• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    丹霞地貌发育程度的定量指示及影响因素: 以广东丹霞山为例

    傅强 章桂芳 张珂 王同皓 叶雨朦

    傅强, 章桂芳, 张珂, 王同皓, 叶雨朦, 2025. 丹霞地貌发育程度的定量指示及影响因素: 以广东丹霞山为例. 地球科学, 50(2): 782-797. doi: 10.3799/dqkx.2023.050
    引用本文: 傅强, 章桂芳, 张珂, 王同皓, 叶雨朦, 2025. 丹霞地貌发育程度的定量指示及影响因素: 以广东丹霞山为例. 地球科学, 50(2): 782-797. doi: 10.3799/dqkx.2023.050
    Fu Qiang, Zhang Guifang, Zhang Ke, Wang Tonghao, Ye Yumeng, 2025. Quantitative Representation and Influencing Factors to Landscape Maturity of Danxia Landscape: A Case Study in Mount Danxiashan, Guangdong Province. Earth Science, 50(2): 782-797. doi: 10.3799/dqkx.2023.050
    Citation: Fu Qiang, Zhang Guifang, Zhang Ke, Wang Tonghao, Ye Yumeng, 2025. Quantitative Representation and Influencing Factors to Landscape Maturity of Danxia Landscape: A Case Study in Mount Danxiashan, Guangdong Province. Earth Science, 50(2): 782-797. doi: 10.3799/dqkx.2023.050

    丹霞地貌发育程度的定量指示及影响因素: 以广东丹霞山为例

    doi: 10.3799/dqkx.2023.050
    基金项目: 

    广东国家公园建设专项资金 2021GJGY026

    广东省基础与应用基础研究基金项目 2019A1515010733

    南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项 GML2019ZD0302

    详细信息
      作者简介:

      傅强(1998-),男,硕士研究生,从事地表过程RS与GIS综合分析相关研究. ORCID:0000-0001-8813-8255. E-mail:fuqiang26@mail2.sysu.edu.cn

      通讯作者:

      章桂芳,ORCID: 0000-0001-5542-1177. E-mail:zhgfang@mail.sysu.edu.cn

    • 中图分类号: P931

    Quantitative Representation and Influencing Factors to Landscape Maturity of Danxia Landscape: A Case Study in Mount Danxiashan, Guangdong Province

    • 摘要: 地貌发育的定量化研究对于深化丹霞地貌的基础研究和多学科融合具有重要意义,而地貌指数可以用于评估区域构造活动及地貌演化,定量指示地貌发育程度,有助于理解丹霞地貌的发育过程及控制因素. 因此,以广东丹霞山世界地质公园为研究区,基于TecDEM工具箱移动窗口方法选择窗口大小并计算面积高程积分(HI)、地表粗糙度(SR)和地表指数(SI)这3种地貌指数. 丹霞山移动窗口边长可选择900 m,由此计算的丹霞组HI集中于0.22~0.47,SRSI分别集中在1.05~1.14和-0.37~-0.11,SRSI呈显著的负相关,且高SR和低SI多在赤壁丹崖景观一带分布,表明丹霞山的地貌发育程度整体较高,与学者定义的丹霞山地貌发育阶段相符. 分析地貌指数与断裂、地层和河流的定量关系可知:HI值及SR值随着与断裂两侧距离的增大而逐渐下降;锦石岩段的HI值集中于0.29~0.48,在丹霞组中最高,巴寨段及白寨顶段较低;河流两侧的白寨顶段显示出较高的HI值(> 0.24),而巴寨段具有较低的HI值,显示其在构造分布和河流的共同作用下呈现较明显的侧蚀.

       

    • 图  1  丹霞山世界地质公园区域地质简图

      广东省地质局2000年绘制. 参考张显球(1992)Chen et al.,(2022)修改

      Fig.  1.  Brief geological map of Danxiashan UGGp

      图  2  丹霞山区域地表高程分布

      AW3D30,下载自JAXA的ALOS全球数字地表模型平台( https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm

      Fig.  2.  Elevation distribution of Danxiashan UGGp

      图  3  丹霞山地貌发育程度定量指示技术路线图

      Fig.  3.  Technology roadmap of quantitative representation to landscape maturity of Mount Danxiashan

      图  4  TecDEM移动窗口计算原理

      参考Andreani et al.(2014)Obaid and Allen(2017)修改

      Fig.  4.  Calculation principle of moving window in TecDEM

      图  5  基于300 m、900 m、1 500 m移动窗口计算的丹霞组HI(a)、SR(b)和SI(c)指数结果

      Fig.  5.  HI(a), SR(b) and SI(c) values of Danxia Formation based on moving window with the size of 300 m, 900 m and 1 500 m

      图  6  丹霞山HI计算结果图(a)及HI值分布图(b)

      Fig.  6.  HI value map (a) and distribution (b) of Mount Danxiashan

      图  7  丹霞山SR计算结果图(a)及SR值分布图(b)

      Fig.  7.  SR value map (a) and distribution (b) of Mount Danxiashan

      图  8  丹霞山SI计算结果图(a)及SI值分布图(b)

      Fig.  8.  SI value map (a) and distribution (b) of Mount Danxiashan

      图  9  丹霞山主要断裂多重环形缓冲区及其地貌指数提取结果

      以300 m内缓冲区为例展示. 以韶关-仁化断裂为界,盆地西侧及东侧断裂缓冲区的地貌指数提取结果如c和d所示

      Fig.  9.  Geomorphic indices of multiple ring buffers of main faults in Mount Danxiashan

      图  10  丹霞山HI(a)、SR(b)、SI(c)计算结果图和丹霞组HI值分布图

      Fig.  10.  HI (a), SR (b) and SI (c) values map of Mount Danxiashan and HI values distribution of Danxia Formation

      图  11  丹霞山局部区域HISR提取结果对比

      Fig.  11.  Comparison to HI and SR values of local area in Mount Danxiashan

      图  12  丹霞山流经第四系主要河流的沿岸地势

      三维展示图纵向拉伸2倍以便于显示

      Fig.  12.  Terrain along main rivers which traverse quaternary system in Mount Danxiashan

      图  13  丹霞山锦江沿岸地势、地层纵向剖面(a)与各剖面高程及地貌指数分布(b, c, d)

      三维展示图纵向拉伸2倍以便于显示,各变量采用相同显示区间

      Fig.  13.  Terrain, vertical stratum dissection (a) and elevation as well as geomorphic indices distribution (b, c, d)along Jinjiang River in Mount Danxiashan

    • Albani, A., Klinkenberg, A., Andison, . W., et al., 2004. The Choice of Window Size in Approximating Topographic Surfaces from Digital Elevation Models. International Journal of Geographical Information Science, 18(6): 577-593. https://doi.org/10.1080/13658810410001701987
      Andreani, L., Stanek, K. P., Gloaguen, R., et al., 2014. DEM-Based Analysis of Interactions between Tectonics and Landscapes in the Ore Mountains and Eger Rift (East Germany and NW Czech Republic). Remote Sensing, 6(9): 7971-8001. https://doi.org/10.3390/rs6097971
      Barbosa, N., Andreani, L., Gloaguen, R., et al., 2021. Window-Based Morphometric Indices as Predictive Variables for Landslide Susceptibility Models. Remote Sensing, 13(3): 451. https://doi.org/10.3390/rs13030451
      Berti, M., Corsini, A., Daehne, A., 2013. Comparative Analysis of Surface Roughness Algorithms for the Identification of Active Landslides. Geomorphology, 182: 1-18. https://doi.org/10.1016/j.geomorph.2012.10.022
      Chang, Z. Y., Wang, J., Bai, S. B., et al., 2015. Comparison of Hypsometric Integral Methods. Journal of Arid Land Resources and Environment, (3): 171-175 (in Chinese with English abstract).
      Chen, L. Q., Li, X. M., Guo, F. S., et al., 2018. Characteristics and Origin of Honeycombs in the DanxiashanGlobal Geopark in South China. Geological Review, 64(4): 895-904 (in Chinese with English abstract).
      Chen, L. Q., Li, P. C., Guo, F. S., et al., 2019. Facies Analysis and Paleoclimate Implications of the Late Cretaceous Danxia Formation in the Danxia Basin, Northern Guangdong Province, South China. Acta Sedimentologica Sinica, 37(1): 17-29 (in Chinese with English abstract).
      Chen, X., Chen, L. Q., Zhang, Y. H., et al., 2021. Lithological and Environmental Controls on Large Tafoni along Conglomerate Cliffs in Subtropic Humid Danxiashan UNESCO Global Geopark. Journal of Mountain Science, 18(5): 1131-1143. https://doi.org/10.1007/s11629-020-6649-3
      Chen, L. Q., Guo, F. S., Shao, C. J., et al., 2022. Characteristics and Controlling Factors of Danxia Landscapes in Jiangxi Province. Acta Geologica Sinica, 96(11): 4023-4037 (in Chinese with English abstract).
      Chen, L. Q., Shi, Y. X., Ng, Y., et al., 2022. Roles of Algae in Honeycomb Weathering in Humid Climate: an Example from Danxiashan UNESCO Global Geopark of China. Geoheritage, 14(4): 120. https://doi.org/10.1007/s12371-022-00749-x
      Cohen, S., Willgoose, G., Hancock, G., 2008. A Methodology for Calculating the Spatial Distribution of the Area-Slope Equation and the Hypsometric Integral within a Catchment. Journal of Geophysical Research: Earth Surface, 113(F3): F03027. https://doi.org/10.1029/2007JF000820
      Florinsky, I. V., Skrypitsyna, T. N., Luschikova, O. S., 2018. Comparative Accuracy of the AW3D30 DSM, ASTER GDEM, and SRTM1 DEM: a Case Study on the Zaoksky Testing Ground, Central European Russia. Remote Sensing Letters, 9(7): 706-714. https://doi.org/10.1080/2150704X.2018.1468098
      Grohmann, C. H., Riccomini, C., Alves, F. M., 2007. SRTM-Based Morphotectonic Analysis of the Poços de Caldas Alkaline Massif, Southeastern Brazil. Computers & Geosciences, 33(1): 10-19. https://doi.org/10.1016/j.cageo.2006.05.002
      Guo, F. S., Chen, L. Q., Yan, Z. B., et al., 2020. Definition, Classification, and Danxianization of Danxia Landscapes. Acta Geologica Sinica, 94(2): 361-374 (in Chinese with English abstract).
      Hu, Z. H., Peng, J. W., Hou, Y. L., et al., 2017. Evaluation of Recently Released Open Global Digital Elevation Models of Hubei, China. Remote Sens, 9: 262. https://doi.org/10.3390/rs9030262
      Huang, R. H., 1996. Trend Surface Analysis for Danxia Landform in the Danxia Basin. Acta Scientiarum Naturalium Universitatis Sunyatseni, 35(S1): 100-105(in Chinese with English abstract).
      Li, H., Zhao, J. Y., 2018. Evaluation of the Newly Released Worldwide AW3D30 DEM over Typical Landforms of China Using Two Global DEMs and ICESat/GLAS Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(11): 4430-4440. https://doi.org/10.1109/JSTARS.2018.2874361
      Li, Z. C., Wang, X. Y., Yu, Y., et al., 2021. The Impacts of Base Level and Lithology on Fluvial Geomorphic Evolution at the Tectonically Active Laohu and Hasi Mountains, Northeastern Tibetan Plateau. Science China Earth Sciences, 64(6): 906-919 (in Chinese with English abstract). doi: 10.1007/s11430-020-9743-1
      Liu, X., Guo, F. S., Chen, L. Q., et al., 2019. Lithologic Control on the Development of Danxia Landscapes in Red Basins. Mountain Research, (2), 214-221 (in Chinese with English abstract).
      Luo, D. Y., Wen, X. P., Shen, P., et al., 2017. Information on Extraction of River Networks and Determination of Drainage Area Threshold Using DEM Data. Bulletion of Soil and Water Conservation, 37(4): 189-193 (in Chinese with English abstract).
      Nikolakopoulos, K. G., 2020. Accuracy Assessment of ALOS AW3D30 DSM and Comparison to ALOS PRISM DSM Created with Classical Photogrammetric Techniques. European Journal of Remote Sensing, 53(Sup2): 39-52. https://doi.org/10.1080/22797254.2020.1774424
      Obaid, A. K., Allen, M. B., 2017. Landscape Maturity, Fold Growth Sequence and Structural Style in the Kirkuk Embayment of the Zagros, Northern Iraq. Tectonophysics, 717: 27-40. https://doi.org/10.1016/j.tecto.2017.07.006
      Pei, Y. Q., Qiu, H. J., Hu, S., et al., 2021. Appraisal of Tectonic-Geomorphic Features in the Hindu Kush-Himalayas. Earth and Space Science, 8(5): e2020EA001386. https://doi.org/10.1029/2020EA001386
      Peng, H., Pan, Z. X., Yan, L. B., et al., 2013. A Review of the Research on Red Beds and Danxia Landform. Acta GeographicaSinica, 68(9): 1170-1181(in Chinese with English abstract).
      Qi, D. L., Chen, Z. J., Wang, S. J., et al., 2015. Stratigraphic Classification, Evolution Stage and Geomorphologic Age of Kongtongshan Danxia Landform in Pingliang, Gansu, China. Mountain Research, (4): 408-415 (in Chinese with English abstract).
      Schanz, S. A., Montgomery, D. R., 2016. Lithologic Controls on Valley Width and Strath Terrace Formation. Geomorphology, 258: 58-68. https://doi.org/10.1016/j.geomorph.2016.01.015
      Shahzad, F., Gloaguen, R., 2011. TecDEM: a MATLAB Based Toolbox for Tectonic Geomorphology, Part 2: Surface Dynamics and Basin Analysis. Computers & Geosciences, 37(2): 261-271. https://doi.org/10.1016/j.cageo.2010.06.009
      Shen, P. F., 2014. The Evolution Mirrored by the Cretaceous Sedimentary Sequences in the Nanxiong-Danxia Basin and its Response to the Tectonic Transition at the SCS's Area(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Sofia, G., Dalla Fontana, G., Tarolli, P., 2014. High-Resolution Topography and Anthropogenic Feature Extraction: Testing Geomorphometric Parameters in Floodplains. Hydrological Processes, 28(4): 2046-2061. https://doi.org/10.1002/hyp.9727
      Strahler, A. N., 1952. Hypsometric (Area-Altitude) Analysis of Erosional Topography. Geological Society of America Bulletin, 63: 1117-1142. https://doi.org/10.1130/0016-7606(1952)63[1117: HAAOET]2.0.CO;2 doi: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
      Tarolli, P., Sofia, G., Dalla Fontana, G., 2012. Geomorphic Features Extraction from High-Resolution Topography: Landslide Crowns and Bank Erosion. Natural Hazards, 61(1): 65-83. https://doi.org/10.1007/s11069-010-9695-2
      Wang, D., Dong, Y. P., Jiao, Q. Q., et al., 2022. The Mechanism of Tectonic Deformation of the Central Yunnan Terrane in the Late Cenozoic Based on Tectonic Geomorphology. Earth Science, 47(8): 3016-3028 (in Chinese with English abstract).
      Wang, Z., Jiang, Y. B., 2019. Analysis of Danxia Landform Characteristics in the Yihuang Basin, Jiangxi Province, China. Mountain Research, 37(6): 839-847 (in Chinese with English abstract).
      Wu, J. T., Liu, J. X., Liao, S. T., 2001. Geological Characteristics, evolution of the Danxia Basin. Regional Geology of China, 20(3): 274-279 (in Chinese with English abstract).
      Yan, L. B., Peng, H., Zhang, S. Y., et al., 2019. The Spatial Patterns of Red Beds and Danxia Landforms: Implication for the Formation Factors-China. Scientific Reports, 9(1): 1961. https://doi.org/10.1038/s41598-018-37238-7
      Yang, W. T., 2016. Study on Genesis of Danxia Landforms in the Southwestern Margin of Ordos Basin (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract).
      Yang, Z. J., Du, H. H., Luo, X., et al., 2022. Mineralogy Study on the Origin of White Spots in the Red Strata of Danxia Mountain, Guangdong. Mineral Resource and Geology, (1), 129-137 (in Chinese with English abstract).
      Yu, H. Y., Dong, Y. P., Yu, L., et al., 2022. Study on Relative Tectonic Activity of The Puduhe Fault in Central Yunnan. Earth Science, https://kns.cnki.net/kcms/detail/42.1874.P.20220527.1605.021.html (in Chinese with English abstract). https://kns.cnki.net/kcms/detail/42.1874.P.20220527.1605.021.html
      Zebari, M., Grützner, C., Navabpour, P., et al., 2018. Relative Timing of Uplift along the Zagros Mountain Front Flexure (Kurdistan Region of Iraq): Constrained by Geomorphic Indices and Landscape Evolution Modeling. Solid Earth, 10(3): 663. https://doi.org/10.5194/se-10-663-2019
      Zhang, G. F., Chen, K. L., Zhang, H. R., et al., 2018. The Evolution Stage Decision of Danxia Landform Based on Digital Elevation Model (DEM). Acta ScientiarumNaturalium Universitatis Sunyatseni, 57(2): 12-21 (in Chinese with English abstract).
      Zhang, X. Q., 1992. The Division and Comparison of Cretaceous System in Danxia Basin. Journal of Stratigraphy, (2): 81-95 (in Chinese with English abstract).
      Zhu, C., Peng, H., Ouyang, J., et al., 2010. Rock Resistance and the Development of Horizontal Grooves on Danxia Slopes. Geomorphology, 123(1/2): 84-96. https://doi.org/10.1016/j.geomorph.2010.07.002
      Zhu, S. J., Tang, G. A., Li, F. Y., et al., 2013. Spatial Variation of Hypsometric Integral in the Loess Plateau Based on DEM. Acta Geographica Sinica, 68(7): 921-932 (in Chinese with English abstract).
      常直杨, 王建, 白世彪, 等, 2015. 面积高程积分值计算方法的比较. 干旱区资源与环境, (3): 171-175.
      陈留勤, 李馨敏, 郭福生, 等, 2018. 丹霞山世界地质公园蜂窝状洞穴特征及成因分析. 地质论评, 64(4): 895-904.
      陈留勤, 李鹏程, 郭福生, 等, 2019. 粤北丹霞盆地晚白垩世丹霞组沉积相及古气候意义. 沉积学报, 37(1): 17-29.
      陈留勤, 郭福生, 邵崇建, 等, 2022. 江西省丹霞地貌特征及其控制因素探讨. 地质学报, 96(11): 4023-4037.
      郭福生, 陈留勤, 严兆彬, 等, 2020. 丹霞地貌定义、分类及丹霞作用研究. 地质学报. 94(2): 361-374.
      黄瑞红, 1996. 丹霞盆地地貌趋势面分析. 中山大学学报(自然科学版), (S1): 100-105.
      李正晨, 王先彦, 于洋, 等, 2021. 岩性和侵蚀基准面对构造活跃区河流地貌演化的影响——以青藏高原东北缘老虎山和哈思山地区为例. 中国科学: 地球科学, (6): 994-1008.
      刘鑫, 郭福生, 陈留勤, 等, 2019. 红层盆地岩性差异对丹霞地貌发育的控制. 山地学报, (2), 214-221.
      罗大游, 温兴平, 沈攀, 等, 2017. 基于DEM的水系提取及集水阈值确定方法研究. 水土保持通报, 37(4): 189-193.
      彭华, 潘志新, 闫罗彬, 等, 2013. 国内外红层与丹霞地貌研究述评. 地理学报, 68(9): 1170-1181.
      齐德利, 陈致均, 王随继, 等, 2015. 崆峒山丹霞地貌地层归属演化及地貌年龄. 山地学报, (4): 408-415.
      沈鹏飞, 2014. 南雄-丹霞盆地白垩纪沉积序列演化特征及其对南海构造转换的响应. 北京: 中国地质大学(北京).
      吴甲添, 刘建雄, 廖示庭, 2001. 丹霞盆地地质特征和演化. 中国区域地质, (3): 274-279.
      王丹, 董有浦, 焦骞骞, 等, 2022. 滇中地块新生代晚期的变形机制: 基于构造地貌学分析. 地球科学, (8), 3016-3028. doi: 10.3799/dqkx.2021.146
      汪震, 姜勇彪. 2019. 江西宜黄盆地丹霞地貌特征分析. 山地学报, 37(6): 839-847.
      杨望暾, 2016. 鄂尔多斯盆地西南缘丹霞地貌形成机制研究. 西安: 长安大学.
      杨志军, 都衡恒, 罗曦, 等, 2022. 广东丹霞山红色岩层中白斑成因的矿物学研究. 矿产与地质, (1), 129-137.
      余华玉, 董有浦, 于良, 等, 2022. 滇中普渡河断裂相对构造活动性特征. 地球科学: 1-15.
      章桂芳, 陈凯伦, 张浩然, 等, 2018. 基于DEM的丹霞地貌演化阶段划分. 中山大学学报: 自然科学版, 57(2): 12-21.
      张显球, 1992. 丹霞盆地白垩系的划分与对比. 地层学杂志, (2): 81-95.
      祝士杰, 汤国安, 李发源, 等, 2013. 基于DEM的黄土高原面积高程积分研究. 地理学报, 68(7): 921-932.
    • 加载中
    图(13)
    计量
    • 文章访问数:  306
    • HTML全文浏览量:  101
    • PDF下载量:  45
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-02-28
    • 网络出版日期:  2025-02-26
    • 刊出日期:  2025-02-25

    目录

      /

      返回文章
      返回