• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南黄海盆地地层生热率及岩石圈热结构

    孙旭东 郭兴伟 张训华 李子渊 刘怀山 张升升

    孙旭东, 郭兴伟, 张训华, 李子渊, 刘怀山, 张升升, 2023. 南黄海盆地地层生热率及岩石圈热结构. 地球科学, 48(3): 1040-1057. doi: 10.3799/dqkx.2023.044
    引用本文: 孙旭东, 郭兴伟, 张训华, 李子渊, 刘怀山, 张升升, 2023. 南黄海盆地地层生热率及岩石圈热结构. 地球科学, 48(3): 1040-1057. doi: 10.3799/dqkx.2023.044
    Sun Xudong, Guo Xingwei, Zhang Xunhua, Li Ziyuan, Liu Huaishan, Zhang Shengsheng, 2023. Radiogenic Heat Production of Formation and Thermal Structure of Lithosphere in the South Yellow Sea Basin. Earth Science, 48(3): 1040-1057. doi: 10.3799/dqkx.2023.044
    Citation: Sun Xudong, Guo Xingwei, Zhang Xunhua, Li Ziyuan, Liu Huaishan, Zhang Shengsheng, 2023. Radiogenic Heat Production of Formation and Thermal Structure of Lithosphere in the South Yellow Sea Basin. Earth Science, 48(3): 1040-1057. doi: 10.3799/dqkx.2023.044

    南黄海盆地地层生热率及岩石圈热结构

    doi: 10.3799/dqkx.2023.044
    基金项目: 

    国家自然科学基金项目 41776081

    国家自然科学基金项目 91958210

    详细信息
      作者简介:

      孙旭东(1994—),男,在读博士研究生,从事海洋构造地质及地球动力学方面的研究. ORCID:0000-0002-6307-2170. E-mail:Sunxudong_work@163.com

      通讯作者:

      郭兴伟,E-mail:xwguo_qd@126.com

    • 中图分类号: P314

    Radiogenic Heat Production of Formation and Thermal Structure of Lithosphere in the South Yellow Sea Basin

    • 摘要: 岩石圈热结构的研究不仅可以了解岩石圈深部动力学演化机制,也是含油气区油气资源评价的重要组成部分.由于南黄海盆地生热率数据的匮乏,阻碍了岩石圈热结构的研究进展.本文通过GR(伽马值)-A(岩石生热率)的经验关系,计算了南黄海盆地沉积地层的生热率;在大地热流、地层生热率、南北向贯穿盆地的二维多道地震剖面及OBS2013地壳速度结构剖面的约束下,建立了南黄海盆地地壳生热模型,计算了盆地的岩石圈热结构.岩石圈热结构计算结果表明:(1)南黄海盆地北部坳陷、中部隆起及南部坳陷3个次级单元的平均莫霍面温度依次为602.2±15.25 ℃、592.7±2.56 ℃、650.6±20.24 ℃;(2)平均热岩石圈厚度依次为99.7±2.20 km、101.7±0.51 km、88.2±2.49 km;(3)壳幔热流比分别为0.76±0.02、0.88±0.01、0.71±0.15,具有“冷壳热幔”的特征.研究结果表明,南黄海盆地现今具有与全球新生代拉张构造区相似的较高热流,处于构造活动区向构造稳定区转换的过渡阶段.此外,现今南黄海盆地3个次级单元展现的不同岩石圈热结构特征,可能与印支期至早燕山期扬子块体与华北块体的俯冲碰撞,在苏鲁造山带南侧(现今北部坳陷的位置)形成类前陆盆地的构造背景有关.

       

    • 图  1  南黄海及周边主要构造单元简图

      0BS2013测线据Zhao et al.(2019);AA’BB’两条二维多道地震测线据张训华等(2017);主要构造区块、钻井及断层据侯方辉等(2019)、Wang et al.(2020

      Fig.  1.  Schematic diagram of main structural units in and around the South Yellow Sea

      图  2  南黄海盆地2条综合解释剖面及OBS2013速度地壳模型

      剖面位置见图 1,据张训华等(2013)、Zhao et al.(2019)修改

      Fig.  2.  Two comprehensive interpretation sections in the South Yellow Sea basin

      图  3  南黄海盆地13口钻井的自然伽马曲线

      Fig.  3.  Natural gamma curves of 13 wells in the South Yellow Sea basin

      图  4  南黄海地区地层生热率样本采集堆积柱状图

      Fig.  4.  Stacked histogram of formation radiogenic heat production rate in South Yellow Sea area

      图  5  南黄海地区地层生热率折线和标准偏差

      Fig.  5.  Line chart and standard deviation of radiogenic heat production rate in South Yellow Sea area

      图  6  CSDP-2井U、Th、K计算的生热率与GR计算的生热率比较(a)及二者相关性分析(b)

      Fig.  6.  Comparison of heat generation rates calculated by U, Th and K and GR in CSDP-2 Well (a) and theirs correlation analysis (b)

      图  7  南黄海盆地现今温度温度剖面(BB’

      Fig.  7.  Current temperature profile of the South Yellow Sea basin (BB')

      图  8  南黄海盆地北部坳陷、中部隆起及南部坳陷岩石圈温度-深度剖面

      Fig.  8.  Lithospheric temperature depth-profiles of northern depression, central uplift and southern depression in the South Yellow Sea basin

      图  9  南黄海盆地北部坳陷与南部坳陷热流演化史

      杨树春等(2003)庞玉茂等(2017)李志强等(2022)修改

      Fig.  9.  Thermal evolution history of northern and southern depressions in the South Yellow Sea basin

      表  1  南黄海盆地地层生热率及样本数

      Table  1.   Radiogenic heat production and sample number of formation in the South Yellow Sea basin

      地层 数目 生热率(μW/m3 地层 数目 生热率(μW/m3
      范围 均值±标准偏差 范围 均值±标准偏差
      东台群 1 362 0.10~2.63 0.85±0.43 孤峰组 26 0.37~4.61 1.69±1.19
      上盐城组 1 783 0.42~2.31 1.32±0.44 栖霞组 278 0.80~4.69 1.96±0.50
      下盐城组 2 199 0.36~3.19 1.28±0.49 船山组 162 0.17~2.14 0.58±0.31
      三垛组 1 501 0.36~2.32 1.23±0.37 黄龙组 248 0.17~1.62 0.63±0.27
      戴南组 1 446 0.52~2.60 1.32±0.49 和州组 228 0.10~1.38 0.52±0.21
      阜宁组 2 226 0.18~2.71 1.14±0.37 高骊山组 109 0.33~2.40 1.48±0.35
      泰州组 1 053 0.29~2.36 1.26±0.42 五通群 121 0.51~3.79 2.06±0.73
      赤山组 848 0.31~1.92 1.11±0.32 茅山组 83 0.85~3.35 2.14±0.68
      浦口组 785 0.27~1.38 0.69±0.33 坟头组 107 0.47~3.72 2.46±0.82
      青龙组 1 646 0.60~2.21 1.22±0.52 侯家塘组 66 0.47~3.72 1.74±0.86
      大隆组 206 0.16~2.28 0.85±0.44 高家边组 50 0.73~3.34 2.65±0.57
      龙潭组 724 0.15~4.53 1.70±1.03 - - - -
      下载: 导出CSV

      表  2  南黄海盆地大地热流

      Table  2.   Heat flow in South Yellow Sea basin

      位置 井号 经度 纬度 热流(mW/m2 均值±标准差(mW/m2 数据来源
      北部坳陷 Inga-1 124.95° 35.40° 61.0 63.5±3.5 Lim and Kim,1997
      Kachi-1 123.35° 35.31° 66.0
      中部隆起 CSDP-2 121.26° 34.56° 66.7 66.7 郭兴伟等,2023
      南部坳陷 FN23-1-1 120.78° 33.45° 68.0 67.9±2.65 杨树春等,2003
      CZ24-1-1 121.96° 33.50° 65.5
      WX20ST1 122.17° 33.49° 67.0
      WX-13-3-1 122.12° 33.63° 65.3
      CZ12-1-1A 121.94° 33.82° 73.6
      CZ6-1-1A 121.92° 33.92° 66.7
      WX5T1 122.79° 33.94° 69.3
      勿南沙隆起 CZ35-2-1 121.68° 33.09° 70.4 70.4 杨树春等,2003
      下载: 导出CSV

      表  3  南黄海盆地地层生热率及热导率

      Table  3.   Radiogenic heat generation and thermal conductivity of Formation in the South Yellow Sea basin

      时代 生热率(μW/m3 热导率(W/(m·K))
      范围 数目 均值±标准差 范围 数目 均值±标准差
      Q 0.10~2.63 1 362 0.85±0.43 1.49~2.19 17 1.85±0.24
      N 0.36~3.19 3 982 1.30±0.47 1.19~2.75 39 1.74±0.40
      E 0.36~2.71 5 173 1.22±0.41 - 30 2.18
      K 0.29~2.36 2 686 1.05±0.43 - 17 2.42
      J - 5 1.02 - 5 2.37
      T 0.60~2.21 1 646 1.22±0.52 2.23~3.55 24 3.00±0.33
      P 0.16~4.69 1 234 1.62±0.93 1.89~5.11 97 3.28±0.68
      C 0.10~2.40 747 0.71±0.42 2.89~6.67 32 3.64±0.84
      D 0.15~3.79 121 2.06±0.73 1.98~6.60 17 4.57±1.59
      S 0.28~2.37 17 1.50±0.59 2.20~6.82 71 3.23±1.23
      O 0.10~0.62 28 0.28±0.16 - 22 3.43
      0.05~6.63 40 0.92±1.60 - 14 4.51
      注:地层生热率:Q-K、T-D来源于本文计算;J来源于庞玉茂等(2017);S-∈来源于野外露头样品(测量结果详见附件1);地层热导率:Q-N、T-S来源于郭兴伟等(2023);E来源于陈沪生等(1999);K-J来源于庞玉茂等(2017);O来源于陈沪生等(1999)、Wang et al.2020);∈来源于王良书等(1995)、Wang et al.2020).
      下载: 导出CSV

      表  4  南黄海盆地地壳结构及其热物性参数

      Table  4.   Crustal structure and thermal properties of the South Yellow Sea basin

      层位 生热率(μW/m3 来源 热导率(W/(m·K)) 来源
      Q+N 1.18 本文计算 1.77 郭兴伟等,2023
      E 1.22 本文计算 2.18 陈沪生等,1999
      J+K 1.05 本文计算 2.41 庞玉茂等,2017
      T 1.22 本文计算 3.00 郭兴伟等,2023
      D-P 1.32 本文计算 3.51 郭兴伟等,2023
      ∈-S 0.83 陆区下扬子采样测试计算 3.44 郭兴伟等,2023
      上地壳 1.43 据P波速度估算 3.00 Xia et al., 2020
      中地壳 0.95 据P波速度估算 2.60 Ray et al., 2003
      下地壳 0.47 据P波速度估算 2.50 Ray et al., 2003
      上地幔 0.02 据P波速度估算 3.40 邱楠生等,2015
      下载: 导出CSV

      表  5  南黄海盆地岩石圈热结构

      Table  5.   Lithospheric thermal structure in the South Yellow Sea basin

      位置 莫霍面温度(℃) 热岩石圈厚度(km) 地壳热流(mW/m2 地幔热流(mW/m2 壳幔热流比
      北部坳陷 北凹1 621.0 96.4 26.8 36.7 0.73
      北凸1 587.6 101.9 27.9 35.6 0.78
      北凹2 614.2 97.9 27.3 36.2 0.75
      北凸2 603.6 100.3 27.9 35.6 0.78
      北凹3 584.8 101.9 27.2 36.3 0.75
      均值 602.2±14.25 99.7±2.20 27.4±0.43 36.1±0.43 0.76±0.02
      中部隆起 中1 594.8 101.2 31.2 35.5 0.88
      中2 590.8 101.5 31.1 35.6 0.87
      中3 589.0 102.4 31.4 35.3 0.89
      中4 593.1 102.2 31.6 35.1 0.90
      中5 596.0 101.2 31.2 35.5 0.88
      均值 592.7±2.56 101.7±0.51 31.3±0.18 35.4±0.18 0.88±0.01
      南部坳陷 南凹1 647.3 88.2 27.8 40.1 0.69
      南凸1 626.3 91.5 28.7 39.2 0.73
      南凹2 673.8 85.8 27.8 40.1 0.69
      南凸2 631.7 90.4 28.3 39.5 0.72
      南凹3 674.1 85.1 28.2 39.7 0.71
      均值 650.6±20.24 88.2±2.49 28.2±0.34 39.7±0.34 0.71±0.01
      下载: 导出CSV
    • Artemieva, I. M., Mooney, W. D., 2001. Thermal Thickness Structure and Evolution of Precambrian Lithosphere: A Global Study. Journal of Geophysical Research, 106(B8): 16387-16414. https://doi.org/10.1029/2000JB900439
      Bucker, C., Rybach, L., 1996. A Simple Method to Determine Heat Production from Gamma⁃Ray Logs. Marine and Petroleum Geology, 13(4): 373-375. https://doi.org/10.1016/0264⁃8172(95)00089⁃5
      Chen, H. S., Zhang, Y. H., Xu, S. W., et al., 1999. The Lithospheric Textural and Structure Features as well as Oil and Gas Evaluation in the Lower Yangtze Ares and Its Adjacent Region, China. Geological Publishing House, Beijing (in Chinese).
      Chen, Y., Zhang, J. F., Jiang, W. L., et al., 2017. Gravity Field and Characteristics of Crustal Structure in Subei Basin. Progress in Geophysics, 32(6): 2295-2303 (in Chinese with English abstract).
      Chi, Q. H., Yan, M. C., 1998. Radioactive Elements of Rocks in North China Platform and the Thermal Structure and Temperature Distribution of the Modern Continental Lithosphere. Chinese Journal of Geophysics, 41(1): 38-48 (in Chinese with English abstract).
      Feng, C. G., Liu, S. W., Wang, L. S., et al., 2009. Present⁃Day Geothermal Regime in Tarim Basin, Northwest China. Chinese Journal of Geophysics, 52(11): 2752-2762 (in Chinese with English abstract).
      Furlong, K. P., Chapman, D. S., 2013. Heat Flow, Heat Generation, and the Thermal State of the Lithosphere. Annual Review of Earth and Planetary Sciences, 41: 385-410. https://doi.org/10.1146/annurev.earth.031208.100051
      Gao, S. L., Zhou, Z. Y., 2014. Discovery of the Jurassic Strata in the North⁃East Sag of South Yellow Sea. Geological Journal of China Universities, 20(2): 286-293 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2014.02.013
      Gao, S., Luo, T. C., Zhang, B. R., et al., 1999. Structure and Composition of the Crust in Eastern China. Science in China (Series D), 29(3): 204-213 (in Chinese).
      Guo, X. W., Sun, X. D., Yang, X. Q., et al., 2023. A New Heat Flow of the Central Uplift, the South Yellow Sea: From Measurement of CSDP⁃2 Borehole. Chinese Journal of Geophysics, 66(1): 332-343 (in Chinese with English abstract).
      Guo, X. W., Xu, H. H., Zhu, X. Q., et al., 2019. Discovery of Late Devonian Plants from the Southern Yellow Sea Borehole of China and Its Palaeogeographical Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 531: 108444. https://doi.org/10.1016/j.palaeo.2017.08.039
      Guo, X. W., Zhang, X. H., Wu, Z. Q., et al., 2019. Scientific Objectives and Preliminary Progresses of CSDP⁃2 Well in Continental Shelf Drilling Program! Journal of Jilin University (Earth Science Edition), 49(1): 1-12 (in Chinese with English abstract).
      He, L. J., Hu, S. B., Yang, W. C., et al., 2009. Radiogenic Heat Production in the Lithosphere of Sulu Ultrahigh⁃Pressure Metamorphic Belt. Earth and Planetary Science Letters, 277(3-4): 525-538. https://doi.org/10.1016/j.epsl.2008.11.022
      Hou, F. H., Guo, X. W., Wu, Z. Q., et al., 2019. Research Progress and Discussion on Formation and Tectonics of South Yellow Sea. Journal of Jilin University (Earth Science Edition), 49(1): 96-105 (in Chinese with English abstract).
      Hou, F. H., Zhang, Z. X., Zhang, X. H., et al., 2008. Geologic Evolution and Tectonic Styles in the South Yellow Sea Basin. Marine Geology & Quaternary Geology, 28(5): 61-68 (in Chinese with English abstract).
      Huang, L., Chen, H. J., Gao, H. F., et al., 2013. Characteristics and Genesis of Geotherm in the Central Basin of South China Sea. Marine Geology Frontiers, 29(11): 39-43 (in Chinese with English abstract).
      Huang, S., Hao, T. Y., Xu, Y., et al., 2010. Study on Macro Distribution of Residual Basin of South Yellow Sea. Chinese Journal of Geophysics, 53(6): 1344-1353 (in Chinese with English abstract).
      Huang, Z. X., Xu, Y., Hao, T. Y., et al., 2009. Surface Wave Tomography of Lithospheric Structure in the Seas of East China. Chinese Journal of Geophysics, 52(3): 653-662 (in Chinese with English abstract).
      Lachenbruch, A. H., Sass, J. H., 1977. Heat Flow in the United State and the Thermal Regime of the Crust. In: Heacock, J. G., Keller, G. V., Oliver, J. E., et al., eds., The Earth's Crust. American Geophysical Union, Washington D. C. . https://doi.org/10.1029/GM020p0626
      Li, N. S., 1995. Tectonic Evolution of Three Structural Basins in the Yellow Sea. Oceanologia et Limnologia Sinica, 26(4): 355-362 (in Chinese with English abstract). doi: 10.3321/j.issn:0029-814X.1995.04.003
      Li, Y. H., Gao, M. T., Wu, Q. J., 2014. Crustal Thickness Map of the Chinese Mainland from Teleseismic Receiver Functions. Tectonophysics, 611: 51-60. https://doi.org/10.1016/j.tecto.2013.11.019
      Li, Z. Q., Yan, B., Han, Z. J., et al., 2022. Tectonic⁃ Thermal Evolution of Meso⁃Cenozoic Rift Basin in South Yellow Sea, Offshore Eastern China: Implications for Basin⁃Forming Mechanism and Thermal Evolution of Source Rocks. Earth Science, 47(5): 1652-1668 (in Chinese with English abstract).
      Lim, J. U., Kim, H. C., 1997. Heat Flow in South Korea. CCOP Technial Bulletin, 26: 85-91.
      Ou, X. G., Jin, Z. M., Wang, L., et al., 2004. Thermal Conductivity and Its Anisotropy of Rocks from the Depth of 100-2 000 m Mainhole of Chinese Continental Scientific Drilling: Revelations to the Study on Thermal Structure of Subduction Zone. Acta Petrologica Sinica, 20(1): 109-118 (in Chinese with English abstract).
      Pang, Y. M., Zhang, X. H., Guo, X. W., et al., 2017. Mesozoic and Cenozoic Tectono⁃Thermal Evolution Modeling in the Northern South Yellow Sea Basin. Chinese Journal of Geophysics, 60(8): 3177-3190 (in Chinese with English abstract).
      Pang, Y. M., Zhang, X. H., Xiao, G. L., et al., 2018. The Mesozoic⁃Cenozoic Igneous Intrusions and Related Sediment⁃Dominated Hydrothermal Activities in the South Yellow Sea Basin, the Western Pacific Continental Margin. Journal of Marine Systems, 180: 152-161. https://doi.org/10.1016/j.jmarsys.2016.11.011
      Peng, B., Zou, H. Y., 2013. Present⁃Day Geothermal Structure of Lithosphere and the Cenozoic Tectono⁃Thermal Evolution of Bohai Basin. Geoscience, 27(6): 1399-1406 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2013.06.018
      Podugu, N., Ray, L., Singh, S. P., et al., 2017. Heat Flow, Heat Production, and Crustal Temperatures in the Archaean Bundelkhand Craton, North⁃Central India: Implications for Thermal Regime beneath the Indian Shield. Journal of Geophysical Research: Solid Earth, 122(7): 5766-5788. https://doi.org/10.1002/2017jb014041
      Qiu, N. S., Zuo, Y. H., Chang, J., et al., 2015. Characteristics of Meso⁃Cenozoic Thermal Regimes in Typical Eastern and Western Sedimentary Basins of China. Earth Science Frontiers, 22(1): 157-168 (in Chinese with English abstract).
      Rao, S., Jiang, G. Z., Gao, Y. J., et al., 2016. The Thermal Structure of the Lithosphere and Heat Source Mechanism of Geothermal Field in Weihe Basin. Chinese Journal of Geophysics, 59(6): 2176-2190 (in Chinese with English abstract).
      Ray, L., Kumar, P. S., Reddy, G. K., et al., 2003. High Mantle Heat Flow in a Precambrian Granulite Province: Evidence from Southern India. Journal of Geophysical Research: Solid Earth, 108(B2): 2084. https://doi.org/10.1029/2001jb000688
      Ren, Y., Zhao, H., Shao, Y. L., 2017. Tectonic Characteristics and Trap Styles in Northern Sag of Northern Depression in the South of Yellow Sea Basin. Petroleum Geology and Engineering, 31(6): 15-19, 125 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-8217.2017.06.004
      Roy, R. F., Blackwell, D. D., Birch, F., 1968. Heat Generation of Plutonic Rocks and Continental Heat Flow Provinces. Earth and Planetary Science Letters, 5: 1-12. https://doi.org/10.1016/S0012⁃821X(68)80002⁃0
      Rybach, L., 1988. Determination of Heat Production Rate. In: Haenel, R., Rybach, L., Stegena, L., eds., Handbook of Terrestrial Heat Flow Density Determination. Kluwer Academic Publishers, Dordrecht, 125-142.
      Rybach, L., Günter, B., 1984. The Variation of Heat Generation, Density and Seismic Velocity with Rock Type in the Continental Lithosphere. Tectonophysics, 103(1-4): 335-344. https://doi.org/10.1016/0040⁃1951(84)90095⁃7
      Wang, L. S., Li, C., Shi, Y. S., 1995. Distributions of Geotemperature and Terrestrial Heat Flow Density in Lower Yangtze Area. Chinese Journal of Geophysics, 38(4): 469-476 (in Chinese with English abstract).
      Wang, Y. B., Wang, L. J., Hu, D., et al., 2020. The Present⁃Day Geothermal Regime of the North Jiangsu Basin, East China. Geothermics, 88: 101829. https://doi.org/10.1016/j.geothermics.2020.101829
      Wei, W. B., Deng, M., Wen, Z. H., et al., 2009. Experimental Study of Marine Magnetotellurics in Southern Huanghai. Chinese Journal of Geophysics, 52(3): 740-749 (in Chinese with English abstract).
      Wu, F. Y., Sun, Y. D., 1999. The Mesozoic Magmatism and Lithospheric Thinning in Eastern China. Journal of Changchun University of Science and Technology, 29(4): 313-318 (in Chinese with English abstract).
      Wu, J. S., Wang, J. L., Chen, B., et al., 2014. Integrated Regional Geophysical Study on Lithospheric Structure in Eastern China Seas and Adjacent Regions. Chinese Journal of Geophysics, 57(12): 3884-3895 (in Chinese with English abstract).
      Xia, B., 2018. Lithosphere Structure of the North China Block (Dissertation). China University of Geosciences, Wuhan (in Chinese).
      Xia, B., Thybo, H., Artemieva, I. M., 2020. Lithosphere Mantle Density of the North China Craton. Journal of Geophysical Research: Solid Earth, 125(9): e2020JB020296. https://doi.org/10.1029/2020jb020296
      Xing, T., Zhang, X. H., Zhang, X. Y., 2014. Magnetic Basement and Structure of the Southern Yellow Sea. Oceanologia et Limnologia Sinica, 45(5): 946-953 (in Chinese with English abstract).
      Xiong, Z., Jiang, Z. Q., Sun, P., et al., 2018. Characteristics and Tectonic Evolution of the Fault System in the North Sag of Northern Depression of South Yellow Sea Basin. Marine Geology & Quaternary Geology, 38(3): 75-84 (in Chinese with English abstract).
      Xu, W., Huang, S. P., Zhang, J., et al., 2019. Present⁃Day Geothermal Regime of the Uliastai Depression, Erlian Basin, North China. Energy Exploration & Exploitation, 37(2): 770-786. https://doi.org/10.1177/0144598718785970
      Yang, S. C., Hu, S. B., Cai, D. S., et al., 2004. Present⁃Day Heat Flow, Thermal History and tectonic Subsidence of the East China Sea Basin. Marine and petroleum Geology, 21(9): 1095-1105. https://doi: 10.1016/j.marpetgeo.2004.05.007
      Yang, S. C., Hu, S. B., Cai, D. S., et al., 2003. Characteristics of Geothermal Field and Thermal⁃Tectonic Evolution in the Southern Basin of the South Yellow Sea. Chinese Science Bulletin, 48(14): 1564-1569 (in Chinese). doi: 10.1360/csb2003-48-14-1564
      Zhang, M. H., Xu, D. S., Chen, J. W., 2007. Geological Structure of the Yellow Sea Area from Regional Gravity and Magnetic Interpretation. Applied Geophysics, 4(2): 75-83. https://doi: 10.1007/s11770⁃007⁃0011⁃1
      Zhang, Q., Jin, W. J., Li, C. D., et al., 2009. Yanshanian Large⁃Scale Magmatism and Lithosphere Thinning in Eastern China: Relation to Large Igneous Province. Earth Science Frontiers, 16(2): 21-51 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2009.02.002
      Zhang, T., Zhu, W. L., Hu, S. Q., et al., 2021. Structural Characteristic and Its Genetic Mechanism of Central Uplift in South Yellow Sea Basin. Earth Science, 46(10): 3481-3495 (in Chinese with English abstract).
      Zhang, X. H., Xiao, G. L., Wu, Z. Q., et al., 2017. Understanding and Discussion on Some Geological Problems of Oil⁃Gas Exploration in the South Yellow Sea Basin: New Progress and Challenges in the Exploration of Marine Oil⁃Gas in the Meso⁃Paleozoic in the South Yellow Sea. Science Press, Beijing (in Chinese).
      Zhang, X. H., Zhang, Z. X., Lan, X. H., et al., 2013. Regional Geology of the South Yellow Sea. China Ocean Press, Beijing (in Chinese).
      Zhao, W. N., Wang, H. G., Shi, H. C., et al., 2019. Crustal Structure from Onshore⁃Offshore Wide⁃Angle Seismic Data: Application to Northern Sulu Orogen and Its Adjacent Area. Tectonophysics, 770: 228220. https://doi.org/10.1016/j.tecto.2019.228220
      Zheng, H. W., Li, T. D., Su, G., 2020. Tomography Images of Crustal and Upper Mantle Structure beneath Sulu Orogenic Belt. Earth Science, 45(7): 2485-2494 (in Chinese with English abstract).
      Zuo, Y. H., Li, J. W., Li, Z. W., et al., 2015. Mesozoic and Cenozoic "Thermal" Lithospheric Thickness Evolution in the Tarim Basin. Progress in Geophysics, 30(4): 1608-1615 (in Chinese with English abstract).
      陈沪生, 张永鸿, 徐师文, 等, 1999. 下扬子及邻区岩石圈结构构造特征与油气资源评价. 北京: 地质出版社.
      陈艳, 张景发, 姜文亮, 等, 2017. 苏北盆地重力场及地壳结构特征. 地球物理学进展, 32(6): 2295-2303. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201706002.htm
      迟清华, 鄢明才, 1998. 华北地台岩石放射性元素与现代大陆岩石圈热结构和温度分布. 地球物理学报, 41(1): 38-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX199801004.htm
      冯昌格, 刘绍文, 王良书, 等, 2009. 塔里木盆地现今地热特征. 地球物理学报, 52(11): 2752-2762. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200911011.htm
      高顺莉, 周祖翼, 2014. 南黄海盆地东北凹侏罗纪地层的发现及其分布特征. 高校地质学报, 20(2): 286-293. doi: 10.3969/j.issn.1006-7493.2014.02.013
      高山, 骆庭川, 张本仁, 等, 1999. 中国东部地壳的结构和组成. 中国科学(D辑), 29(3): 204-213. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199903001.htm
      郭兴伟, 孙旭东, 杨小秋, 等, 2023. 南黄海中部隆起一个新的大地热流值: CSDP⁃2井热流测量结果. 地球物理学报, 66(1): 332-343.
      郭兴伟, 张训华, 吴志强, 等, 2019. 大陆架科学钻探CSDP⁃2井科学目标及初步成果! 吉林大学学报(地球科学版), 49(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201901002.htm
      侯方辉, 郭兴伟, 吴志强, 等, 2019. 南黄海有关地层与构造的研究进展及问题讨论. 吉林大学学报(地球科学版), 49(1): 96-105. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201901011.htm
      侯方辉, 张志珣, 张训华, 等, 2008. 南黄海盆地地质演化及构造样式地震解释. 海洋地质与第四纪地质, 28(5): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200805013.htm
      黄磊, 陈泓君, 高红芳, 等, 2013. 南海中央海盆热流特征及成因. 海洋地质前沿, 29(11): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201311006.htm
      黄松, 郝天珧, 徐亚, 等, 2010. 南黄海残留盆地宏观分布特征研究. 地球物理学报, 53(6): 1344-1353. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201006014.htm
      黄忠贤, 胥颐, 郝天珧, 等, 2009. 中国东部海域岩石圈结构面波层析成像. 地球物理学报, 52(3): 653-662. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200903009.htm
      李乃胜, 1995. 黄海三大盆地的构造演化. 海洋与湖沼, 26(4): 355-362. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ199504002.htm
      李志强, 杨波, 韩自军, 等, 2022. 南黄海中‒新生代裂谷盆地构造‒热演化: 对成盆机制和烃源岩热演化的指示. 地球科学, 47(5): 1652-1668. doi: 10.3799/dqkx.2021.152
      欧新功, 金振民, 王璐, 等, 2004. 中国大陆科学钻探主孔100~2 000 m岩石热导率及其各向异性: 对研究俯冲带热结构的启示. 岩石学报, 20(1): 109-118. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200401008.htm
      庞玉茂, 张训华, 郭兴伟, 等, 2017. 南黄海北部盆地中、新生代构造热演化史模拟研究. 地球物理学报, 60(8): 3177-3190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201708024.htm
      彭波, 邹华耀, 2013. 渤海盆地现今岩石圈热结构及新生代构造‒热演化史. 现代地质, 27(6): 1399-1406. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201306018.htm
      邱楠生, 左银辉, 常健, 等, 2015. 中国东西部典型盆地中‒新生代热体制对比. 地学前缘, 22(1): 157-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501015.htm
      饶松, 姜光政, 高雅洁, 等, 2016. 渭河盆地岩石圈热结构与地热田热源机理. 地球物理学报, 59(6): 2176-2190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201606022.htm
      任艳, 赵洪, 邵宇蓝, 2017. 南黄海盆地北部坳陷北凹构造特征与圈闭类型. 石油地质与工程, 31(6): 15-19, 125. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201706005.htm
      王良书, 李成, 施央申, 等, 1995. 下扬子区地温场和大地热流密度分布. 地球物理学报, 38(4): 469-476. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX504.006.htm
      魏文博, 邓明, 温珍河, 等, 2009. 南黄海海底大地电磁测深试验研究. 地球物理学报, 52(3): 740-749. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200903019.htm
      吴福元, 孙德有, 1999. 中国东部中生代岩浆作用与岩石圈减薄. 长春科技大学学报, 29(4): 313-318. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ199904000.htm
      吴健生, 王家林, 陈冰, 等, 2014. 中国东部海区岩石层结构的区域综合地球物理研究. 地球物理学报, 57(12): 3884-3895. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201412004.htm
      夏冰, 2018. 华北地块岩石圈结构(博士学位论文). 武汉: 中国地质大学.
      邢涛, 张训华, 张向宇, 2014. 南黄海磁性基底特征分析和综合解释. 海洋与湖沼, 45(5): 946-953. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201405005.htm
      熊忠, 江志强, 孙鹏, 等, 2018. 南黄海盆地北部坳陷北凹断裂特征与构造演化. 海洋地质与第四纪地质, 38(3): 75-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201803007.htm
      杨树春, 胡圣标, 蔡东升, 等, 2003. 南黄海南部盆地地温场特征及热‒构造演化. 科学通报, 48(14): 1564-1569. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200314016.htm
      张旗, 金惟俊, 李承东, 等, 2009. 中国东部燕山期大规模岩浆活动与岩石圈减薄: 与大火成岩省的关系. 地学前缘, 16(2): 21-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200902003.htm
      张田, 朱伟林, 胡森清, 等, 2021. 南黄海盆地中部隆起构造特征及其成因机制. 地球科学, 46(10): 3481-3495. doi: 10.3799/dqkx.2020.380
      张训华, 肖国林, 吴志强, 等, 2017. 南黄海盆地油气勘探若干地质问题认识和探讨: 南黄海中‒古生界海相油气勘探新进展与面临挑战. 北京: 科学出版社.
      张训华, 张志珣, 蓝先洪, 等, 2013. 南黄海区域地质. 北京: 海洋出版社.
      郑洪伟, 李廷栋, 苏刚, 2020. 苏鲁造山带地壳上地幔结构层析成像研究. 地球科学, 45(7): 2485-2494. doi: 10.3799/dqkx.2020.052
      左银辉, 李佳薇, 李正文, 等, 2015. 塔里木盆地中、新生代"热"岩石圈厚度演化. 地球物理学进展, 30(4): 1608-1615. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201504015.htm
    • 加载中
    图(9) / 表(5)
    计量
    • 文章访问数:  823
    • HTML全文浏览量:  898
    • PDF下载量:  100
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-30
    • 网络出版日期:  2023-03-27
    • 刊出日期:  2023-03-25

    目录

      /

      返回文章
      返回