• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    干热岩地热能开发技术挑战与发展战略

    许天福 文冬光 袁益龙

    许天福, 文冬光, 袁益龙, 2024. 干热岩地热能开发技术挑战与发展战略. 地球科学, 49(6): 2131-2147. doi: 10.3799/dqkx.2023.047
    引用本文: 许天福, 文冬光, 袁益龙, 2024. 干热岩地热能开发技术挑战与发展战略. 地球科学, 49(6): 2131-2147. doi: 10.3799/dqkx.2023.047
    Xu Tianfu, Wen Dongguang, Yuan Yilong, 2024. Technical Challenges and Strategy of Geothermal Energy Development from Hot Dry Rock. Earth Science, 49(6): 2131-2147. doi: 10.3799/dqkx.2023.047
    Citation: Xu Tianfu, Wen Dongguang, Yuan Yilong, 2024. Technical Challenges and Strategy of Geothermal Energy Development from Hot Dry Rock. Earth Science, 49(6): 2131-2147. doi: 10.3799/dqkx.2023.047

    干热岩地热能开发技术挑战与发展战略

    doi: 10.3799/dqkx.2023.047
    基金项目: 

    国家自然科学基金项目 42372283

    国家自然科学基金项目 42130303

    详细信息
      作者简介:

      许天福(1962-),男,教授,博士,主要从事干热岩地热能开发利用和二氧化碳地质封存研究. ORCID:0000-0002-1125-5653.E-mail:tianfu_xu@jlu.edu.cn

      通讯作者:

      袁益龙, 副教授,博士,主要从事地下复杂环境水-热-应力-化学耦合模拟程序开发及应用研究. ORCID: 0000-0002-1372-3019.E-mail: yuanyl14@mails.jlu.edu.cn

    • 中图分类号: P641.2

    Technical Challenges and Strategy of Geothermal Energy Development from Hot Dry Rock

    • 摘要: 为推动我国干热岩地热开发取得新突破,形成一批干热岩开发示范区域,支撑国家能源结构调整和“双碳”目标实现,总结归纳了推进干热岩商业化开发的底层技术、关键技术以及前沿和颠覆性技术.根据国内外干热岩勘查、开发利用现状,结合青海共和干热岩试采科技攻坚战实践,将干热岩地热资源评价与选址、干热岩高效低成本钻井技术、干热岩地热利用技术定为底层技术;干热岩体精细勘查与刻画、高效复杂裂隙网络储层建造技术、有效微地震控制技术、裂缝网络连通与储层表征技术定为关键核心技术;井下液体爆炸造缝技术、井下原位高效换热发电技术、CO2等不同工质换热发电技术列为前沿和颠覆性技术.

       

    • 图  1  增强型地热系统开发示意图

      a.储层建造;b.热能提取;巩亮等(2022)

      Fig.  1.  Schematic of enhanced geothermal system

      图  2  美国FORGE场地工程概况

      图片引自FORGE网站(https://utahforge.com/)

      Fig.  2.  An overview of EGS site at FORGE, USA

      图  3  青海共和盆地干热岩示范工程现场(据Xie et al., 2021)

      Fig.  3.  HDR demonstration project site in the Gonghe basin, Qinghai Province(Xie et al., 2021)

      图  4  干热岩地热开发技术结构树

      Fig.  4.  Technical structure tree of HDR geothermal development

      表  1  国内外干热岩开发相关技术发展差距对比

      Table  1.   Comparison of technological development gap of HDR at home and abroad

      技术类型 技术项目 技术发展差距 技术
      情况
      底层技术 干热岩地热资源评价与选址 同步 产业化
      干热岩高效低成本钻井 在缩小 产业化
      干热岩地热利用 在缩小 产业化
      关键核心技术 干热岩场地精细勘查与刻画 在缩小 中试
      高效的裂隙网络储层建造 在缩小 中试
      有效微地震控制技术 同步 中试
      裂缝网络连通-储层表征 同步 中试
      前沿颠覆性技术 井下液体爆炸造缝 同步 实验室
      井下原位高效换热发电 同步 中试
      CO2等不同工质换热发电 同步 实验室
      下载: 导出CSV

      表  2  国内干热岩地热能勘查开发领域相关实验室

      Table  2.   Laboratory related to HDR geothermal energy exploration and development in China

      序号 类别 实验室名称 依托单位
      1 国家级 油气资源与探测国家重点实验室 中国石油大学(北京)
      2 油气藏地质及开发工程国家重点实验室 成都理工大学、西南石油大学
      3 岩土力学与工程国家重点实验室 中国科学院武汉岩土力学研究所
      4 省部级 自然资源部地热与干热岩勘查开发技术创新中心 中国地质调查局水文地质环境地质研究所
      5 地下水资源与环境教育部重点实验室 吉林大学
      6 地球信息探测仪器教育部重点实验室 吉林大学
      7 国家地球物理探测仪器工程技术研究中心 吉林大学
      8 地热资源开发技术与装备教育部工程研究中心 吉林大学
      9 热科学与动力工程教育部重点实验室 清华大学
      10 中低温热能高效利用教育部重点实验室 天津大学
      11 可再生能源重点实验室 中国科学院广州能源研究所
      12 中国石化深部地质与资源重点实验室 中国石化石油勘探开发研究院
      13 自然资源部深部地热资源重点实验室 中国地质大学(武汉)
      14 深地科学与地热能开发利用重点实验室 深圳大学
      下载: 导出CSV

      表  3  近5年中国和欧美等国干热岩地热相关科技研发计划项目对比

      Table  3.   Comparison of HDR geothermal related science and technology R&D projects between China, Europe and America in recent 5 years

      科技计划 研发项目名称 资金投入 目标
      欧盟Horizon 2020 DEEPEGS
      Deployment of DEEP Enhanced Geothermal Systems for sustainable energy business
      4 400万欧元 研发与示范不同地质条件下地热储层建造技术体系,提升增强型地热系统在欧洲全区可再生能源贡献度
      DESCRAMBLE
      Drilling in dEep, Super-CRiTical AMBient of continentaL Europe
      1 560万欧元 研发高温高压(超临界)环境下新型钻井技术
      DESTRESS
      DEmonstration of Soft stimulation TReatments of geothermal reservoirs
      2 500万欧元 研发经济可行、环境友好深部地热能开发技术,提升增强型地热系统商业和社会价值
      美国能源部FORGE FORGE,
      Frontier Observatory for Research in Geothermal Energy
      > 2亿美元 形成可复制的增强型地热系统构建技术,包括钻井、储层改造、储层成像等,实现可持续干热岩型地热资源开发
      美国能源部EGS Collab EGS Collab project > 900万美元 利用成熟的地下实验设施提高对岩体压裂响应的认识及提供中等规模的实验平台来验证热-水-力-化学(THMC)耦合模拟方法以及新型监测工具,支撑FORGE项目研究
      科技部国家重点研发项目 干热岩能量获取及利用关键科学问题研究 1 961万元 全面提升干热岩勘查、储层改造、压裂监测、地热综合利用理论与技术
      中国地质调查局 干热岩资源调查与勘查试采示范工程 > 1亿元 建设中国首个干热岩开发示范基地,实现1 MW级发电量
      国家自然科学基金重大项目 干热岩地热资源开采机理与方法 1 500万元 创新轴-扭冲击振动破碎高温干热岩方法,探索干热岩柔性压裂造储和高效开采综合调控方法,为我国干热岩地热高效开采提供理论和方法
      江苏省矿产资源总体规划(2021—2025年) 江苏省干热岩开发利用 1.79亿元 实施江苏干热岩资源调查评价,摸清江苏干热岩资源潜力,形成适宜江苏的干热岩勘查技术体系
      注:表中相关项目具体信息请参见网站 https://utahforge.com/http://www.descramble-h2020.eu/http://www.destress-h2020.eu/en/home/.
      下载: 导出CSV
    • Adams, B. M., Kuehn, T. H., Bielicki, J. M., et al., 2014. On the Importance of the Thermosiphon Effect in CPG (CO2 Plume Geothermal) Power Systems. Energy, 69: 409-418. https://doi.org/10.1016/j.energy.2014.03.032
      Ader, T., Chendorain, M., Free, M., et al., 2020. Design and Implementation of a Traffic Light System for Deep Geothermal Well Stimulation in Finland. Journal of Seismology, 24(5): 991-1014. https://doi.org/10.1007/s10950⁃019⁃09853⁃y
      Baisch, S., Koch, C., Muntendam⁃Bos, A., 2019. Traffic Light Systems: To What Extent can Induced Seismicity be Controlled? Seismological Research Letters, 90(3): 1145-1154. https://doi.org/10.1785/0220180337
      Bu, X. B., Ran, Y. M., Wang, L. B., et al., 2019. Analysis of Key Factors Affecting Single Well Geothermal Heating. Journal of Zhejiang University (Engineering Science), 53(5): 957-964(in Chinese with English abstract).
      Chen, Y., Huang, L. J., 2019. Optimal Design of 3D Borehole Seismic Arrays for Microearthquake Monitoring in Anisotropic Media during Stimulations in the EGS Collab Project. Geothermics, 79: 61-66. https://doi.org/10.1016/j.geothermics.2019.01.009
      Chen, Z., Xu, G. Q., Zhou, J., et al., 2021a. Fracture Network Volume Fracturing Technology in High⁃Temperature Hard Formation of Hot Dry Rock. Acta Geologica Sinica (English Edition), 95(6): 1828-1834. https://doi.org/10.1111/1755⁃6724.14881
      Chen, Z. B., Zhao, F., Sun, F., et al., 2021b. Hydraulic Fracturing-Induced Seismicity at the Hot Dry Rock Site of the Gonghe Basin in China. Acta Geologica Sinica (English Edition), 95(6): 1835-1843. https://doi.org/10.1111/1755⁃6724.14883
      Chugunova, T., Corpel, V., Gomez, J. P., 2017. Explicit Fracture Network Modelling: From Multiple Point Statistics to Dynamic Simulation. Mathematical Geosciences, 49(4): 541-553. https://doi.org/10.1007/s11004⁃017⁃9687⁃9
      Cloetingh, S., van Wees, J. D., Ziegler, P. A., et al., 2010. Lithosphere Tectonics and Thermo⁃Mechanical Properties: An Integrated Modelling Approach for Enhanced Geothermal Systems Exploration in Europe. Earth⁃Science Reviews, 102(3/4): 159-206. https://doi.org/10.1016/j.earscirev.2010.05.003
      Cui, G. D., Ren, S. R., Qiu, Z. C., et al., 2022. Technical and Economic Analysis of Geothermal Development and Power Generation by Injecting Supercritical CO2 in Low⁃Permeability Depleted Gas Reservoirs. Acta Petrolei Sinica, 43(1): 156-166(in Chinese with English abstract).
      Montecinos⁃Cuadros, D., Díaz, D., Yogeshwar, P., et al., 2021. Characterization of the Shallow Structure of El Tatio Geothermal Field in the Central Andes, Chile Using Transient Electromagnetics. Journal of Volcanology and Geothermal Research, 412: 107198. https://doi.org/10.1016/j.jvolgeores.2021.107198
      Ding, Y. S., Chen, L., Xie, X., et al., 2001. On the Stimulation with "Exploding in Fractures" in Low Permeability Reservoirs. Petroleum Exploration and Development, 28(2): 90-96, 106-113, 123(in Chinese with English abstract).
      Dorn, C., Linde, N., Le Borgne, T., et al., 2012. Inferring Transport Characteristics in a Fractured Rock Aquifer by Combining Single⁃Hole Ground⁃Penetrating Radar Reflection Monitoring and Tracer Test Data. Water Resources Research, 48(11). https://doi.org/10.1029/2011wr011739.
      Fagan, W. F., Swain, A., Banerjee, A., et al., 2022. Quantifying Interdependencies in Geyser Eruptions at the Upper Geyser Basin, Yellowstone National Park. Journal of Geophysical Research: Solid Earth, 127(8): e2021JB023749. https://doi.org/10.1029/2021jb023749
      Feng, B., Xu, J. N., Xu, T. F., et al., 2019. Application and Recent Progresses of Chemical Stimulation on Hot Dry Rock Reservoir Modification. Journal of Earth Sciences and Environment, 41(5): 577-591(in Chinese with English abstract).
      Follin, S., Hartley, L., Rhén, I., et al., 2014. A Methodology to Constrain the Parameters of a Hydrogeological Discrete Fracture Network Model for Sparsely Fractured Crystalline Rock, Exemplified by Data from the Proposed High⁃Level Nuclear Waste Repository Site at Forsmark, Sweden. Hydrogeology Journal, 22(2): 313-331. https://doi.org/10.1007/s10040⁃013⁃1080⁃2
      Fridleifsson, G. O., Bogason, S. G., Ingolfsson, H. P., et al., 2016. Deployment of Deep Enhanced Geothermal Systems for Sustainable Energy Business. European Geothermal Congress, Strasbourg, France, 19-24.
      Gan, H. N., Wang, G. L., Lin, W. J., et al., 2015. Research on the Occurrence Types and Genetic Models of Hot Dry Rock Resources in China. Science & Technology Review, 33(19): 22-27(in Chinese with English abstract).
      Gong, L., Han, D. X., Chen, Z., et al., 2022. Research Status and Development Trend of Key Technologies for an Enhanced Geothermal System. Natural Gas Industry, 42(7): 135-159(in Chinese with English abstract).
      Guo, Q. H., He, T., Zhuang, Y. Q., et al., 2020. Expansion of Fracture Network in Granites via Chemical Stimulation: A Laboratory Study. Earth Science Frontiers, 27(1): 159-169(in Chinese with English abstract).
      Guo, W., Wang, Z. D., Li, Q., et al., 2017. A Method of Artificial Construction of Dry Hot Rock Thermal Reservoir. China: CN107288606A, 2017-10-24(in Chinese).
      Hu, Z. X., Xu, T. F., Moore, J., et al., 2022. Investigation of the Effect of Different Injection Schemes on Fracture Network Patterns in Hot Dry Rocks: A Numerical Case Study of the FORGE EGS Site in Utah. Journal of Natural Gas Science and Engineering, 97: 104346. https://doi.org/10.1016/j.jngse.2021.104346
      Horálek, J., Jechumtálová, Z., Dorbath, L., et al., 2010. Source Mechanisms of Micro⁃Earthquakes Induced in a Fluid Injection Experiment at the HDR Site Soultz⁃Sous⁃Forêts (Alsace) in 2003 and Their Temporal and Spatial Variations. Geophysical Journal International, 181(3): 1547-1565. https://doi.org/10.1111/j.1365⁃246X.2010.04506.x
      Huang, H., Liu, R., Li, Q., et al., 2021. Overview on Multi⁃Level Utilization Techniques of Geothermal Energy. Thermal Power Generation, 50(9): 1-10(in Chinese with English abstract).
      Huang, J. B., Yan, P., Lu, W. B., et al., 2020. Study on Damage Characteristics of Blasthole Surrounding Rock under High Temperature. Chinese Journal of Rock Mechanics and Engineering, 39(11): 2244-2253(in Chinese with English abstract).
      Jeong, H., Jeon, B., Choi, S., et al., 2020. Fracturing Behavior around a Blasthole in a Brittle Material under Blasting Loading. International Journal of Impact Engineering, 140: 103562. https://doi.org/10.1016/j.ijimpeng.2020.103562
      Jiang, F. M., Huang, W. B., Cao, W. J., 2017. Mining Hot Dry Rock Geothermal Energy by Heat Pipe: Conceptual Design and Technical Feasibility Study. Advances in New and Renewable Energy, 5(6): 426-434(in Chinese with English abstract).
      Joseph, M., John, M., Kristine, P., et al., 2020. The Utah Frontier Observatory for Research in Geothermal Energy (FORGE): A Laboratory for Characterizing, Creating and Sustaining Enhanced Geothermal Systems. Proceedings, 45th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.
      Joseph, M., John, M., Rick, A., et al., 2019. The Utah Frontier Observatory for Research in Geothermal Energy (FORGE): An International Laboratory for Enhanced Geothermal System Technology Development. Proceedings, 44th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.
      Kang, M. Q., Zhu, Q. H., 2022. Application of Laser Rock Breaking to Geothermal Energy Development of Hot Dry Rocks. Sino⁃Global Energy, 27(10): 20-25(in Chinese with English abstract).
      Kim, K. H., Ree, J. H., Kim, Y., et al., 2018. Assessing Whether the 2017 Mw 5.4 Pohang Earthquake in South Korea was an Induced Event. Science, 360(6392): 1007-1009. https://doi.org/10.1126/science.aat6081
      Kraal, K. O., Ayling, B. F., Blake, K., et al., 2021. Linkages between Hydrothermal Alteration, Natural Fractures, and Permeability: Integration of Borehole Data for Reservoir Characterization at the Fallon FORGE EGS Site, Nevada, USA. Geothermics, 89: 101946. https://doi.org/10.1016/j.geothermics.2020.101946
      Kwiatek, G., Saarno, T., Ader, T., et al., 2019. Controlling Fluid⁃Induced Seismicity during a 6.1⁃km⁃Deep Geothermal Stimulation in Finland. Science Advances, 5(5): eaav7224. https://doi.org/10.1126/sciadv.aav7224
      Laughlin, A. W., Eddy, A. C., Laney, R., et al., 1983. Geology of the Fenton Hill, New Mexico, Hot Dry Rock Site. Journal of Volcanology and Geothermal Research, 15(1-3): 21-41. https://doi.org/10.1016/0377⁃0273(83)90094⁃x
      Lei, Z. H., Zhang, Y. J., Zhang, S. Q., et al., 2020. Electricity Generation from a Three⁃Horizontal⁃Well Enhanced Geothermal System in the Qiabuqia Geothermal Field, China: Slickwater Fracturing Treatments for Different Reservoir Scenarios. Renewable Energy, 145: 65-83. https://doi.org/10.1016/j.renene.2019.06.024
      Li, D. W., Wang, Y. X., 2015. Major Issues of Research and Development of Hot Dry Rock Geothermal Energy. Earth Science, 40(11): 1858-1869(in Chinese with English abstract).
      Li, G. S., Wu, X. G., Song, X. Z., et al., 2022. Status and Challenges of Hot Dry Rock Geothermal Resource Exploitation. Petroleum Science Bulletin, 7(3): 343-364(in Chinese with English abstract).
      Li, S. T., Zhang, S. Q., Jia, X. F., et al., 2018. Index System Research of Project Site Selection for Dry Hot Rocks Exploration. Geological Survey of China, 5(2): 64-72(in Chinese with English abstract).
      Lin, W. J., Liu, Z. M., Ma, F., et al., 2012. An Estimation of HDR Resources in China's Mainland. Acta Geoscientica Sinica, 33(5): 807-811(in Chinese with English abstract).
      Lin, W. J., Wang, G. L., Shao, J. L., et al., 2021. Distribution and Exploration of Hot Dry Rock Resources in China: Progress and Inspiration. Acta Geologica Sinica, 95(5): 1366-1381(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.05.004
      Liu, C. Y., Sun, Z. Y., Zhang, R. S., et al., 2014. Research on Stimulated Reservoir Volume with Exploding in Horizontal Well⁃Bore. Well Testing, 23(6): 4-8, 73(in Chinese with English abstract).
      Liu, D. M., Wei, M. H., Sun, M. H., et al., 2022. Classification and Determination of Thermal Control Structural System of Hot Dry Rock. Earth Science, 47(10): 3723-3735(in Chinese with English abstract).
      Lu, S. M., 2018. A Global Review of Enhanced Geothermal System (EGS). Renewable and Sustainable Energy Reviews, 81: 2902-2921. https://doi.org/10.1016/j.rser.2017.06.097
      Luginbuhl, M., Rundle, J. B., Turcotte, D. L., 2018. Statistical Physics Models for Aftershocks and Induced Seismicity. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2136): 20170397. https://doi.org/10.1098/rsta.2017.0397
      Makoye, M. D., Egidio, A., Gylfi, P., et al., 2022. Regional Thermal Anomalies Derived from Magnetic Spectral Analysis and 3D Gravity Inversion: Implications for Potential Geothermal Sites in Tanzania. Geothermics, 103: 102431. https://doi.org/10.1016/j.geothermics.2022.102431
      MIT, 2006. The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century. Massachusetts Institute of Technology, Boston, MA, U. S. A. .
      Mokhtari, H., Hadiannasab, H., Mostafavi, M., et al., 2016. Determination of Optimum Geothermal Rankine Cycle Parameters Utilizing Coaxial Heat Exchanger. Energy, 102: 260-275. https://doi.org/10.1016/j.energy.2016.02.067
      Pandey, S. N., Vishal, V., Chaudhuri, A., 2018. Geothermal Reservoir Modeling in a Coupled Thermo⁃Hydro⁃Mechanical⁃Chemical Approach: A Review. Earth⁃Science Reviews, 185: 1157-1169. https://doi.org/10.1016/j.earscirev.2018.09.004
      Porter, R. T. J., Striolo, A., Mahgerefteh, H., et al., 2019. Addressing the Risks of Induced Seismicity in Subsurface Energy Operations. WIREs Energy and Environment, 8(2): e324. https://doi.org/10.1002/wene.324
      Pruess, K., 2006. Enhanced Geothermal Systems (EGS) Using CO2 as Working Fluid: A Novel Approach for Generating Renewable Energy with Simultaneous Sequestration of Carbon. Geothermics, 35(4): 351-367. https://doi.org/10.1016/j.geothermics.2006.08.002
      Ran, H. Q., Feng, Q. Z., 2010. Some Technical Issues on Hot Dry Rock Exploration in China. Exploration Engineering (Rock & Soil Drilling and Tunneling), 37(10): 17-21(in Chinese with English abstract).
      Rathnaweera, T. D., Wu, W., Ji, Y. L., et al., 2020. Understanding Injection⁃Induced Seismicity in Enhanced Geothermal Systems: From the Coupled Thermo⁃Hydro⁃Mechanical⁃Chemical Process to Anthropogenic Earthquake Prediction. Earth⁃Science Reviews, 205: 103182. https://doi.org/10.1016/j.earscirev.2020.103182
      Rossi, E., Jamali, S., Saar, M. O., et al., 2020. Field Test of a Combined Thermo⁃Mechanical Drilling Technology. Mode I: Thermal Spallation Drilling. Journal of Petroleum Science and Engineering, 190: 107005. https://doi.org/10.1016/j.petrol.2020.107005
      Simmons, S. F., Allis, R. G., Kirby, S. M., et al., 2021. Interpretation of Hydrothermal Conditions, Production⁃Injection Induced Effects, and Evidence for Enhanced Geothermal System⁃Type Heat Exchange in Response to > 30 Years of Production at Roosevelt Hot Springs, Utah, USA. Geosphere, 17(6): 1997-2026. https://doi.org/10.1130/ges02348.1
      Sun, Z. X., Li, B. X., Wang, Z. L., 2011. Exploration of the Possibility of Hot Dry Rock Occurring in the Qinghai Gonghe Basin. Hydrogeology & Engineering Geology, 38(2): 119-124, 129(in Chinese with English abstract).
      Tang, X. H., Shao, Z. L., Xu, J. J., et al., 2022. The Degradation Mechanism of Granite after the Cyclic Treatment of Heating and Liquid Nitrogen Cooling. Hazard Control in Tunnelling and Underground Engineering, 4(1): 18-28(in Chinese with English abstract).
      Wang, G. L., Liu, Y. G., Zhu, X., et al., 2020. The Status and Development Trend of Geothermal Resources in China. Earth Science Frontiers, 27(1): 1-9(in Chinese with English abstract).
      Wang, J. Y., Hu, S. B., Pang, Z. H., et al., 2012. Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China. Science & Technology Review, 30(32): 25-31(in Chinese with English abstract).
      Wang, Y. J., Jiang, J. Y., Darkwa, J., et al., 2020. Experimental Study of Thermal Fracturing of Hot Dry Rock Irradiated by Moving Laser Beam: Temperature, Efficiency and Porosity. Renewable Energy, 160: 803-816. https://doi.org/10.1016/j.renene.2020.06.138
      Wen, D. G., Song, J., Diao, Y. J., et al., 2022. Opportunities and Challenges in Deep Hydrogeological Research. Earth Science Frontiers, 29(3): 11-24(in Chinese with English abstract).
      Wiemer, S., Kraft, T., Trutnevyte, E., et al., 2017. "Good Practice" Guide for Managing Induced Seismicity in Deep Geothermal Energy Projects in Switzerland. Geophysical Research Abstracts, 20: 15021. http://dx. doi.org/10.12686/a5
      Wu, J. J., 2011. Action Mechanism and Technology Test of the Explosion Technique in Low⁃Permeability Oil Layers. Journal of Xi'an Shiyou University (Natural Science Edition), 26(1): 48-50, 119(in Chinese with English abstract).
      Wu, X. G., Huang, Z. W., Zhao, H. Q., et al., 2019. A Transient Fluid⁃Thermo⁃Structural Coupling Study of High⁃Velocity LN2 Jet Impingement on Rocks. International Journal of Rock Mechanics and Mining Sciences, 123: 104061. https://doi.org/10.1016/j.ijrmms.2019.10406
      Xie, J. Y., Li, L., Wen, D. G., et al., 2021. Experiments and Analysis of the Hydraulic Fracture Propagation Behaviors of the Granite with Structural Planes in the Gonghe Basin. Acta Geologica Sinica (English Edition), 95(6): 1816-1827. https://doi.org/10.1111/1755⁃6724.14874
      Xie, J. Y., Wang, D., Li, N., et al., 2022. Development Status and Suggestions of Hot Dry Rock Hydraulic Fracturing for Building Geothermal Reservoirs. Bulletin of Geological Science and Technology, 41(3): 321-329(in Chinese with English abstract).
      Xing, P. J., Damjanac, B., Moore, J., et al., 2022a. Flowback Test Analyses at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) Site. Rock Mechanics and Rock Engineering, 55(5): 3023-3040. https://doi.org/10.1007/s00603⁃021⁃02604⁃x
      Xing, P. J., McLennan, J., Moore, J., 2022b. Minimum In⁃Situ Stress Measurement Using Temperature Signatures. Geothermics, 98: 102282. https://doi.org/10.1016/j.geothermics.2021.102282
      Xing, P. J., Wray, A., Arteaga, E. I., et al., 2022c. In⁃Situ Stresses and Fractures Inferred from Image Logs at Utah FORGE. Proceedings, 47th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.
      Xu, T. F., Hu, Z. X., Li, S. T., et al., 2018. Enhanced Geothermal System: International Progresses and Research Status of China. Acta Geologica Sinica, 92(9): 1936-1947(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.09.012
      Xu, T. F., Moore, J., Jiang, Z. J., 2021. The Special Issue on Hot Dry Rock Resource Exploration and Enhanced Geothermal Engineering. Acta Geologica Sinica (English Edition), 95(6): 1-4. https://doi.org/10.1111/1755⁃6724.14868
      Xu, T. F., Yuan, Y. L., Jia, X. F., et al., 2018. Prospects of Power Generation from an Enhanced Geothermal System by Water Circulation through Two Horizontal Wells: A Case Study in the Gonghe Basin, Qinghai Province, China. Energy, 148: 196-207. https://doi.org/10.1016/j.energy.2018.01.135
      Xu, T. F., Yuan, Y. L., Jiang, Z. J., et al., 2016. Hot Dry Rock and Enhanced Geothermal Engineering: International Experience and China Prospect. Journal of Jilin University (Earth Science Edition), 46(4): 1139-1152(in Chinese with English abstract).
      Xu, T. F., Zhang, Y. J., Zeng, Z. F., et al., 2012. Technology Progress in an Enhanced Geothermal System (Hot Dry Rock). Science & Technology Review, 30(32): 42-45(in Chinese with English abstract).
      Yang, Y. Jiang, Z. H., Yue, J. H., et al., 2019. Discussion on Application of Geophysical Methods in Hot Dry Rock(HDR)Exploration. Progress in Geophysics, 34(4): 1556-1567(in Chinese with English abstract).
      Yari, M., 2010. Exergetic Analysis of Various Types of Geothermal Power Plants. Renewable Energy, 35(1): 112-121. https://doi.org/10.1016/j.renene.2009.07.023
      Yin, X. X., Jiang, C. S., Zhai, H. Y., et al., 2021. Review of Induced Seismicity and Disaster Risk Control in Dry Hot Rock Resource Development Worldwide. Chinese Journal of Geophysics, 64(11): 3817-3836(in Chinese with English abstract). doi: 10.6038/cjg2021O0448
      Yu, Y., Ma, Y. Y., 2022. Research on Occurrence Types and Development of Hot Dry Rock Resources in China. Natural Resources Information, (5): 36-42(in Chinese with English abstract).
      Yuan, Y. L., Xu, T. F., Moore, J., et al., 2020. Coupled Thermo-Hydro-Mechanical Modeling of Hydro-Shearing Stimulation in an Enhanced Geothermal System in the Raft River Geothermal Field, USA. Rock Mechanics and Rock Engineering, 53(12): 5371-5388. https://doi.org/10.1007/s00603⁃020⁃02227⁃8
      Zhai, L. J., 2020. Study on the Technology of "Taking Heat without Taking Water" for U⁃Shaped Docking Wells in Middle and Deep Layers. Coal Geology of China, 31(Suppl. 1): 12-15, 65(in Chinese).
      Zhang, B. J., Li, Y. Y., Gao, J., et al., 2020. Genesis and Indicative Significance of Hot Dry Rock in Matouying, Hebei Province. Acta Geologica Sinica, 94(7): 2036-2051(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.07.012
      Zhang, E. Y., 2022. Brief Introduction of Dry⁃Hot Rock Resources Investigation and Exploration Trial Mining Demonstration Project. Geology in China, 49(2): 350(in Chinese).
      Zhang, J., Xie, J. X., 2021. Design and Productivity Evaluation of Multi⁃Lateral Well Enhanced Geothermal Development System. Natural Gas Industry, 41(3): 179-188(in Chinese with English abstract).
      Zhang, K., 2020. Discussion on Technical Difficulties of Drilling in Dry⁃Hot Rocks. Coal Geology of China, 31(Suppl. 1): 104-107(in Chinese).
      Zhang, S. Q., Li, X. F., Song, J., et al., 2021. Analysis on Geophysical Evidence for Existence of Partial Melting Layer in Crust and Regional Heat Source Mechanism for Hot Dry Rock Resources of Gonghe Basin. Earth Science, 46(4): 1416-1436(in Chinese with English abstract).
      Zhang, Y., Gao, L., Liu, X. C., et al., 2022. Drilling Technology of the M⁃1 Well in Hot Dry Rock of Matouying, Tangshan. Geology and Exploration, 58(1): 176-186(in Chinese with English abstract).
      Zhao, G. F., Yu, L., Li, B. X., et al., 2016. Discussion on Comprehensive Geophysical Exploration Technology of Dry⁃Hot Rocks from Geothermal Exploration Results in Gonghe⁃Guide Basin of Qinghai Province. Gansu Geology, 25(2): 62-67(in Chinese).
      Zhao, Y. S., Wan, Z. J., Zhang, Y., et al., 2010. Experimental Study of Related Laws of Rock Thermal Cracking and Permeability. Chinese Journal of Rock Mechanics and Engineering, 29(10): 1970-1976(in Chinese with English abstract).
      Zhao, Y. S., Xi, B. P., Wan, Z. J., et al., 2009. Study of Critical Condition of Borehole Instability in Granite under High Temperature and High Pressure. Chinese Journal of Rock Mechanics and Engineering, 28(5): 865-874(in Chinese with English abstract).
      Zhong, C. H., Xu, T. F., Yuan, Y. L., et al., 2022. The Feasibility of Clean Power Generation from a Novel Dual⁃Vertical⁃Well Enhanced Geothermal System (EGS): A Case Study in the Gonghe Basin, China. Journal of Cleaner Production, 344: 131109. https://doi.org/10.1016/j.jclepro.2022.131109
      Zhu, Z. N., Yang, S. Q., Ranjith, P. G., et al., 2023. A Comprehensive Review on Mechanical Responses of Granite in Enhanced Geothermal Systems (EGSs). Journal of Cleaner Production, 383: 135378. https://doi.org/10.1016/j.jclepro.2022.135378
      卜宪标, 冉运敏, 王令宝, 等, 2019. 单井地热供暖关键因素分析. 浙江大学学报(工学版), 53(5): 957-964. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201905017.htm
      崔国栋, 任韶然, 裘智超, 等, 2022. 低渗废弃气藏注超临界CO2采热发电技术及经济性分析. 石油学报, 43(1): 156-166. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202201012.htm
      丁雁生, 陈力, 谢燮, 等, 2001. 低渗透油气田"层内爆炸" 增产技术研究. 石油勘探与开发, 28(2): 90-96, 106-113, 123. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805017.htm
      冯波, 许佳男, 许天福, 等, 2019. 化学刺激技术在干热岩储层改造中的应用与最新进展. 地球科学与环境学报, 41(5): 577-591. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201905009.htm
      甘浩男, 王贵玲, 蔺文静, 等, 2015. 中国干热岩资源主要赋存类型与成因模式. 科技导报, 33(19): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201519012.htm
      巩亮, 韩东旭, 陈峥, 等, 2022. 增强型地热系统关键技术研究现状及发展趋势. 天然气工业, 42(7): 135-159. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202207016.htm
      郭清海, 何曈, 庄亚芹, 等, 2020. 化学刺激法提高花岗岩类岩石裂隙渗透性的实验研究. 地学前缘, 27(1): 159-169. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001020.htm
      郭威, 王振东, 李强, 等, 2017. 一种人工建造干热岩热储层的方法. 中国: CN107288606A, 2017-10-24.
      黄璜, 刘然, 李茜, 等, 2021. 地热能多级利用技术综述. 热力发电, 50(9): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-RLFD202109001.htm
      黄江北, 严鹏, 卢文波, 等, 2020. 高温条件下炮孔围岩爆炸冲击损伤特性研究. 岩石力学与工程学报, 39(11): 2244-2253. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202011008.htm
      蒋方明, 黄文博, 曹文炅, 2017. 干热岩热能的热管开采方案及其技术可行性研究. 新能源进展, 5(6): 426-434. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYJ201706003.htm
      康民强, 朱启华, 2022. 激光破岩在干热岩地热能开发中的应用探讨. 中外能源, 27(10): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW202210004.htm
      李德威, 王焰新, 2015. 干热岩地热能研究与开发的若干重大问题. 地球科学, 40(11): 1858-1869. doi: 10.3799/dqkx.2015.166
      李根生, 武晓光, 宋先知, 等, 2022. 干热岩地热资源开采技术现状与挑战. 石油科学通报, 7(3): 343-364. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE202203006.htm
      李胜涛, 张森琦, 贾小丰, 等, 2018. 干热岩勘查开发工程场地选址评价指标体系研究. 中国地质调查, 5(2): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201802010.htm
      蔺文静, 刘志明, 马峰, 等, 2012. 我国陆区干热岩资源潜力估算. 地球学报, 33(5): 807-811. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201205018.htm
      蔺文静, 王贵玲, 邵景力, 等, 2021. 我国干热岩资源分布及勘探: 进展与启示. 地质学报, 95(5): 1366-1381. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202302019.htm
      刘长印, 孙志宇, 张汝生, 等, 2014. 水平井层内爆炸裂缝体模拟研究. 油气井测试, 23(6): 4-8, 73. https://www.cnki.com.cn/Article/CJFDTOTAL-YQJC201406002.htm
      刘德民, 韦梅华, 孙明行, 等, 2022. 干热岩控热构造系统厘定与类型划分. 地球科学, 47(10): 3723-3735. doi: 10.3799/dqkx.2022.058
      冉恒谦, 冯起赠, 2010. 我国干热岩勘查的有关技术问题. 探矿工程(岩土钻掘工程), 37(10): 17- https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201010009.htm
      孙知新, 李百祥, 王志林, 2011. 青海共和盆地存在干热岩可能性探讨. 水文地质工程地质, 38(2): 119-124, 129. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201102023.htm
      唐旭海, 邵祖亮, 许婧璟, 等, 2022. 高温-液氮循环处理下花岗岩损伤劣化机制. 隧道与地下工程灾害防治, 4(1): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202201003.htm
      王贵玲, 刘彦广, 朱喜, 等, 2020. 中国地热资源现状及发展趋势. 地学前缘, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm
      汪集旸, 胡圣标, 庞忠和, 等, 2012. 中国大陆干热岩地热资源潜力评估. 科技导报, 30(32): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201232017.htm
      文冬光, 宋健, 刁玉杰, 等, 2022. 深部水文地质研究的机遇与挑战. 地学前缘, 29(3): 11-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202203002.htm
      吴晋军, 2011. 低渗油层层内深度爆炸技术作用机理及工艺试验研究. 西安石油大学学报(自然科学版), 26(1): 48-50, 119. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201101012.htm
      解经宇, 王丹, 李宁, 等, 2022. 干热岩压裂建造人工热储发展现状及建议. 地质科技通报, 41(3): 321-329. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202203034.htm
      许天福, 胡子旭, 李胜涛, 等, 2018. 增强型地热系统: 国际研究进展与我国研究现状. 地质学报, 92(9): 1936-1947. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202002006.htm
      许天福, 袁益龙, 姜振蛟, 等, 2016. 干热岩资源和增强型地热工程: 国际经验和我国展望. 吉林大学学报(地球科学版), 46(4): 1139-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604012.htm
      许天福, 张延军, 曾昭发, 等, 2012. 增强型地热系统(干热岩)开发技术进展. 科技导报, 30(32): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201232020.htm
      杨冶, 姜志海, 岳建华, 等, 2019. 干热岩勘探过程中地球物理方法技术应用探讨. 地球物理学进展, 34(4): 1556-1567. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201904035.htm
      尹欣欣, 蒋长胜, 翟鸿宇, 等, 2021. 全球干热岩资源开发诱发地震活动和灾害风险管控. 地球物理学报, 64(11): 3817-3836. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202111002.htm
      余毅, 马艺媛, 2022. 中国干热岩资源赋存类型与开发利用. 自然资源情报, 5): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-GTZQ202205006.htm
      翟丽娟, 2020. 中深层U型对接井"取热不取水" 技术研究. 中国煤炭地质, 31(增刊1): 12-15, 65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202404012.htm
      张保建, 李燕燕, 高俊, 等, 2020. 河北省马头营干热岩的成因机制及其示范意义. 地质学报, 94(7): 2036-2051. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007012.htm
      张二勇, 2022. 干热岩资源调查与勘查试采示范工程简介. 中国地质, 49(2): 350. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202202029.htm
      张杰, 谢经轩, 2021. 多分支井增强型地热开发系统设计及产能评价. 天然气工业, 41(3): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202103027.htm
      张凯, 2020. 干热岩钻井技术难点探讨. 中国煤炭地质, 31(增刊1): 104-107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT2020S1028.htm
      张森琦, 李旭峰, 宋健, 等, 2021. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析. 地球科学, 46(4): 1416-1436. doi: 10.3799/dqkx.2020.094
      张云, 高亮, 刘现川, 等, 2022. 唐山马头营干热岩M⁃1井钻井工艺技术. 地质与勘探, 58(1): 176-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202201017.htm
      赵贵福, 尉亮, 李百祥, 等, 2016. 从青海共和—贵德盆地地热勘查成果探讨干热岩综合地球物理勘查技术. 甘肃地质, 25(2): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201602010.htm
      赵阳升, 万志军, 张渊, 等, 2010. 岩石热破裂与渗透性相关规律的试验研究. 岩石力学与工程学报, 29(10): 1970-1976. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010006.htm
      赵阳升, 郤保平, 万志军, 等, 2009. 高温高压下花岗岩中钻孔变形失稳临界条件研究. 岩石力学与工程学报, 28(5): 865-874. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200905004.htm
    • 加载中
    图(4) / 表(3)
    计量
    • 文章访问数:  1041
    • HTML全文浏览量:  392
    • PDF下载量:  123
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-26
    • 网络出版日期:  2024-07-11
    • 刊出日期:  2024-06-25

    目录

      /

      返回文章
      返回