• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    超深层古油藏的定量表征及其对气藏形成的指示意义: 以川中古隆起北斜坡灯影组为例

    宋泽章 葛冰飞 王文之 田兴旺 朱光有 杨岱林 张宝收

    宋泽章, 葛冰飞, 王文之, 田兴旺, 朱光有, 杨岱林, 张宝收, 2023. 超深层古油藏的定量表征及其对气藏形成的指示意义: 以川中古隆起北斜坡灯影组为例. 地球科学, 48(2): 517-532. doi: 10.3799/dqkx.2023.030
    引用本文: 宋泽章, 葛冰飞, 王文之, 田兴旺, 朱光有, 杨岱林, 张宝收, 2023. 超深层古油藏的定量表征及其对气藏形成的指示意义: 以川中古隆起北斜坡灯影组为例. 地球科学, 48(2): 517-532. doi: 10.3799/dqkx.2023.030
    Song Zezhang, Ge Bingfei, Wang Wenzhi, Tian Xingwang, Zhu Guangyou, Yang Dailin, Zhang Baoshou, 2023. Quantitative Characterization of Ultra-Deep Paleo-Oil Reservoirs and Its Indication for Deep Gas Accumulation: A Case Study on the Dengying Formation, the North Slope of Central Sichuan Paleo-Uplift. Earth Science, 48(2): 517-532. doi: 10.3799/dqkx.2023.030
    Citation: Song Zezhang, Ge Bingfei, Wang Wenzhi, Tian Xingwang, Zhu Guangyou, Yang Dailin, Zhang Baoshou, 2023. Quantitative Characterization of Ultra-Deep Paleo-Oil Reservoirs and Its Indication for Deep Gas Accumulation: A Case Study on the Dengying Formation, the North Slope of Central Sichuan Paleo-Uplift. Earth Science, 48(2): 517-532. doi: 10.3799/dqkx.2023.030

    超深层古油藏的定量表征及其对气藏形成的指示意义: 以川中古隆起北斜坡灯影组为例

    doi: 10.3799/dqkx.2023.030
    基金项目: 

    国家自然科学基金面上基金项目 42272161

    中石油科技创新基金 2021DQ02-0105

    超深层微生物白云岩储层孔隙结构多尺度定量表征 SCKLT-JSZS-2022-0044

    详细信息
      作者简介:

      宋泽章(1988-),男,副教授,主要从事致密储层评价及油气运聚成藏工作. ORCID:0000-0001-5573-1490.E-mail:songzz@cup.edu.cn

      通讯作者:

      朱光有, E-mail: zhuguangyou@petrochina.com.cn

    • 中图分类号: P624.7

    Quantitative Characterization of Ultra-Deep Paleo-Oil Reservoirs and Its Indication for Deep Gas Accumulation: A Case Study on the Dengying Formation, the North Slope of Central Sichuan Paleo-Uplift

    • 摘要: 跨越多个构造期的深层、超深层油气成藏定量表征是地学界的一大难题. 川中地区上震旦统灯影组天然气藏以典型的原油裂解气为主,油气演化经历了古油藏、古气藏直至现今气藏的复杂演化过程;古油藏的定量刻画是恢复其成藏过程的关键和核心. 优选川中古隆起北斜坡上震旦统灯影组气藏为研究对象,以固体沥青为媒介,在岩心观察的基础上,综合“点”(固体沥青图像法定量表征)、“线”(固体沥青多矿物测井反演定量评价)、“面”(固体沥青含量平面分布定量表征)3个维度对固体沥青进行定量刻画,进而定量刻画古油藏并以体积法计算其资源量,以期从成藏角度对斜坡区的天然气勘探潜力评价提供支撑.研究结果表明:(1)灯影组储层固体沥青主要以半充填-充填的状态赋存于孔隙空间中;灯二段固体沥青含量整体要高于灯四段;不论灯二段还是灯四段,上亚段固体沥青含量略高于下亚段;(2)固体沥青纵向和平面分布规律指示,纵向上,油气充注方向多为自上而下;平面上,油气充注主要存在两个方向:自德阳-安岳裂陷槽向台内侧向充注;自北部斜坡区向南、向古隆起高部位侧向充注;(3)北斜坡地区灯影组储层古油藏完成裂解的时间早于大规模区域构造运动,因此可以用现今储层固体沥青的含量及分布来定量刻画古油藏. 古油藏的识别标准为:固体沥青在孔隙空间充填度大于25%且固体沥青含量大于2%;(4)基于斜坡区丘滩体分布,定量刻画了川中古隆起北斜坡地区5个可靠古油藏、4个潜在古油藏,借助体积法评价所得古油藏规模约177.25×108 t,完全裂解可产生原油裂解气约109 893.94×108 m3.

       

    • 图  1  区域地质背景图

      Fig.  1.  Geologic background of the study area

      图  2  川中古隆起北斜坡灯影组岩性及固体沥青充填情况观察

      a.蓬探1井,5 773.58~5 773.68 m,灯二上亚段,藻粘结白云岩,溶孔和微裂缝发育,溶孔边缘发育细晶白云石,内部见块状固体沥青半充填;b.蓬探1井,5 730.40~5 730.51 m,灯二上亚段,藻砂屑白云岩,溶孔发育,部分溶孔内见块状固体沥青半充填;c.蓬探103井,5 722.44~5 722.70 m,灯二上亚段,藻粘结白云岩,顺层溶蚀孔洞发育,孔洞内见细晶白云石和少量固体沥青充填;d.蓬深3井,5 750.47~5 750.61 m,灯二下亚段,泥晶-藻凝块白云岩,裂缝和溶孔均有发育,少量溶孔发育,溶孔边缘发育细晶白云石,内部见少量固体沥青充填;e.蓬深4井,6 186.53~6 186.76 m,灯二下亚段,泥晶白云岩,溶洞发育,延伸长度4~5 cm,溶洞内见大量细晶及中晶白云石充填,白云石晶间孔内发育少量固体沥青;f.蓬深1井,7 263.71~7 263.83 m,灯四上亚段,藻凝块白云岩,溶孔和微裂缝发育,部分溶孔内见少量固体沥青充填;g.蓬深1井,7 260.11~7 260.28 m,灯四上亚段,藻凝块云岩,溶孔发育,溶孔中见少量固体沥青充填;h.东坝1井,6 404.95~6 405.08 m,灯四上亚段,藻凝块云岩,溶孔发育,溶孔直径为1~2 cm,溶孔内见块状固体沥青半充填;l.东坝1井,6 408.60~6 408.67 m,灯四上亚段,泥晶白云岩,发育少量裂缝,缝内见细晶白云石充填,未见明显固体沥青充填痕迹

      Fig.  2.  Observation on lithology and solid bitumen filling-status of Dengying Formation on North Slope of central Sichuan Uplift

      图  3  研究区灯影组储层固体沥青镜下特征观察

      a.蓬深2井,7 782.24 m,灯二段,泥晶白云岩,溶孔发育,细-中晶白云石沿溶孔边缘生长,溶孔内部块状固体沥青半充填;b.蓬深1井,7 262.41~7 262.54 m,灯二段,藻粘结白云岩,格架孔发育,孔内见块状及丝状固体沥青充填;c.蓬深3井,5 769.90~5 770.01 m,灯二段,溶洞内充填的自形粗晶白云石,白云石晶间孔见块状固体沥青半充填;d.东坝1井,6 410.11 m,灯四段,粉晶白云岩,溶洞发育,溶洞边缘细晶白云石发育,洞内见少量他形石英充填

      Fig.  3.  Microscopic features of solid bitumen of the Dengying Formation on thin section

      图  4  川中古隆起北斜坡灯影组(灯二段、灯四段)全直径岩心孔隙度(a)、渗透率(b)频率分布直方图

      Fig.  4.  Full-diameter core porosity (a) and permeability (b) frequency distribution histogram of Dengying Formation (the second and fourth members) on the North Slope of central Sichuan Uplift

      图  5  图像法固体沥青含量定量评价技术路线图

      Fig.  5.  The workflow for quantitative evaluation of solid bitumen content by image processing method

      图  6  气测孔隙度与图像法残余孔隙度线性拟合图

      Fig.  6.  Linear regression between gas porosity and residual porosity obtained by image processing.

      图  7  蓬探1井灯二段多矿物反演重构曲线特征

      Fig.  7.  The features of reconstructed logging curves of the second member of Dengying Formation, Pengtan1 well

      图  8  研究区灯影组储层固体沥青含量及固体沥青充填度平面分布图

      a. 灯二上亚段与灯四上亚段;b. 灯二下亚段与灯四下亚段

      Fig.  8.  Planar distribution of solid asphalt volume content and solid asphalt filling degree of Dengying Formation reservoir in the study area

      图  9  研究区蓬探1井灯影组储层温度(T)与等效镜质体反射率(Ro)随时间(t)变化图

      Fig.  9.  Variation of reservoir temperature (T) and vitrinite reflectance (Ro) with time (t) in Dengying Formation of Pengtan 1 Well in the the study area

      图  10  研究区灯影组古油藏平面分布图

      Fig.  10.  Plane distribution of Dengying Formation paleo-oil reservoirs in the study area

      表  1  图像法固体沥青含量计算结果

      Table  1.   Results of solid bitumen content obtained by image processing

      样品号 整体图像面积(像素点) 固体沥青面积(像素点) 铸体面积(像素点) 总孔隙度(%) 校正总孔隙度(%) 固体沥青孔隙度(%) 残余孔隙度(%) 固体沥青充填度*(%) 校正固体沥青含量(%)
      DB1-6 409.43 5 002 624 1 135 204 273 014 28.15 10.02 22.69 5.46 80.61 8.08
      DB1-6 410.11 5 002 624 653 448 187 381 16.81 7.14 13.06 3.75 77.71 5.55
      DB1-6 411.01 5 002 624 515 204 129 158 12.88 6.14 10.30 2.58 79.96 4.91
      PS1-7 257.53~7 257.73 6 076 416 28 800 140 947 2.79 3.57 0.47 2.32 16.97 0.61
      PS1-7 259.43~7 259.63 6 076 416 29 843 120 472 2.47 3.49 0.49 1.98 19.85 0.69
      PS1-7 262.41~7 262.54 6 076 416 547 669 204 369 12.38 6.01 9.01 3.37 72.82 4.38
      PS1-7 263.45~7 263.55 6 076 416 230 146 290 735 8.57 5.04 3.79 4.78 44.18 2.23
      PS2-7 782.24① 1 392 640 142 311 401 216 39.03 12.79 10.22 28.81 26.18 3.35
      PS2-7 782.24② 1 392 640 226 162 95 555 23.10 8.74 16.24 6.86 70.30 6.14
      PS2-7 790.43~7 790.52① 1 392 640 12 611 130 639 10.29 5.48 0.91 9.38 8.80 0.48
      PS2-7 790.43~7 790.52② 1 392 640 203 001 136 245 24.36 9.06 14.58 9.78 59.84 5.42
      PS3-5 769.9~5 770.01① 1 392 640 126 462 102 584 16.45 7.05 9.08 7.37 55.21 3.89
      PS3-5 769.9~5 770.01② 1 392 640 5 159 261 077 19.12 7.72 0.37 18.75 1.94 0.15
      PT1-5 729.44 1 392 640 356 847 55 012 29.57 10.38 25.62 3.95 86.64 9.00
      PT101-5 759.7① 1 392 640 98 781 176 080 19.74 7.88 7.09 12.65 35.94 2.83
      PT101-5 759.7② 1 392 640 112 717 70 039 13.12 6.20 8.09 5.03 61.68 3.82
      PT102-5 846.88~5 846.93① 1 392 640 583 55 587 613 46.38 14.66 4.19 42.19 9.03 1.32
      PT102-5 846.88~5 846.93② 1 392 640 182 280 10 399 13.84 6.38 13.09 0.75 94.60 6.04
      ZJ2-6 554.3 1 392 640 177 119 24 425 14.47 6.54 12.72 1.75 87.88 5.75
      ZJ2-6 553.56 1 392 640 408 538 197 677 43.53 13.93 29.34 14.19 67.39 9.39
      注:*固体沥青充填度:固体沥青占原始孔隙空间(原油未裂解时孔隙空间)的百分比.
      下载: 导出CSV

      表  2  灯影组储层固体沥青含量及充填度

      Table  2.   Solid bitumen content and filling degree of Dengying Formation reservoir

      井名 层位 固体沥青含量(90%分位点)(%) 总孔隙度(%) 固体沥青充填度(%)
      PT1 灯二上亚段 5.07 7.84 64.67
      灯二下亚段 2.76 4.90 56.33
      PT101 灯二上亚段 4.99 9.96 50.10
      灯二下亚段 3.54 8.10 43.70
      PT102 灯二上亚段 2.70 5.62 48.04
      灯二下亚段 3.29 7.71 42.67
      PT103 灯二上亚段 2.59 7.48 34.63
      灯二下亚段 1.84 11.53 15.96
      ZS101 灯二上亚段 3.23 7.10 45.49
      灯二下亚段 2.99 6.53 45.79
      PS3 灯二下亚段 3.05 8.57 35.59
      DB1 灯四上亚段 2.68 5.55 48.29
      灯四下亚段 2.78 5.69 48.86
      JT1 灯四上亚段 1.91 6.34 30.13
      灯四下亚段 4.36 6.85 63.65
      下载: 导出CSV

      表  3  灯影组储层古油层累计厚度数据表

      Table  3.   Accumulated thickness of paleo-oil reservoirs of Dengying Formation reservoir

      井位 层位 累计古油层厚度(m)
      PT1 灯二段 240
      PT101 灯二段 173
      PT102 灯二段 51
      PT103 灯二段 54
      ZS101 灯二段 145
      PS3 灯二段 30
      JT1 灯四段 83
      DB1 灯四段 65
      下载: 导出CSV

      表  4  研究区古油藏规模及原油裂解气含量估算

      Table  4.   Estimation of the scale of Paleo-oil reservoirs and the content of Oil-cracking gas in the study area

      油藏 Ao(km2) H(m) $ \mathit{\varphi } $(%) ρ(t/m3) B Qo(108 t) Qg(108 m3) 备注
      PT1-PT101-PT102-PT103 174.49 127 4.27 1.02 2.22 21.38 13 258.40 可靠
      ZS101 407.29 145 4.10 1.02 2.22 54.83 33 993.86 可靠
      PS3 130.92 30 10.35 1.02 2.22 9.20 5 707.06 可靠
      JT1 296.43 83 2.97 1.02 2.22 16.55 10 258.92 可靠
      DB1 119.89 65 4.10 1.02 2.22 7.23 4 485.65 可靠
      PS1 187.85 74 3.54 1.02 2.22 11.14 6 908.62 潜在
      PS2 74.45 74 3.54 1.02 2.22 4.42 2 738.07 潜在
      PS4 130.48 101 6.24 1.02 2.22 18.62 11 545.02 潜在
      DT1 237.32 101 6.24 1.02 2.22 33.87 20 998.35 潜在
      总计 177.25 109 893.94
      下载: 导出CSV
    • Cao, Z. C., Xu, Q. Q., Yu, T. X., et al., 2021. Significance of Secondary Hydrocarbon Generation and Crude Oil Cracking in Paleo-Reservoirs to Hydrocarbon Accumulation: A Case Study of Cambrian Source Rocks in Bachu-Maigaiti Area of Tarim Basin. Xinjiang Petroleum Geology, 42(2): 143-151 (in Chinese with English abstract).
      Fan, J., Jiang, Y. L., Song, M. S., et al., 2020. The Application of "SGR Lower Limit Method" in Recognizing Paleoreservoir. Journal of China University of Mining & Technology, 49(4): 755-764 (in Chinese with English abstract).
      Guo, C. P., 2006. Characteristic of Oil Cracking Experiment and the Study of Hydrocarbon Dynamics(Dissertation). Daqing Petroleum Institute, Daqing(in Chinese with English abstract).
      Guo, X. S., Hu, D. F., Huang, R. C., et al., 2020. Feature of Paleo-Oil Pools in the Sinian Dengying Formation, Northeastern Sichuan Basin, and Its Significance to Exploration. Oil & Gas Geology, 41(4): 673-683 (in Chinese with English abstract).
      Guo, Z. Q., Liang, K., Wu, P. H., et al., 2022. Discussion on Reserve Calculation Method of Paleo Oil Reservoir in Ancient Carbonate: A Case Study from the Dengying Formation of the Anyue Gas Field in Sichuan Basin. Acta Geologica Sinica, 96(1): 317-329 (in Chinese with English abstract).
      Huang, X. D., Chen, C. H., Lai, X., et al., 2019. The Genetic Relationship between Pb-Zn Deposits and Paleo-Oil Reservoirs in Mayuan, Northern Sichuan Basin. Geology in China, 46(6): 1547-1555 (in Chinese with English abstract).
      Jiang, Y. L., Liu, X. J., Zhao, X. Z., et al., 2020. Comprehensive Identification of Oil and Gas Accumulation Period by Fluid Inclusion Technique and Reservoir Bitumen Characteristics: A Case Study of the Paleozoic Buried Hill in Beidagang, Huanghua Depression. Earth Science, 45(3): 980-988 (in Chinese with English abstract).
      Jin, X. Y., Li, J. W., Hofstra, A., et al., 2016. Relationship between Carlin-Type Gold Deposits and Paleo-Petroleum Reservoirs in SW Guizhou, China: Evidence from Gas Compositions of Fluid Inclusions and Raman Spectroscopic Characteristics of Bitumen. Acta Petrologica Sinica, 32(11): 3295-3311(in Chinese with English abstract).
      Lei, R., Xiong, Y. Q., Li, Y., et al., 2018. Main Factors Influencing the Formation of Thermogenic Solid Bitumen. Organic Geochemistry, 121: 155-160. https://doi.org/10.1016/j.orggeochem.2018.01.004
      Li, J., Zhou, S. X., Gong, S. H., et al., 2013. Biomarker Characteristics of Source Rock and Bitumen and Oil-Source Correlation of Paleo-Reservoir in Northeastern Sichuan. Lithologic Reservoirs, 25(4): 54-62(in Chinese with English abstract).
      Li, P. P., Zou, H. Y., Zhang, Y. C., et al., 2008. Paleo-Oil-Water Contact and Present-Day Gas-Water Contact: Implication for Evolution History of Puguang Gas Field, Sichuan Basin, China. Journal of Earth Sciecne, 19(6): 715-725.
      Li, P. P., Guo, X. S., Hao, F., et al., 2016. Paleo-Oil-Reservoirs Reconstruction and Oil Correlation of Changxing Formation in the Yuanba Gas Field, Sichuan Basin. Earth Science, 41(3): 452-462 (in Chinese with English abstract).
      Li, T. Y., He, Z. L., He, S., et al., 2013. Characteristics and Its Petroleum Geological Significance of the Permian Paleo-Oil Reservoir of Jingshan Area the North Edge of the Central Yangtze Block. Journal of Jilin University(Earth Science Edition), 43(6): 1740-1752 (in Chinese with English abstract).
      Liu, Y., Zhong, N. N., Tian, Y. J., et al., 2011. The Oldest Oil Accumulation in China: Meso-Proterozoic Xiamaling Formation Bituminous Sandstone Reservoirs. Petroleum Exploration and Development, 38(4): 503-512(in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60050-5
      Ma, W. J., Wei, Y. Z., Zeng, D. L., et al., 2017. Fluid Evidence of Paleo-Reservoir in the Mosuowan Uplift, Junggar Basin. Acta Geologica Sinica, 38(4): 414-424 (in Chinese with English abstract).
      Ma, K., Zhang, X. H., Peng, H. L., et al., 2020. Tectonic Evolution of Moxi North Slope in Sichuan Basin and Its Effect on Forming Sinian Oil and Gas Reservoirs. Natural Gas Exploration and Development, 43(1): 8-15 (in Chinese with English abstract).
      Ma, W. X., Liu, S. G., Huang, W. M., 2010. Progresses on Primary Study of the Paleo Oil Reservoirs and Its Control on Natural Gas Accumulation. Geological Science and Technology Information, 29(4): 89-99(in Chinese with English abstract).
      Ma, X. Z., Liu, S. B., Lu, X. S., et al., 2019. Study on the Distribution of Paleo-Oil Reservoirs in Cambrian Longwangmiao Formation in Anyue Area, Sichuan Basin. The 17th Academic Annual Meeting of Chinese Society of Mineralogy, Petrology and Geochemistry, Hangzhou, 513-514. (in Chinese with English abstract).
      Song, Z. Z., Ding, X. H., Zhang, B. J., et al., 2022. Dynamic Reconstruction of the Hydrocarbon Generation, Accumulation, and Evolution History in Ultra-Deeply-Buried Strata. Frontiers in Earth Science. https://doi.org/10.3389/feart.2022.927903
      Song, Z. Z., Liu, G. D., Luo, B., et al., 2021. Logging Evaluation of Solid Bitumen in Tight Carbonate in Deepburied and Ultra-Deep-Buried Strata of the Central Sichuan Basin. Acta Sedimentologica Sinica, 39(1): 197-211 (in Chinese with English abstract).
      Sun, W., Liu, S. G., Ma, Y. S., et al., 2007. Determination and Quantitative Simulation of Gas Pool Formation Process of Sinian Cracked Gas in Weiyuan-Ziyang Area Sichuan Basin. Acta Geologica Sinica, 81(8): 1153-1159(in Chinese with English abstract).
      Tian, X. B., Li, Q., Wang, N. M., et al., 2019. Discovery of Sinian Paleo-Oil Pool in East Tarim Uplift Zone and Its Exploration Significance. Special Oil and Gas Reservoirs, 26(4): 64-69 (in Chinese with English abstract).
      Wang, T. G., Zhang, N. N., Wang, C. J., et al., 2016. Source Beds and Oil Entrapment-Alteration Histories of Fossil-Oil-Reservoirs in the Xiamaling Formation Basal Sandstone, Jibei Depression. Petroleum Science Bulletin, 1(1): 24-37 (in Chinese with English abstract).
      Yang, C. Y., Wen, L., Wang, T. G., et al., 2020. Timing of Hydrocarbon Accumulation for Paleo-Oil Reservoirs in Anyue Gas Field in Chuanzhong Uplift. Oil & Gas Geology, 41(3): 492-502 (in Chinese with English abstract).
      Yang, P., Wang, Z. J., YIN, F., et al., 2014. Ideonntification of Oil Resource and Analysis of Hydrocarbon Migration and Accumulation of Majiang Paleo-Reservoir: Evidence from Oil-Gas Geochemistry. Geology in China, 41(3): 982-994(in Chinese with English abstract).
      Yang, Y. Z., Huang, Z. L., Zhao, Z., et al., 2022. Geochemical Characteristics and Oil Source Correlation of Paleo-Reservoirs in Biluocuo Area, Qiangtang Basin. Earth Science, 47(5): 1834-1848 (in Chinese with English abstract).
      Zhang, C. L., Pang, X. Q., Tian, S. C., et al., 2014. Oil-Source Correlation of Paleo-Reservoir in Ordovician and the Gas Source of Jingbian Gasfield, West Ordos Basin. Natural Gas Geoscience, 25(8): 982-994 (in Chinese with English abstract).
      Zhang, T., Ma, X. Z., Z, W. W., et al., 2017. Characteristics of Paleo-Oil Reservoir of Longwangmiao Formation in Moxi-Gaoshiti Area. Fault-Block Oil & Gas Field, 24(4): 466-470 (in Chinese with English abstract).
      Zhu, G. Y., Wang, T. S., Xie, Z. Y., et al., 2015. Giant Gas Discovery in the Precambrian Deeply Buried Reservoirs in the Sichuan Basin, China: Implications for Gas Exploration in Old Cratonic Basins. Precambrian Research, 262: 45-66. https://doi.org/10.1016/j.precamres.2015.02.023
      Zhu, L. Q., Liu, G. D., Song, Z. Z., et al., 2021. The Differences in Natural Gas from the Dengying Formation in Different Areas of the North Slope of the Central Sichuan Paleo-Uplift and Its Controlling Factors-Taking Pengtan-1 and Zhongjiang-2 Wells as Examles. Petroleum Science, 6(3): 344-355 (in Chinese with English abstract).
      曹自成, 徐勤琪, 余腾孝, 等, 2021. 二次生烃与古油藏原油裂解对油气成藏的意义——以塔里木盆地巴楚-麦盖提地区寒武系烃源岩为例. 新疆石油地质, 42(2): 143-151. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102003.htm
      范婕, 蒋有录, 宋明水, 等, 2020. "SGR下限法"在判别古油藏中的应用. 中国矿业大学学报, 49(4): 755-764. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202004013.htm
      郭春萍, 2006. 油裂解成气实验产率特征及成烃动力学研究(硕士学位论文). 大庆: 大庆石油学院.
      郭旭升, 胡东风, 黄仁春, 等, 2020. 川东北地区胡家坝震旦系灯影组古油藏特征及其油气勘探意义. 石油与天然气地质, 41(4): 673-683. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004003.htm
      郭泽清, 梁坤, 吴培红, 等, 2022. 古老碳酸盐岩古油藏储量计算方法探讨——以四川盆地安岳气田灯影组为例. 地质学报, 96(1): 317-329. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201022.htm
      黄小东, 陈翠华, 赖翔, 等, 2019. 四川盆地北缘马元铅锌矿床与古油藏关系研究. 中国地质, 46(6): 1547-1555. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201906020.htm
      蒋有录, 刘学嘉, 赵贤正, 等, 2020. 根据储层沥青和流体包裹体综合判识油气成藏期: 以黄骅坳陷北大港古生界潜山为例. 地球科学, 45(3): 980-988. doi: 10.3799/dqkx.2019.016
      靳晓野, 李建威, Hofstra A., 等, 2016. 黔西南卡林型金矿床与区域古油藏的关系: 来自流体包裹体气相组成和沥青拉曼光谱特征的证据. 岩石学报, 32(11): 3295-3311. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201611005.htm
      李靖, 周世新, 巩书华, 等, 2013. 川东北地区烃源岩与沥青生物标志物特征及古油藏油源辨识. 岩性油气藏, 25(4): 54-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201304013.htm
      李平平, 郭旭升, 郝芳, 等, 2016. 四川盆地元坝气田长兴组古油藏的定量恢复及油源分析. 地球科学, 41(3): 452-462. doi: 10.3799/dqkx.2016.037
      李天义, 何治亮, 何生, 等, 2013. 中扬子北缘京山二叠系古油藏特征及石油地质意义. 吉林大学学报(地球科学版), 43(6): 1740-1752. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306004.htm
      刘岩, 钟宁宁, 田永晶, 等, 2011. 中国最老古油藏——中元古界下马岭组沥青砂岩古油藏. 石油勘探与开发, 38(4): 503-512. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201104017.htm
      麻伟娇, 卫延召, 曾德龙, 等, 2017. 准噶尔盆地莫索湾凸起古油藏的流体证据. 石油学报, 38(4): 414-424. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201704005.htm
      马奎, 张玺华, 彭瀚霖, 等, 2020. 四川盆地磨溪北斜坡构造演化对震旦系油气成藏控制作用. 天然气勘探与开发, 43(1): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRKT202001004.htm
      马文辛, 刘树根, 黄文明, 2010. 古油藏及其对天然气藏的控制作用研究进展. 地质科技情报, 29(4): 89-99. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201004015.htm
      马行陟, 柳少波, 鲁雪松, 等, 2019. 四川盆地安岳地区寒武系龙王庙组古油藏分布研究. 中国矿物岩石地球化学学会第17届学术年会, 杭州, 513-514.
      宋泽章, 柳广弟, 罗冰, 等, 2021. 深层、超深层致密碳酸盐岩储层固态沥青测井评价——以川中地区上震旦统灯四段为例. 沉积学报, 39(1): 197-211. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202101014.htm
      孙玮, 刘树根, 马永生, 等, 2007. 四川盆地威远一资阳地区震旦系油裂解气判定及成藏过程定量模拟. 地质学报, 81(8): 1153-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200708015.htm
      田小彬, 李强, 王年梅, 等, 2019. 塔东隆起带震旦系古油藏的发现及勘探意义. 特种油气藏, 26(4): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201904011.htm
      王铁冠, 钟宁宁, 王春江, 等, 2016. 冀北坳陷下马岭组底砂岩古油藏成藏演变历史与烃源剖析. 石油科学通报, 1(1): 24-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201601003.htm
      杨程宇, 文龙, 王铁冠, 等, 2020. 川中隆起安岳气田古油藏成藏时间厘定. 石油与天然气地质, 41(3): 492-502. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003007.htm
      杨平, 汪正江, 印峰, 等, 2014. 麻江古油藏油源识别与油气运聚分析: 来自油气地球化学的证据. 中国地质, 41(3): 982-994. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201403023.htm
      杨易卓, 黄志龙, 赵珍, 等, 2022. 羌塘盆地毕洛错地区古油藏地球化学特征与油源对比. 地球科学, 47(5): 1834-1848. doi: 10.3799/dqkx.2022.008
      杨雨, 文龙, 宋泽章, 等, 2022. 川中古隆起北部蓬莱气区多层系天然气勘探突破与潜力. 石油学报, 43(10): 1351-1368+1394 https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202210012.htm
      张春林, 庞雄奇, 田世澄, 等, 2014. 鄂尔多斯盆地西部奥陶系古油藏油源对比与靖边气田气源. 天然气地球科学, 25(8): 1242-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201408016.htm
      张涛, 马行陟, 赵卫卫, 等, 2017. 磨溪-高石梯地区龙王庙组古油藏成藏特征. 断块油气田, 24(4): 466-470. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201704007.htm
      朱联强, 柳广弟, 宋泽章, 等, 2021. 川中古隆起北斜坡不同地区灯影组天然气差异及其影响因素——以蓬探1井和中江2井为例. 石油科学通报, 6(3): 344-355. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE202103002.htm
    • 加载中
    图(10) / 表(4)
    计量
    • 文章访问数:  1279
    • HTML全文浏览量:  907
    • PDF下载量:  68
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-22
    • 刊出日期:  2023-02-25

    目录

      /

      返回文章
      返回