mineralization in the Eastern Section of the East Kunlun Orogenic Belt. Earth Science Frontiers, 27(4): 33-48(in Chinese with English abstract).
      Chen, X. D., Li, Y. G., Li, M. T., et al., 2020. Ore Geology, Fluid Inclusions, and C-H-O-S-Pb Isotopes of Nagengkangqieergou Ag-Polymetallic Deposit, East Kunlun Orogen, NW China. Geological Journal, 55(4): 2572-2590. https://doi.org/10.1002/gj.3526
      Dong, Y. P., He, D. F., Sun, S. S., et al., 2018. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261. https://doi.org/10.1016/j.earscirev.2017.12.006
      Feng, K., Li, R. B., Pei, X. Z., et al., 2022. Zircon U-Pb Chronology, Geochemistry and Geological Significance of Late Triassic Intermediate-Acid Volcanic Rocks in Boluositai Area, East Kunlun Orogenic Belt. Earth Science, 47(4): 1194-1216(in Chinese with English abstract).
      Forster, M. D., Nolan, T. B., 1960. Interpretation of the Composition of Trioctahedral Micas. Geological Survey Professional Paper, 345-B, Washington, U. S. A., 11-48. https://doi.org/10.3133/pp354b
      Fu, L. B., Bagas, L., Wei, J. H., et al., 2022. Growth of Early Paleozoic Continental Crust Linked to the Proto-Tethys Subduction and Continental Collision in the East Kunlun Orogen, Northern Tibetan Plateau. GSA Bulletin. https://doi.org/10.1130/b36292.1.
      Guan, T., Huang, Z. L., Xu, D. R., et al., 2006. Lithogeochemistry of the Sulfide-Bearing Mafic-Ultramafic Rock at Baimazhai, Jinping, Southern Yunnan. Chinese Journal of Geology, 41(3): 441-454(in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2006.03.006
      Han, Z. H., Sun, F. Y., Tian, N., et al., 2021. Zircon U-Pb Geochronology, Geochemistry and Geological Implications of the Early Paleozoic Wulanwuzhuer Granites in the Qimantag, East Kunlun, China. Earth Science, 46(1): 13-30(in Chinese with English abstract).
      He, S. Y., Sun, F. F., Li, Y. P., et al., 2017. Geochemical and Geochronological Significance of the Binggounan Garbbro in the Qiman Tage Region, Qinghai Province. Bulletin of Mineralogy, Petrology and Geochemistry, 36(4): 582-592(in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2017.04.010
      Jiang, C. F., Yang, J. S., Feng, B. G., et al., 1992. Close-Open Tectonic of Kunlun Orogenic Belt. Geological Publishing House, Beijing(in Chinese).
      Li, C. S., Zhang, Z. W., Li, W. Y., et al., 2015. Geochronology, Petrology and Hf-S Isotope Geochemistry of the Newly-Discovered Xiarihamu Magmatic Ni-Cu Sulfide Deposit in the Qinghai-Tibet Plateau, Western China. Lithos, 216-217: 224-240. https://doi.org/10.1016/j.lithos.2015.01.003
      Li, H. K., Lu, S. N., Xiang, Z. Q., et al., 2006. SHRIMP U-Pb Zircon Age of the Granulite from the Qingshuiquan Area, Central Eastern Kunlun Suture Zone. Earth Science Frontiers, 13(6): 311-321(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2006.06.034
      Li, R. B., Pei, X. Z., Pei, L., et al., 2018. The Early Triassic Andean-Type Halagatu Granitoids Pluton in the East Kunlun Orogen, Northern Tibet Plateau: Response to the Northward Subduction of the Paleo-Tethys Ocean. Gondwana Research, 62: 212-226. https://doi.org/10.1016/j.gr.2018.03.005
      Li, T. D., Xiao, Q. H., Pan, G. T., et al., 2019. A Consideration about the Development of Ocean Plate Geology. Earth Science, 44(5): 1441-1451(in Chinese with English abstract).
      Li, W. Y., Wang, Y. L., Qian, B., et al., 2020. Discussion on the Formation of Magmatic Cu-Ni-Co Sulfide Deposits in Margin of Tarim Block. Earth Science Frontiers, 27(2): 276-293(in Chinese with English abstract).
      Li, W. Y., Zhang, Z. W., Gao, Y. B., et al., 2011. Important Metallogenic Events and Tectonic Response of Qinling, Qilian and Kunlun Orogenic Belts. Geology in China, 38(5): 1135-1149(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2011.05.002
      Li, W. Y., Zhang, Z. W., Wang, Y. L., et al., 2022. Tectonic Transformation of Proto- and Paleo-Tethys and the Metallization of Magmatic Ni-Cu-Co Sufide Deposits in Kunlun Orogen, Northwest China. Journal of Earth Sciences and Environment, 44(1): 1-19(in Chinese with English abstract).
      Liu, B., Ma, C. Q., Zhang, J. Y., et al., 2012. Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes. Acta Petrologica Sinica, 28(6): 1785-1807(in Chinese with English abstract).
      Liu, Y. G., Li, W. Y., Jia, Q. Z., et al., 2018. The Dynamic Sulfide Saturation Process and a Possible Slab Break-off Model for the Giant Xiarihamu Magmatic Nickel Ore Deposit in the East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau, China. Economic Geology, 113(6): 1383-1417. https://doi.org/10.5382/econgeo.2018.4596
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Lu, L., Zhang, Y. L., Wu, Z. H., et al., 2013. Zircon U-Pb Dating of Early Paleozoic Granites from the East Kunlun Mountains and Its Geological Significance. Acta Geoscientica Sinica, 34(4): 447-454(in Chinese with English abstract).
      Ludwig, K. R., 2003. ISOPLOT 3.00: Geochronological Toolkit for Microsoft Execel. Berkeley Geochronology Center, California, Berkeley, 39.
      Luo, Z. H., Ke, S., Cao, Y. Q., et al., 2002. Late Indosinian Mantle-Derived Magmatism in the East Kunlun. Geological Bulletin of China, 21(6): 292-297(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2002.06.003
      Meng, F. C., Cui, M. H., Wu, X. K., et al., 2015. Heishan Mafic-Ultramafic Rocks in the Qimantag Area of Eastern Kunlun, NW China: Remnants of an Early Paleozoic Incipient Island Arc. Gondwana Research, 27(2): 745-759. https://doi.org/10.1016/j.gr.2013.09.023
      Meng, F. C., Jia, L. H., Ren, Y. F., et al., 2017. Magmatic and Metamorphic Events Recorded in the Gneisses of the Wenquan Region, East Kunlun Mountains, Northwest China: Evidence from the Zircon U-Pb Geochronology. Acta Petrologica Sinica, 33(12): 3691-3709(in Chinese with English abstract).
      Meng, Q. P., 2019. Study on Geological Characteristics and Genesis of Langmuri Copper-Nickel Deposit in Eastern Kunlun, Qinghai (Dissertation). Jilin University, Changchun(in Chinese with English abstract).
      Menzies, M., Kempton, P., Dungan, M., 1985. Interaction of Continental Lithosphere and Asthenospheric Melts below the Geronimo Volcanic Field, Arizona, U. S. A. . Journal of Petrology, 26(3): 663-693. https://doi.org/10.1093/petrology/26.3.663
      Mi, M., Chen, Y. J., Sun, Y. L., et al., 2009. Rare Earth Element and Platinum-Group Element Geochemistry of the Zhou'an Ni-Cu-PGE Deposit in Henan Province: Implications for Hydrothermal Origin. Acta Petrologica Sinica, 25(11): 2769-2775(in Chinese with English abstract).
      Mo, X. X., Luo, Z. H., Deng, J. F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2007.03.010
      Molnar, F., Watkinson, D. H., Jones, P. C., 2001. Multiple Hydrothermal Processes in Footwall Units of the North Range, Sudbury Igneous Complex, Canada, and Implications for the Genesis of Vein-Type Cu-Ni-PGE Deposits. Economic Geology, 96(7): 1645-1670. https://doi.org/10.2113/gsecongeo.96.7.1645
      Pan, G. T., Li, X. Z., Wang, L. Q., et al., 2002. Preliminary Division of Tectonic Units of the Qinghai-Tibet Plateau and Its Adjacent Regions. Geological Bulletin of China, 21(11): 701-707(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2002.11.002
      Pan, G. T., Xiao, Q. H., Zhang, K. X., et al., 2019. Recognition of the Oceanic Subduction-Accretion Zones from the Orogenic Belt in Continents and Its Important Scientific Significance. Earth Science, 44(5): 1544-1561(in Chinese with English abstract).
      Pan, Y. S., Zhou, W. M., Xu, R. H., et al., 1996. The Early Paleozoic Geological Features and Evolutions of the Kunlun Mountain. Science in China (Series D), 26(4): 302-307(in Chinese). doi: 10.3321/j.issn:1006-9267.1996.04.003
      Pei, X. Z., Li, R. B., Li, Z. C., et al., 2018. Composition Feature and Formation Process of Buqingshan Composite Accretionary Mélange Belt in Southern Margin of East Kunlun Orogen. Earth Science, 43(12): 4498-4520(in Chinese with English abstract).
      Qi, S. S., 2015. Petrotectonic Assemblages and Tectonic Evolution of the East Kunlun Orogenic Belt in Qinghai Province (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Ruan, L. S., Lu, S. M., Zhao, L. L., et al., 2017. Geochemical Chracteristics of the Mg-Fe Mica from Magmatic Rocks in the Shapinggou Molybdenum Deposit and Their Petrogenetic and Metallogenic Significances. Bulletin of Mineralogy, Petrology and Geochemistry, 36(3): 502-509(in Chinese with English abstract).
      Salama, W., Anand, R. R., Verrall, M., 2016. Mineral Exploration and Basement Mapping in Areas of Deep Transported Cover Using Indicator Heavy Minerals and Paleoredox Fronts, Yilgarn Craton, Western Australia. Ore Geology Reviews, 72: 485-509. https://doi.org/10.1016/j.oregeorev.2015.07.014
      Shi, G. H., Xiong, S. Y., Li, Y. N., et al., 2018. Analysis on Prospecting Potential of Langmuri Nickel Polymetallic Deposit in East Kunlun Orogenic Belt, Qinghai. Mineral Exploration, 9(6): 1205-1211(in Chinese with English abstract). doi: 10.3969/j.issn.1674-7801.2018.06.024
      Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2006. Evolution from Oceanic Subduction to Continental Collision: A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data. Journal of Petrology, 47(3): 435-455. https://doi.org/10.1093/petrology/egi080
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tang, Z. L., Li, W. Y., 1995. Mineralized Mechanism and Geological Contrast of Jinchan Cu-Ni-(PGE) Deposit. Geological Publishing House, Beijing(in Chinese).
      Wang, G., Sun, F. Y., Li, B. L., et al., 2014. Zircon U-Pb Geochronology and Geochemistry of Diorite in Xiarihamu Ore District from East Kunlun and Its Geological Significance. Journal of Jilin University (Earth Science Edition), 44(3): 876-891(in Chinese with English abstract).
      Wang, X. L., Yuan, W. M., Feng, X., et al., 2017. LA-ICP-MS Zircon U-Pb Age and Geological Significance of Granite Porphyry and Diorite in the Harizha Polymetallic Ore District, East Kunlun Mountains. Geological Bulletin of China, 36(7): 1158-1168(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2017.07.006
      Wood, D. A., Joron, J. L., Treuil, M., et al., 1979. Elemental and Sr Isotope Variations in Basic Lavas from Iceland and the Surrounding Ocean Floor. Contributions to Mineralogy and Petrology, 70(3): 319-339. https://doi.org/10.1007/bf00375360
      Wu, F. Y., Wan, B., Zhao, L., et al., 2020. Tethyan Geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.01
      Xia, R., 2017. Paleo-Tethys Orogenic Process and Gold Metallogenesis of the East Kunlun (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Xia, R., Wang, C. M., Deng, J., et al., 2014. Crustal Thickening Prior to 220 Ma in the East Kunlun Orogenic Belt: Insights from the Late Triassic Granitoids in the Xiao-Nuomuhong Pluton. Journal of Asian Earth Sciences, 93: 193-210. https://doi.org/10.1016/j.jseaes.2014.07.013
      Xiao, P. X., Gao, X. F., Hu, Y. X., et al., 2014. Geological Settings Study on Arkin-West Part of Eastern Kunlun Orogenic Belt. Geological Publishing House, Beijing(in Chinese).
      Xiao, X. C., Tang, Y. Q., Gao, Y. L., 1986. Reexposition of Plate Tectonics of the Qinghai-Xizang Plateau. Bulletin of the Chinese Academy of Geological Sciences, 7(3): 7-19(in Chinese).
      Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2011. LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt. Acta Petrologica Sinica, 27(11): 3350-3364(in Chinese with English abstract).
      Xu, J., Deng, X. H., Zhu, X. Y., 2021. Geological Characteristics and Spatio-Temporal Distribution of Mineralization in the Qimantage Metallogenic Belt. Xinjiang Geology, 39(4): 671-678(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2021.04.025
      Yang, J. S., Robinson, P. T., Jiang, C. F., et al., 1996. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications. Tectonophysics, 258(1-4): 215-231. https://doi.org/10.1016/0040-1951(95)00199-9
      Yang, S. L., Duan, H. C., Yang, Y. J., et al., 2022. Metallogenic Characteristics of Nickel-Platinum-Palladium Deposit in Langmuri Area, Qinghai. Mineral Exploration, 13(9): 1276-1287(in Chinese with English abstract).
      Ye, T. Z., Wei, C. S., Wang, Y. W., et al., 2017. Prospecting Prediction and Theory in Exploration Area (Various Theories). Geological Publishing House, Beijing(in Chinese).
      Yin, H. F., Zhan, K. X., 1997. Characteristics of the Eastern Kunlun Orogenic Belt. Earth Science, 22(4): 3-6(in Chinese with English abstract).
      Yu, M., Dick, J. M., Feng, C. Y., et al., 2020. The Tectonic Evolution of the East Kunlun Orogen, Northern Tibetan Plateau: A Critical Review with an Integrated Geodynamic Model. Journal of Asian Earth Sciences, 191: 104168. https://doi.org/10.1016/j.jseaes.2019.104168
      Zeng, Z. C., Hong, Z. L., Liu, F. X., et al., 2020. Confirmation of Gneissic Granite of Qingbaikou Period and Its Constraint on the Timing of the Rodinia Supercontinent on the Altun Orogenic Belt. Geology in China, 47(3): 569-589(in Chinese with English abstract).
      Zhang, D. Q., Wang, F. C., She, H. Q., et al., 2007. Three-Order Ore-Controlling Structural System of Orogenic Gold Deposits in the Northern Qaidam Margin-East Kunlun Region. Geology in China, 34(1): 92-100(in Chinese with English abstract).
      Zhang, D. Q., Zhu, H. P., Yan, S. H., et al., 2002. Multicyclic Paleozoic Orogeny and Metallogeny in East Kunlun Mountains. Mineral Deposits, 21(Suppl. 1): 293-296(in Chinese with English abstract).
      Zhang, W., Zhou, H. W., Zhu, Y. H., et al., 2016. The Evolution of Triassic Granites Associated with Mineralization within East Kunlun Orogenic Belt: Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of the Mohexiala Pluton. Earth Science, 41(8): 1334-1348(in Chinese with English abstract).
      Zhang, Z. W., Qian, B., Wang, Y. L., et al., 2020. Discussion on the Tectonic Settings of Magmatic Nickel-Cobalt Sulfi Deposits in the Eastern Kunlun Orogenic Belt. Geology in China(in Chinese with English abstract)(in press).
      Zhang, Z. W., Wang, Y. L., Qian, B., et al., 2018. Metallogeny and Tectonomagmatic Setting of Ni-Cu Magmatic Sulfide Mineralization, Number Ⅰ Shitoukengde Mafic-Ultramafic Complex, East Kunlun Orogenic Belt, NW China. Ore Geology Reviews, 96: 236-246. https://doi.org/10.1016/j.oregeorev.2018.04.027
      Zhao, X., 2020. Tectono-Magmatic Transformation and Gold Mineralization in the Gouli Area, the East Kunlun Orogen (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Zhao, X., Fu, L. B., Santosh, M., et al., 2022. The Growth and Evolution of Continental Crust Contributed by Multiple Sources in the East Kunlun Orogen during Early Paleozoic. Earth-Science Reviews, 233: 104190. https://doi.org/10.1016/j.earscirev.2022.104190
      Zhou, B., 2019. The Thermal History and Uplift-Exhumation Process of the East Kunlun Orogenic Belt during Meso-Cenozoic Time (Dissertation). Northwest University, Xi'an(in Chinese with English abstract).
      Zhu, R. X., Zhao, P., Zhao, L., 2022. Tectonic Evolution and Geodynamics of the Neo-Tethys Ocean. Science China Earth Sciences, 65(1): 1-24(in Chinese). doi: 10.1007/s11430-021-9845-7
      Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010
      柴永强, 尚生茂, 2018. 浪木日地区岩浆融离型铜镍硫化物矿床找矿前景分析. 世界有色金属, (8): 124-127.
      陈国超, 裴先治, 李瑞保, 等, 2020. 东昆仑造山带东段晚古生代-早中生代构造岩浆演化与成矿作用. 地学前缘, 27(4): 33-48.
      封铿, 李瑞保, 裴先治, 等, 2022. 东昆仑造山带波洛斯太地区晚三叠世中酸性火山岩锆石U-Pb年代学、地球化学及地质意义. 地球科学, 47(4): 1194-1216. doi: 10.3799/dqkx.2021.116
      管涛, 黄智龙, 许德如, 等, 2006. 云南金平白马寨含矿镁铁-超镁铁岩体岩石地球化学. 地质科学, 41(3): 441-454.
      韩志辉, 孙丰月, 田楠, 等, 2021. 东昆仑祁漫塔格地区乌兰乌珠尔早古生代花岗岩锆石U-Pb年代学、地球化学及其地质意义. 地球科学, 46(1): 13-30. doi: 10.3799/dqkx.2020.067
      何书跃, 孙非非, 李云平, 等, 2017. 青海祁漫塔格地区冰沟南辉长岩岩石地球化学特征及年代学意义. 矿物岩石地球化学通报, 36(4): 582-592.
      姜春发, 杨经绥, 冯炳贵, 等, 1992. 昆仑开合构造. 北京: 地质出版社.
      李怀坤, 陆松年, 相振群, 等, 2006. 东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究. 地学前缘, 13(6): 311-321. doi: 10.3321/j.issn:1005-2321.2006.06.034
      李廷栋, 肖庆辉, 潘桂棠, 等, 2019. 关于发展洋板块地质学的思考. 地球科学, 44(5): 1441-1451. doi: 10.3799/dqkx.2019.970
      李文渊, 王亚磊, 钱兵, 等, 2020. 塔里木陆块周缘岩浆Cu-Ni-Co硫化物矿床形成的探讨. 地学前缘, 27(2): 276-293.
      李文渊, 张照伟, 高永宝, 等, 2011. 秦祁昆造山带重要成矿事件与构造响应. 中国地质, 38(5): 1135-1149.
      李文渊, 张照伟, 王亚磊, 等, 2022. 东昆仑原、古特提斯构造转换与岩浆铜镍钴硫化物矿床成矿作用. 地球科学与环境学报, 44(1): 1-19.
      刘彬, 马昌前, 张金阳, 等, 2012. 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示. 岩石学报, 28(6): 1785-1807.
      陆露, 张延林, 吴珍汉, 等, 2013. 东昆仑早古生代花岗岩锆石U-Pb年龄及其地质意义. 地球学报, 34(4): 447-454.
      罗照华, 柯珊, 曹永清, 等, 2002. 东昆仑印支晚期幔源岩浆活动. 地质通报, 21(6): 292-297.
      孟繁聪, 贾丽辉, 任玉峰, 等, 2017. 东昆仑东段温泉地区片麻岩记录的岩浆和变质事件: 锆石U-Pb年代学证据. 岩石学报, 33(12): 3691-3709.
      孟庆鹏, 2019. 青海东昆仑浪木日铜镍矿矿床地质特征及成因探讨(硕士学位论文). 长春: 吉林大学.
      糜梅, 陈衍景, 孙亚莉, 等, 2009. 河南周庵铂族-铜镍矿床的稀土和铂族元素地球化学特征: 热液成矿的证据. 岩石学报, 25(11): 2769-2775.
      莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414.
      潘桂棠, 李兴振, 王立全, 等, 2002. 青藏高原及邻区大地构造单元初步划分. 地质通报, 21(11): 701-707.
      潘桂棠, 肖庆辉, 张克信, 等, 2019. 大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义. 地球科学, 44(5): 1544-1561. doi: 10.3799/dqkx.2019.063
      潘裕生, 周伟明, 许荣华, 等, 1996. 昆仑山早古生代地质特征与演化. 中国科学(D辑), 26(4): 302-307.
      裴先治, 李瑞保, 李佐臣, 等, 2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程. 地球科学, 43(12): 4498-4520. doi: 10.3799/dqkx.2018.124
      祁生胜, 2015. 青海省东昆仑造山带火成岩岩石构造组合与构造演化(博士学位论文). 北京: 中国地质大学.
      阮林森, 陆三明, 赵丽丽, 等, 2017. 沙坪沟钼矿床岩浆岩中镁铁云母地球化学特征及其成岩成矿意义. 矿物岩石地球化学通报, 36(3): 502-509.
      施根红, 熊生云, 李永娜, 等, 2018. 东昆仑造山带浪木日地区镍多金属矿找矿潜力分析. 矿产勘查, 9(6): 1205-1211.
      汤中立, 李文渊, 1995. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比. 北京: 地质出版社.
      王冠, 孙丰月, 李碧乐, 等, 2014. 东昆仑夏日哈木矿区闪长岩锆石U-Pb年代学、地球化学及其地质意义. 吉林大学学报(地球科学版), 44(3): 876-891.
      王小龙, 袁万明, 冯星, 等, 2017. 东昆仑哈日扎多金属矿区花岗斑岩与闪长岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 36(7): 1158-1168.
      吴福元, 万博, 赵亮, 等, 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627-1674.
      夏锐, 2017. 东昆仑古特提斯造山过程与金成矿作用(博士学位论文). 北京: 中国地质大学.
      校培喜, 高晓峰, 胡云绪, 等, 2014. 阿尔金-东昆仑西段成矿带地质背景研究. 北京: 地质出版社.
      肖序常, 汤耀庆, 高延林, 1986. 再论青藏高原的板块构造. 中国地质科学院院报, 7(3): 7-19.
      熊富浩, 马昌前, 张金阳, 等, 2011. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学. 岩石学报, 27(11): 3350-3364.
      许骏, 邓小华, 祝新友, 2021. 祁漫塔格成矿带地质特征和成矿时空分布规律. 新疆地质, 39(4): 671-678.
      杨顺龙, 段鸿昌, 杨一军, 等, 2022. 青海浪木日地区镍铂钯成矿特征. 矿产勘查, 13(9): 1276-1287.
      叶天竺, 韦昌山, 王玉往, 等, 2017. 勘查区找矿预测与理论(各论). 北京: 地质出版社.
      殷鸿福, 张克信, 1997. 东昆仑造山带的一些特征. 地球科学, 22(4): 3-6. http://www.earth-science.net/article/id/532
      曾忠诚, 洪增林, 刘芳晓, 等, 2020. 阿尔金造山带青白口纪片麻状花岗岩的厘定及对Rodinia超大陆汇聚时限的制约. 中国地质, 47(3): 569-589.
      张德全, 王富春, 佘宏全, 等, 2007. 柴北缘—东昆仑地区造山型金矿床的三级控矿构造系统. 中国地质, 34(1): 92-100.
      张德全, 朱华平, 闫升好, 等, 2002. 东昆仑古生代复合造山过程及金属成矿作用. 矿床地质, 21(增刊1): 293-296.
      张炜, 周汉文, 朱云海, 等, 2016. 东昆仑与成矿有关的三叠纪花岗岩演化: 基于莫河下拉岩体岩石学、地球化学和锆石U-Pb年代学的证据. 地球科学, 41(8): 1334-1348. doi: 10.3799/dqkx.2016.520
      张照伟, 钱兵, 王亚磊, 等, 2020. 东昆仑造山带岩浆镍钴硫化物矿床形成构造背景探讨. 中国地质(待刊).
      赵旭, 2020. 东昆仑造山带沟里地区构造岩浆转换与金成矿作用(博士学位论文). 武汉: 中国地质大学.
      周波, 2019. 东昆仑造山带中新生代热演化史及隆升-剥露过程研究(博士学位论文). 西安: 西北大学.
      朱日祥, 赵盼, 赵亮, 2022. 新特提斯洋演化与动力过程. 中国科学: 地球科学, 52(1): 1-25.
    • 加载中
    图(11) / 表(5)
    计量
    • 文章访问数:  1063
    • HTML全文浏览量:  523
    • PDF下载量:  139
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-13
    • 刊出日期:  2023-12-25

    目录

      /

      返回文章
      返回