• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    岩溶地下水系统冷泉和热泉的形成机制:以趵突泉群为例

    康凤新 隋海波 郑婷婷 徐秋晓

    康凤新, 隋海波, 郑婷婷, 徐秋晓, 2024. 岩溶地下水系统冷泉和热泉的形成机制:以趵突泉群为例. 地球科学, 49(8): 2862-2878. doi: 10.3799/dqkx.2023.051
    引用本文: 康凤新, 隋海波, 郑婷婷, 徐秋晓, 2024. 岩溶地下水系统冷泉和热泉的形成机制:以趵突泉群为例. 地球科学, 49(8): 2862-2878. doi: 10.3799/dqkx.2023.051
    Kang Fengxin, Sui Haibo, Zheng Tingting, Xu Qiuxiao, 2024. Formation Mechanism of Cold Springs and Hot Springs in Karst Groundwater Systems in North China: A study of Baotu Spring. Earth Science, 49(8): 2862-2878. doi: 10.3799/dqkx.2023.051
    Citation: Kang Fengxin, Sui Haibo, Zheng Tingting, Xu Qiuxiao, 2024. Formation Mechanism of Cold Springs and Hot Springs in Karst Groundwater Systems in North China: A study of Baotu Spring. Earth Science, 49(8): 2862-2878. doi: 10.3799/dqkx.2023.051

    岩溶地下水系统冷泉和热泉的形成机制:以趵突泉群为例

    doi: 10.3799/dqkx.2023.051
    基金项目: 

    国家自然科学基金项目 U1906209

    国家自然科学基金项目 42072331

    详细信息
      作者简介:

      康凤新(1968-),男,研究员,博士,主要从事地热及地下水资源勘查研究. ORCID:0000-0002-3615-8729. E-mail:kangfengxin@126.com

    • 中图分类号: P641

    Formation Mechanism of Cold Springs and Hot Springs in Karst Groundwater Systems in North China: A study of Baotu Spring

    • 摘要: 岩溶地下水和地热水分别是中国北方重要的供水水源和供暖热源,但二者水力联系尚缺乏系统研究;为实现保泉、供水和地热清洁能源开发的三赢,通过含水层/热储层空间分布、同位素测年、水文地球化学场、水动力场、温度场特征及规律分析等方法,揭示了趵突泉泉域岩溶地下水流系统从浅、中循环子系统至深循环子系统,即岩溶地下水至冷泉和热泉的演变过程、驱动机制与响应机理. 在地下水位高程差引起的重力势能差驱动下,岩溶地下水沿济南含水层系统从上游浅循环-开放式地下水动力系统,向中游中循环-半开放式地下水动力系统径流,径流途中在济南市区遇不透水的辉长岩体或石炭纪二叠纪砂岩页岩地层阻截,大部分地下水沿垂向强裂隙岩溶发育通道上涌、穿透第四纪砾岩或辉长岩体裂隙发育带喷出地表形成17~18 ℃的承压上升冷泉. 一小部分地下水从深部穿过或从侧面绕过辉长岩体,沿裂隙岩溶通道继续向下游深循环运移,形成弱开放地热水动力系统;高大地热流传导聚热、深大断裂带/侵入岩体-灰岩接触带带状对流聚热、凸起区高热导率分流聚热、盖层低热导率保温聚热、地下水深循环运移传导-对流聚热等五元聚热驱动14~18 ℃的常温地下水演变为33~95℃的承压热泉(自流地热水).

       

    • 图  1  趵突泉2003—2021年地下水位动态曲线图

      Fig.  1.  Dynamic hydrograph of Baotu Spring from 2003 to 2021

      图  2  趵突泉-五龙潭-黑虎泉-珍珠泉等四大泉群2003—2021年流量动态曲线图

      Fig.  2.  Flow rate dynamic curves of Baotu, Wulongtan, Heihuand Pearl Springs from 2003 to 2021

      图  3  济南单斜岩溶地下水系统水文地质略图

      AB线以南为浅循环-开放式和中循环-半开放式地下水动力系统,水温14~18 ℃;AB线以北为深循环-弱开放式地热水动力系统,水温33~95 ℃

      Fig.  3.  Hydrogeological outline of Jinan monoclinic karst groundwater system

      图  4  济南单斜岩溶地下水系统自西向东即东阿→长孝→趵突泉→白泉→百脉泉断块地下水动力剖面图

      2018年6月枯水期

      Fig.  4.  Hydrodynamic profile of Dong'e-Changxiao-Baotu Spring-White Spring-Baimai Spingfault block in Jinan monoclinic karst groundwater system

      图  5  浅循环开放式地下水动力系统至深循环弱开放式地热水动力系统-岩溶地下水至趵突泉等冷泉和热泉的三级演变模式及其演变过程与驱动机制

      T. 地下水水温(℃);A. 地下水年龄(a);D. 地下水循环深度(m);H. 地下水补给高程(m)

      Fig.  5.  Evolution process and mechanism from shallow circulation-open groundwater dynamic system to deep circulation-weakly open geothermal water dynamic system

      图  6  济南北岩溶热储地热田地热水起源与演化

      康凤新等(2020)修改

      Fig.  6.  Origin and evolution of karst geothermal reservoir in North Jinan geothermal field

      图  7  北高而上层滞下降泉出流机制

      Fig.  7.  Outflow mechanism of Beigao'er Spring

      图  8  趵突泉出流机制——岩体阻滞(a)与地垒聚集(b)复合型富水构造

      a. 自南向北岩体阻滞地下水动力剖面;b. 自西南向东北沿石灰岩与辉长岩体/砂岩页岩阻水地层接触带形成的地下水主径流带地下水动力剖面;1. 第四纪粉质黏土;2. 第四纪砾岩;3. 白云质石灰岩;4. 石灰岩;5. 大理岩;6. 白垩纪燕山期辉长岩;7. 泉群;8. 岩溶地下水流向;9. 岩溶发育带;10. 岩溶地下水承压水头

      Fig.  8.  Baotu Spring outflow mechanism: intrusive rock mass obstructed and horst accumulated groundwater rich structure

      图  9  趵突泉1959—2021年水位-泉水流量-开采量-降水量动态图

      HmaxHmin为历年最高、最低水位

      Fig.  9.  Hydrodynamics of water level-flowrate-exploitation-precipitation of Baotu Spring from 1959 to 2021

      图  10  济南北地热田东段地热水14C校正年龄与距补给区距离关系图

      康凤新等(2020)修改;取样井位见图 6;蓝色取样点表示岩溶地下水,红色表示岩溶地热水

      Fig.  10.  The relationship between corrected 14C ages of geothermal water and distance from the recharge area, east part of North Jinan geothermal field

      图  11  趵突泉(水温17 ℃)与齐热1地热井(井口水温57 ℃)水位动态对比图

      Fig.  11.  Dynamic hydrograph comparisonbetween Baotu Spring (water temperature 17 ℃) and Qire1 geothermal well (wellhead water temperature 57 ℃)

      图  12  济北岩溶热储地热田地热井涌水量与距断裂/灰岩-岩体接触带距离关系曲线

      Fig.  12.  Relation curve between geothermal well yield and distance from faults/limestone-rock mass contact zones in North Jinan Karst geothermal reservoir

      图  13  华北克拉通破坏动力学过程与东部减薄的地壳(33 km)和岩石圈(60~100 km)

      Kusky et al.(2014)Zhu et al.(2015)徐小兵(2018)修改

      Fig.  13.  The destruction of North China Craton and eastern thinned crust (33 km) and lithosphere (60~100 km)

      图  14  济南北岩溶热储盖层地温梯度等值线图(a)和剖面图(b)(据康凤新等,2020修改)

      Fig.  14.  Geotemperature contour and profile of cap rock gradient (modified from Kang et al., 2020)

      表  1  趵突泉断块岩溶地下水流系统分级及其特征一览表

      Table  1.   Classification and characteristics of Baotu Spring karst groundwater flow system

      特征 地下水流系统分级
      浅循环-开放式岩溶地下水动力系统 中循环-半开放式岩溶地下水动力系统 深循环-弱开放式岩溶地热水动力系统
      流域位置 上游 中游 下游
      岩溶类型 裸露型 半覆盖-覆盖型 埋藏型
      补给源 大气降水入渗补给 大气降水入渗补给,上游地下水侧向径流补给 中上游地下水深循环径流补给
      地表高程(m) 1 545~400 400~30 30~19
      含水层/热储层顶板标高(m) 600~200 200~20 20~-2 429
      地下水水力性质 潜水 半承压-承压水 承压水
      地下水/地热水循环深度(m) 100~300 300~800 800~3 500
      地下水/地热水补给高程(m) 100~500 200~600 411~1 494
      地下水/地热水径流速度 40~190 m/d 100~300 m/d 0.25 m/a
      地下水/地热水TDS(mg/L) 300~500 500~700 400~7 300
      井口水温(℃) 14~15 15~18 33~95
      地下水/地热水年龄(a) 7~15 15~30 12 070~39 640
      地下水/地热水天然排泄形式 季节性上层滞下降泉,溢流入河,以外源水形式向中游径流 承压上升泉为主要排泄方式,小部分向下游深循环运移径流 滞留状态
      地下水/地热水循环交替强度 强烈 强烈 微弱
      水岩作用 中等
      下载: 导出CSV

      表  2  奥陶纪石灰岩热储顶部与盖层底部接触带地温梯度

      Table  2.   Geothermal gradient at the interface between the roof of the Ordovician limestone geothermal reservoir and the bottom of the cap rock

      孔号 奥陶纪石灰岩热储顶板深度(m) 热储顶部与盖层底部接触带测温段及其地温梯度 石炭-二叠纪砂岩页岩盖层平均地温梯度(℃)
      深度范围(m) 长度(m) 温度(℃) 温差(℃) 地温梯度(℃/100 m)
      YK1* 672.00 610~674 64 36.6~45.5 8.9 13.90 3.724
      YK2* 537.20 478~541 63 35.8~39.7 3.9 6.19 3.197
      YK3* 528.38 490~525 35 32.2~38.2 6.0 17.10 4.599
      注:*钻孔位置见图 14
      下载: 导出CSV
    • Aquilina, L., Ladouche, B., Doerfliger, N., et al., 2002. Origin, Evolution and Residence Time of Saline Thermal Fluids (Balaruc Springs, Southern France): Implications for Fluid Transfer Across the Continental Shelf. Chemical Geology, 192(1-2): 1-21. https://doi.org/10.1016/S0009-2541(02)00160-2
      Barbieri, M., Morotti, M., 2003. Hydrogeochemistry and Strontium Isotopes of Spring and Mineral Waters from Monte Vulture Volcano, Italy. Applied Geochemistry, 18(1): 117-125. https://doi.org/10.1016/s0883-2927(02)00069-0
      Bicalho, C. C., Batiot-Guilhe, C., Taupin, J. D., et al., 2019. A Conceptual Model for Groundwater Circulation Using Isotopes and Geochemical Tracers Coupled with Hydrodynamics: A Case Study of the Lez Karst System, France. Chemical Geology, 528(3-4): 118442. https://doi.org/10.1016/j.chemgeo.2017.08.014
      Clauser, C., Huenges, E., 1995. Thermal Conductivity of Rocks and Minerals Rock Physics and Phase Relations. In: A Handbook of Physical Constants, 105-126.
      Ford, D. C., Williams, P. W.,, 2007. Karst Geomorphology and Hydrology. Wiley, USA, 562.
      Goldscheider, N., Chen, Z., Auler, A. S., et al., 2020. Global Distribution of Carbonate Rocks and Karst Water Resources. Hydrogeology Journal, 28(5): 1661-1677. https://doi.org/10.1007/s10040-020-02139-5
      Gong, Y. L., Wang, L. S., Liu, S. W., et al., 2004. Distribution Characteristics of Terrestrial Heat Flow Density in Jiyang Depression of Shengli Oilfield, East China. Science in China Series D: Earth Sciences, 47(9): 804-812. https://doi.org/10.1007/bf03653273
      Hu, S. B., Huang, S. P., 2015. Terrestrial Heat flow in China. In: Wang, J. Y., eds., Geothermics and Its Applications. Science Press, Beijing, 64-122.
      Imbach, T., 1997. Deep Groundwater Circulation in the Tectonically Active Area of Bursa, Northwest Anatolia, Turkey. Geothermics, 26(2): 251-278. https://doi.org/10.1016/s0375-6505(96)00043-0
      Jiang, G. Z., Gao, P., Rao, S., et al, 2016. Compilation of Heat Flow Data in the Continental Area of China(4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910.
      Kang, F. X., 2010. Sustainable Development of Geothermal Resources in China. Proceedings World Geothermal Congress 2010, Bali, Indonesia, 1-5.
      Kang, F. X., Jin, M. G., Qin, P. R., 2011. Sustainable Yield of a Karst Aquifer System: A Case Study of Jinan Springs in Northern China. Hydrogeology Journal, 19(4): 851-863. https://doi.org/10.1007/s10040-011-0725-2
      Kang, F. X., Sui, H. B., Zheng, T. T., 2020. Heat Accumulation and Water Enrichment Mechanism of Piedmont Karstic Geothermal Reservoirs: a Case Study of Northern Jinan. Acta Geologica Sinica, 94(5): 1606-1624. https://doi.org/10.19762/j.cnki.dizhixuebao.2020150
      Kang, F. X., Xu, J. X., Liu, Z., et al., 2005. Geothermal Resources Potential Assessment in Shandong Province, China. Proceedings World Geothermal Congress 2005, Antalya, Turkey, 1-5.
      Kusky, T. M., Windley, B. F., Wang, L., et al., 2014. Flat Slab Subduction, Trench Suction, and Craton Destruction: Comparison of the North China, Wyoming, and Brazilian Cratons. Tectonophysics, 630(3): 208-221. https://doi.org/10.1016/j.tecto.2014.05.028
      Li, C. M., 1985. Analysis on Karst Resources and Preservation of Famous Springs in Jinan. Carsologica Sinica, (1-2): 31-38(in Chinese with English abstract).
      Li, C. M., Li, L., Tao, W. W., 2002. Current and Long-Term Countermeasures of Protection Spring to Provide Water in Jinan City. Geology of Shandong, 18(6): 37-40(in Chinese with English abstract).
      Li, F. L., Ma, J. G., Li, Y. G., et al., 2002. Study on Controlling Parameters of Jinan Spring Groups Gushing and Macro-Methods of Spring Protection and Water Supply. Carsologica Sinica, 21(3): 188-194(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2002.03.007
      Liang, X., Zhang, R. Q., Jin, M. G., 2015. Groundwater Flow System: Theoretical Application Survey. Geological Publishing House, Beijing, 19 (in Chinese).
      Liang, Y. P., Shen, H. Y., Zhao, C. H., et al., 2021. Thinking and Practice on the Research Direction of Karst Water in Northern China. Carsologica Sinica, 40(3): 363-380(in Chinese with English abstract).
      Liang, Y. P., Wang, W. T., 2010. The Division and Characteristics of Karst Water Systems in Northern China. Acta Geoscientica Sinica, 31(6): 860-868 (in Chinese with English abstract).
      Liang, Y. P., Wang, W. T., Zhao, C. H., et al., 2013. Variations of Karst Water and Environmental Problems in North China. Carsologica Sinica, 32(1): 34-42(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2013.01.006
      Liu., G. A., Zhao, X. H., 1997. Dynamic Characteristics of Karst Water in Jinan Spring Field and Discussion on some Questions Related. Geology of Shandong, 12(2): 67-73(in Chinese with English abstract).
      Ma, R., Wang, Y. X., Sun, Z. Y., et al., 2011. Geochemical Evolution of Groundwater in Carbonate Aquifers in Taiyuan, Northern China. Applied Geochemistry, 26(5): 884-897. https://doi.org/10.1016/j.apgeochem.2011.02.008
      McClymont, A. F., Roy, J. W., Hayashi, M., et al., 2011. Investigating Groundwater Flow Paths within Proglacial Moraine Using Multiple Geophysical Methods. Journal of Hydrology, 399(1/2): 57-69. https://doi.org/10.1016/j.jhydrol.2010.12.036
      Oraseanu, I., Mather, J., 2000. Karst Hydrogeology and Origin of Thermal Waters in the Codru Moma Mountains, Romania. Hydrogeology Journal, 8(4): 379-389. https://doi.org/10.1007/s100400000080
      Pang, Z. H., Pang, J. M., Kong, Y. L., et al., 2015. Large Karstic Geothermal Reservoirs in Sedimentary Basins in China: Genesis, Energy Potential and Optimal Exploitation. Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19-25 April.
      Portugal, E., Birkle, P., Barragán R, R. M., et al., 2000. Hydrochemical-Isotopic and Hydrogeological Conceptual Model of the Las Tres Vı́rgenes Geothermal Field, Baja California Sur, México. Journal of Volcanology and Geothermal Research, 101(3/4): 223-244. https://doi.org/10.1016/s0377-0273(99)00195-x
      Qian, J. Z., Zhan, H. B., Wu, Y. F., et al., 2006. Fractured-Karst Spring-Flow Protections: A Case Study in Jinan, China. Hydrogeology Journal, 14(7): 1192-1205. https://doi.org/10.1007/s10040-006-0061-0
      Sui, H. B., Kang, F. X., Li, C. S., et al., 2017. Relationship Between North Ji'nan Geothermal Water and Ji'nan Spring Water Revealed by Hydrogeochemical Characteristics. Carsologica Sinica, 36(1): 49-58 (in Chinese with English abstract).
      Stevanovi, Z., 2019. Karst Waters in Potable Water Supply: A Global Scale Overview. Environmental Earth Sciences, 78(23): 1-15. https://doi.org/10.1007/s12665-019-8670-9
      Sun, Z. Y., Ma, R., Wang, Y. X., et al., 2016. Using Isotopic, Hydrogeochemical-Tracer and Temperature Data to Characterize Recharge and Flow Paths in a Complex Karst Groundwater Flow System in Northern China. Hydrogeology Journal, 24(6): 1393-1412. https://doi.org/10.1007/s10040-016-1390-2
      Tóth, J., 1978. Gravity-Induced Cross-Formational Flow of Formation Fluids, Red Earth Region, Alberta, Canada: Analysis, Patterns, and Evolution. Water Resources Research, 14(5): 805-843. https://doi.org/10.1029/wr014i005p00805
      Tóth, J., 1984. The Role of Regional Gravity Flow in the Chemical and Thermal Evolution of Ground Water. First Canadian/american Conference on Hydrogeology. National Water Well Association and Alberta Research Council, 3-39.
      Tóth, J., 1980. Cross-Formational Gravity-Flow of Groundwater: A Mechanism of the Transport and Accumulation of Petroleum (The Generalized Hydraulic Theory of Petroleum Migration). Problems of Petroleum Migration, 10: 121-167.
      Tóth, J., 2009. Gravitational System of Groundwater Flow. Cambridge University Press, New York, 91-126. https://doi.org/10.1017/CBO9780511576546
      Wang, M. D., Guo, Q. H., Yan, W. D., et al., 2014. Medium-Low Enthalpy Geothermal Power-Electricity Generation at Gonghe Basin, Qinghai Province. Earth Science, 39(9): 1317-1322 (in Chinese with English abstract).
      Wang, Q. B., Duan, X. M., Gao, Z. D., et al., 2007. Regional Groundwater Level Monitoring in Jinan Karstic Spring Basin. Hydrogeology & Engineering Geology, 34(2): 1-7(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2007.02.002
      Wang, Q. B., Duan, X. M., Gao, Z. D., et al., 2009. Groundwater Flow Modelling in the Jinan Karst Spring Area. Hydrogeology & Engineering Geology, 34(5): 53-60(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2009.05.013
      Wang, S. F., Arnaldsson, A., Axelsson, G., et al., 2012. Modelling of the Response of the Niutuozhen Low-Enthalpy Geothermal System in Hebei Province, China. Advanced Materials Research, 512-515: 842-863. https://doi.org/10.4028/www.scientific.net/amr.512-515.842
      Wang, X. W., Wang, T. H., Gao, N. A., et al, 2022. Formation Mechanism and Development Potential of Geothermal Resources Along the Sichuan-Tibet Railway. Earth Science, 47(3): 995-1011(in Chinese with English abstract).
      Xi, D. Y., Shao, Z., Li, X. Z., 1992. Countermeasures for Restoring Spring Water and Protection Spring to Provide Water in Jinan. Geological Society of China Karst and Karst Water In Northern China. Guangxi Normal University Press, Guilin, 72-86.
      Xing, L. T., Kang, F. X., 2007. The Study on the Method of Antipollution Evaluation about Karst Aquifer System. Acta Scientiae Circumstantiae, 27(3): 501-508(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2468.2007.03.023
      Xing, L. T., Wu, Q., Xu, J. X., et al., 2009. Discussion on Environmental Capacity of Ground Water: a Case Study of Ji'Nan Spring Basin, Shandong, China. Geological Bulletin of China, 28(1): 124-129(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2009.01.015
      Xing, L. T., Zhang, J. Z., Zhou, R., et al., 2008. The Groundwater Environment Capacity in Jinan Springs Basin. China Rural Water and Hydropower, 10: 10-13(in Chinese with English abstract).
      Xu, H. Z., Duan, X. M., Gao, Z. D., 2007. Characteristics of Groundwater Regimes and Affecting Factors near Jinan. Hydrogeology & Engineering Geology, 34(2): 87-89(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2007.02.020
      Xu, X. B., Zhao, L., Wang, K., et al., 2018. Indication from Finite-Frequency Tomography beneath the North China Craton: The Heterogeneity of Craton Destruction. Science China Earth Sciences, 61(9): 1238-1260. https://doi.org/10.1007/s11430-017-9201-y
      Zhu, R. X., Chen, L., Wu, F. Y., et al., 2011. Timing, Scale and Mechanism of the Destruction of the North China Craton. Science China Earth Sciences, 54(6): 789-797. https://doi.org/10.1007/s11430-011-4203-4
      Zhu, R. X., Fan, H. R., Li, J. W., et al., 2015. Decratonic Gold Deposits. Science China Earth Sciences, 58(9): 1523-1537. https://doi.org/10.1007/s11430-015-5139-x
      康凤新, 2011. 地下水资源可持续开采量(博士学位论文). 武汉: 中国地质大学(武汉), 47-48.
      康凤新, 隋海波, 郑婷婷, 2020. 山前岩溶热储聚热与富水机理: 以济南北岩溶热储为例. 地质学报, 94(5): 1606-1624. doi: 10.3969/j.issn.0001-5717.2020.05.018
      李传谟, 1985. 济南岩溶水资源的分析与泉水名胜的保护. 中国岩溶, (1-2): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR1985Z1003.htm
      李传谟, 李岚, 陶卫卫, 2002. 济南保泉供水近期与长远对策. 山东地质, 18(6): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI200206011.htm
      李福林, 马吉刚, 李玉国, 等, 2002. 济南市泉群喷涌的控制性参数计算及供水保泉宏观调控措施研究. 中国岩溶, 21(3): 188-194. doi: 10.3969/j.issn.1001-4810.2002.03.007
      梁杏, 张人权, 靳孟贵, 2015. 地下水水流系统: 理论应用调查. 北京: 地质出版社, 19-19.
      梁永平, 申豪勇, 赵春红, 等, 2021. 对中国北方岩溶水研究方向的思考与实践. 中国岩溶, 40(3): 363-380. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202103001.htm
      梁永平, 王维泰, 2010. 中国北方岩溶水系统划分与系统特征. 地球学报, 31(6): 860-868. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201006017.htm
      梁永平, 王维泰, 赵春红, 等, 2013. 中国北方岩溶水变化特征及其环境问题. 中国岩溶, 32(1): 34-42. doi: 10.3969/j.issn.1001-4810.2013.01.006
      刘国爱, 赵新华, 1997. 济南泉域岩溶水动态特征及有关问题讨论. 山东地质, 12(2): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI199702008.htm
      马腾, 王焰新, 马瑞, 等, 2012. 太原盆地区碳酸盐岩中-低温地热系统演化. 地球科学, 37(2): 229-237. doi: 10.3799/dqkx.2012.023
      隋海波, 康凤新, 李常锁, 等, 2017. 水化学特征揭示的济北地热水与济南泉水关系. 中国岩溶, 36(1): 49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201701006.htm
      汪新伟, 王婷灏, 高楠安, 等, 2022a. 川藏铁路沿线地热资源形成机理与开发潜力. 地球科学, 47(3): 995-1011.
      汪新伟, 王婷灏, 李海泉, 等, 2022b. 太原盆地岩溶地热系统的形成演化及其地热资源潜力. 中国地质, 49(3): 716-731. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202203004.htm
      王敏黛, 郭清海, 严维德, 等, 2014. 青海共和盆地中低温地热流体发电. 地球科学, 39(9): 1317-1322. doi: 10.3799/dqkx.2014.113
      王庆兵, 段秀铭, 高赞东, 等, 2007. 济南岩溶泉域地下水位监测. 水文地质工程地质, 34(2): 1-7. doi: 10.3969/j.issn.1000-3665.2007.02.002
      王庆兵, 段秀铭, 高赞东, 等, 2009. 济南岩溶泉域地下水流模拟. 水文地质工程地质, 34(5): 53-60. doi: 10.3969/j.issn.1000-3665.2009.05.013
      奚德荫, 邵卓, 李祥芝, 1992. 恢复济南泉水及保泉供水对策. 中国地质学会中国北方岩溶和岩溶水研究. 桂林: 广西师范大学出版社, 72-86.
      邢立亭, 康凤新, 2007. 岩溶含水系统抗污染性能评价方法研究. 环境科学学报, 27(3): 501-508. doi: 10.3321/j.issn:0253-2468.2007.03.023
      邢立亭, 武强, 徐军祥, 等, 2009. 地下水环境容量初探——以济南泉域为例. 地质通报, 28(1): 124-129. doi: 10.3969/j.issn.1671-2552.2009.01.015
      邢立亭, 张建芝, 周瑞, 等, 2008. 济南泉域地下水环境容量研究. 中国农村水利水电, 10: 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD200810005.htm
      徐慧珍, 段秀铭, 高赞东, 2007. 济南城近郊区地下水头动态特征及原因分析. 水文地质工程地质, 34(2): 87-89. doi: 10.3969/j.issn.1000-3665.2007.02.020
      徐小兵, 赵亮, 王坤, 等, 2018. 华北克拉通地区有限频体波层析成像——克拉通破坏的空间非均匀性. 中国科学: 地球科学, 48: 1223-1247. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201809008.htm
    • 加载中
    图(14) / 表(2)
    计量
    • 文章访问数:  657
    • HTML全文浏览量:  368
    • PDF下载量:  95
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-03-06
    • 网络出版日期:  2024-08-27
    • 刊出日期:  2024-08-25

    目录

      /

      返回文章
      返回