Stress Triggering and Seismic Hazard Assessment of the 2022 Lushan MS6.1 Earthquake
-
摘要: 2022年6月1日,四川芦山县地区发生了Ms6.1地震,造成4死14伤以及周围地区多县经济损失. 考虑到地区丰富的断层背景、历史地震以及地震空区,对该地区重要历史地震序列的回溯研究以及未来危险性评估对防震御灾具有重要意义. 基于弹性位错理论以及地区岩石圈分层模型,计算了Mw7.9汶川地震以及Ms7.0芦山地震对本次地震在不同深度上的同震及震后粘弹松弛效应影响,讨论历史地震对本次地震发生的影响. 同时,对未来十年该地区及周边活跃断层的应力积累进行计算,圈定未来地震危险性较高的区域. 结果表明:(1)Mw7.9汶川地震导致2022年Ms6.1芦山地震震中的同震应力增量为0.014 MPa,可能有效的促进了芦山地震的发生,而Ms7.0芦山地震的发生导致其应力释放0.174 MPa,起到抑制作用. 考虑到震后粘弹松弛的影响,本次地震震中发震前应力积累为0.086 MPa,已恢复到较高应力水平,具备发震背景;(2)大邑地震空区中段、抚边河断裂带未来库仑应力增量进一步提升,地震危险性较强.Abstract: On June 1, 2022, an earthquake of magnitude 6.1 occurred in Lushan, Sichuan, causing 4 deaths, 14 injuries and economic losses in many surrounding counties. This region is characterized by a dense fault system and intense historical earthquakes, as well as a seismic gap that receives much attention, so a retrospective study of major historical earthquake sequences and their impacts on seismic risks in the region is of great significance for seismic hazard mitigations in the future. Based on the elastic dislocation theory and the regional lithosphere layered model, this paper calculates the co-seismic and post-earthquake viscoelastic relaxation effects of the Mw7.9 Wenchuan earthquake and the Ms7.0 Lushan earthquake on the epicenter of the 2022 earthquake at different depths, and discusses the impacts of historical earthquakes on the occurrence of this earthquake. Moreover, stress accumulation on active faults in the area and surrounding areas in the next ten years is calculated to delineate areas with high seismic risk in the future. The results show that: (1) The Mw7.9 Wenchuan earthquake resulted in a stress increment of 0.014 MPa at the epicenter of the 2022 Ms6.1 Lushan earthquake, which may have effectively promoted the occurrence of this earthquake, while the Ms7.0 Lushan earthquake caused a stress release of 0.174 MPa, which delays the occurrence of the 2022 earthquake. Considering the influence of viscoelastic relaxation after the 2008 and 2013 earthquakes, stress increment of the epicenter is 0.086 MPa, which has already recovered to a higher stress level before its occurrence. (2) The Coulomb stress increment in the middle section of the Dayi seismic gap and the Fubianhe fault zone will further increase in the future, and so doesthe seismic risk.
-
Key words:
- Lushan earthquake /
- Wenchuan earthquake /
- stress triggering /
- seismic hazard /
- Coulomb stress /
- seismology
-
图 4 2008年汶川Mw7.9地震和2013年芦山Ms7.0地震对2022年芦山地震的同震库仑应力影响
a. 2008年汶川地震对本次地震的同震库仑应力影响;b. 2013年芦山地震对本次地震的同震库仑应力影响. 计算选取的参数同图 3
Fig. 4. Coseismic Coulomb stress changes caused by 2008 Mw7.9 Wenchuan earthquake and 2013 Ms7.0 Lushan earthquake on the 2022 Lushan earthquake
图 6 不同深度2008年汶川Mw7.9地震和2013年芦山Ms7.0地震对2022年芦山地震的同震库仑应力影响
a、b、c分别表示汶川地震对本次地震在5 km、15 km、20 km深度的同震影响;d、e、f分别表示2013年芦山地震对本次地震在5 km、15 km、20 km深度的同震影响
Fig. 6. Respective coseismic Coulomb stress changes caused by 2008 Mw7.9 Wenchuan earthquake and 2013 Ms7.0 Lushan earthquake at different depths on 2022 Lushan earthquake
表 1 地震位错模型
Table 1. Seismic dislocation model
发震时间 震级(M) 纬度(°N) 经度(°E) Stirke/dip/rake/° 深度(km) 长(km) 宽(km) 走向滑动(m) 倾向滑动(m) 参考文献 2008/5/12 Mw7.9 31.013 103.392 Wang et al.(2011) 8.2 — — — — Wang et al.(2011) 2013/4/20 Ms7.0 30.291 102.983 214/38/102 17.6 43.652 18.197 -0.137 0.646 房立华等(2013)
徐锡伟等(2013)2022/6/1 Mw6.0 30.370 102.940 211/39/98 17.0 11.482 7.079 -0.076 0.544 表 2 岩石圈分层模型
Table 2. Lithospheric layering model
深度(km) P波波速(km/s) S波波速(km/s) 密度(kg/m3) 粘滞系数(Pa·s) 1 0~1 2.5 1.2 2.10 - 2 1~2 4.0 2.1 2.40 - 3 2~22 6.1 3.5 2.75 - 4 22~42 6.3 3.6 2.80 4.0×1018 5 42~46 7.2 4.0 3.10 2.0×1018 表 3 主要断层参数
Table 3. Major fault parameters
断层名称 起点 终点 走向(°) 倾角(°) 滑动角(°) 滑移速率(mm/a) 1 鲜水河A 100.534°E 31.448°N 101.933°E 30.038°N 142.0~159.5 90 0~45 15±5 2 鲜水河B 101.966°E 30.010°N 102.336°E 29.029°N 142.0~159.5 90 0~45 15±5 3 抚边河 101.720°E 32.267°N 102.526°E 31.371°N 160~205 >70 135 6.7±2.3 4 岷江 103.679°E 32.133°N 103.646°E 31.752°N 180 45~56 45 <1 5 彭县—灌县A 102.728°E 30.010°N 102.806°E 30.248°N 200~207 44 94 <1 6 彭县—灌县B 102.806°E 30.286°N 103.657°E 30.971°N 200~207 44 94 <1 7 北川—映秀A 102.257°E 29.714°N 102.403°E 30.171°N 205 33 142 0.07·0.5 8 北川—映秀B 102.425°E 30.190°N 103.019°E 30.629°N 205 33 142 0.07·0.5 9 江油—灌县 103.668°E 30.971°N 104.731°E 31.762°N 220 23 100 0.6 10 江油—广元 104.743°E 31.771°N 105.403°E 32.229°N 225 50 104 <1 11 龙泉山A 103.914°E 29.667°N 104.194°E 30.162°N 30 50 90 — 12 龙泉山B 104.060°E 30.171°N 104.474°E 30.857°N 30 50 90 — 表 4 不同有效摩擦系数选取的影响
Table 4. Influence of different effective friction coefficients
历史地震导致的2022年芦山地震震中库仑应力变化(MPa) μ'=0.0 μ'=0.2 μ'=0.4 μ'=0.6 μ'=0.8 同震 -0.120 -0.156 -0.191 -0.227 -0.263 同震+震后 -0.110 -0.141 -0.173 -0.204 -0.235 表 5 不同粘滞系数模型选取的影响
Table 5. Influence of different viscosity coefficients
历史地震导致的2022年芦山地震震中库仑应力变化(MPa) 模型Ⅰ 模型Ⅱ 模型Ⅲ 模型Ⅳ ηC/1021 Pa·s ηC/1020 Pa·s ηC/1019 Pa·s ηC/1018 Pa·s ηM/1020 Pa·s ηM/1019 Pa·s ηM/1018 Pa·s ηM/1017 Pa·s 同震+震后 -0.154 -0.141 -0.027 +0.086 表 6 不同接收断层参数选取的影响
Table 6. Influence of different Receiving fault parameters
选取不同接收断层参数时2022年芦山地震震中库仑应力变化(MPa) 鲁人齐等(2022) 中国地震台网中心 同震 -0.156 -0.125 -0.135 -0.085 同震+震后 +0.086 +0.104 +0.111 +0.070 -
Allen, C. R., Luo, Z. L., Qian, H., et al., 1991. Field Study of a Highly Active Fault Zone: The Xianshuihe Fault of Southwestern China. Geological Society of America Bulletin, 103(9): 1178-1199. https://doi.org/10.1130/0016-7606(1991)103<1178:fsoaha>2.3.co;2 doi: 10.1130/0016-7606(1991)103<1178:fsoaha>2.3.co;2 Chen, Y. T., Yang, Z. X., Zhang, Y., et al., 2013. From 2008 Wenchuan Earthquake to 2013 Lushan Earthquake. Scientia Sinica Terrae, 43(6): 1064-1072(in Chinese with English abstract). doi: 10.1360/zd-2013-43-6-1064 Deng, Q. D., Zhang, P. Z., Ran, Y. K., et al., 2003. Active Tectonics and Seismicity in China. Earth Science Frontiers, 10: 66-73(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2003.z1.012 Fang, L. H., Wu, J. P., Wang, W. L., et al., 2013. Relocation of the Mainshock and Aftershock Sequences of M S7.0 Sichuan Lushan Earthquake. Chinese Science Bulletin, 58(28/29): 3451-3459(in Chinese with English abstract). Feng, Y. S., Xiong, X., Shan, B., et al., 2022. Coulomb Stress Changes Due to the 2021 MS7.4 Maduo Earthquake and Expected Seismicity Rate Changes in the Surroundings. Science China Earth Sciences, 65(4): 675-686(in Chinese with English abstract). doi: 10.1007/s11430-021-9882-8 Gong, M., Xu, X. W., Li, K., 2020. Fault Geometry Responsible for the Initial Rupture Process of Wenchuan Earthquake. Chinese Journal of Geophysics, 63(3): 1224-1234(in Chinese with English abstract). Harris, R. A., Simpson, R. W., 1998. Suppression of Large Earthquakes by Stress Shadows: A Comparison of Coulomb and Rate‐and‐State Failure. Journal of Geophysical Research: Solid Earth, 103(B10): 24439-24451. https://doi.org/10.1029/98jb00793 Huang, L. Y., Cheng, H. H., Zhang, H., et al., 2019. Coseismic and Postseismic Stress Evolution Caused by the 2008 Wenchuan Earthquake and Its Effects on the 2017 MS 7.0 Jiuzhaigou Earthquake. Chinese J. Geophys. , 62(4): 1268-1281(in Chinese with English abstract). Huang, M. H., Bürgmann, R., Freed, A. M., 2014. Probing the Lithospheric Rheology across the Eastern Margin of the Tibetan Plateau. Earth and Planetary Science Letters, 396(8): 88-96. https://doi.org/10.1016/j.epsl.2014.04.003 Jia, K., Zhou, S., Wang, R., 2012. Stress Interactions within the Strong Earthquake Sequence from 2001 to 2010 in the Bayankala Block of Eastern Tibet. Bulletin of the Seismological Society of America, 102(5): 2157-2164. https://doi.org/10.1785/0120110333 Jia, K., Zhou, S. Y., Zhuang, J. C., et al., 2018. Did the 2008 Mw 7.9 Wenchuan Earthquake Trigger the Occurrence of the 2017 Mw 6.5 Jiuzhaigou Earthquake in Sichuan, China?. Journal of Geophysical Research: Solid Earth, 123(4): 2965-2983. https://doi.org/10.1002/2017jb015165 Jia, K., Zhou, S., Zhuang, J., et al., 2014. Possibility of the Independence between the 2013 Lushan Earthquake and the 2008 Wenchuan Earthquake on Longmen Shan Fault, Sichuan, China. Seismological Research Letters, 85(1): 60-67. https://doi.org/10.1785/0220130115 Jin, Z. T., Wan, Y. G., Liu, Z. C., et al., 2019. The Static Stress Triggering Influences of the 2017 MS7.0 Jiuzhaigou Earthquake on Neighboring Areas. Chinese J. Geophys. , 62(4): 1282-1299(in Chinese with English abstract). King, G. C. P., Hubert-Ferrari, A., Nalbant, S. S., et al., 2001. Coulomb Interactions and the 17 August 1999 Izmit, Turkey Earthquake. Comptes Rendus de l'Académie des Science-Series IIA-Earth and Planetary Science, 333(9): 557-569. https://doi.org/10.1016/s1251-8050(01)01676-7 King, G. C. P., Stein, R. S., Lin, J., 1994. Static Stress Changes and the Triggering of Earthquakes. Bulletin of the Seismological Society of America, 84(3): 935-953.160(in Chinese with English abstract). Li, B., Xie, F. R., Huang, J. S., et al., 2022. In Situ Stress State and Seismic Hazard in the Dayi Seismic Gap of the Longmenshan Thrust Belt. Science China Earth Sciences, 65(7): 1388-1398(in Chinese with English abstract). doi: 10.1007/s11430-021-9915-4 Li, P. E., Liao, L., Feng, J. Z., 2022. Relationship between Stress Evolution and Aftershocks after Changning M 6.0 Earthquake in Sichuan on 17 June, 2019. Earth Science, 47(6): 2149-2164(in Chinese with English abstract). Li, Z. W., Ni, S. D., Hao, T. Y., et al., 2012. Uppermost Mantle Structure of the Eastern Margin of the Tibetan Plateau from Interstation Pn Traveltime Difference Tomography. Earth and Planetary Science Letters, 335-336(3): 195-205. https://doi.org/10.1016/j.epsl.2012.05.005 Liang, C. T., Huang, Y. L., Wang, C. L., et al., 2018. Progress in the Studies of the Seismic Gap between the 2008 Wenchuan and 2013 Lushan Earthquakes. Chinese J. Geophys. , 61(5): 1996-2010(in Chinese with English abstract). Liu, C., Zhu, B. J., Shi, Y. L., 2020. Do the Two Seismic Gaps in the Southwestern Section of the Longmen Shan Fault Present the Same Seismic Hazard?. Journal of Geophysical Research: Solid Earth, 125(3): 1-15. https://doi.org/10.1029/2019jb018160 Liu, C. L., Zheng, Y., Ge, C., et al., 2013. Rupture Process of the M S7.0 Lushan Earthquake, 2013. Science China Earth Sciences, 56(7): 1187-1192(in Chinese with English abstract). Lu, R. Q., Fang, L. H., Guo, Z., et al., 2022. Detailed Structural Characteristics of the 1 June 2022 MS 6.1 Sichuan Lushan Strong Earthquake. Chinese Journal of Geophysics, 65(11): 4299-4310(in Chinese with English abstract). doi: 10.6038/cjg2022Q0438 Luo, Y., Zhao, L., Tian, J. H., 2019. Spatial and Temporal Variations of Stress Field in the Longmenshan Fault Zone after the 2008 Wenchuan, China Earthquake. Tectonophysics, 767(2): 228172. https://doi.org/10.1016/j.tecto.2019.228172 Pei, S. P., Zhang, H. J., Su, J. R., et al., 2014. Ductile Gap between the Wenchuan and Lushan Earthquakes Revealed from the Two-Dimensional Pg Seismic Tomography. Scientific Reports, 4(1): 1-15. https://doi.org/10.1038/srep06489 Pope, N., Mooney, W. D., 2020. Coulomb Stress Models for the 2019 Ridgecrest, California Earthquake Sequence. Tectonophysics, 791: 228555. https://doi.org/10.1016/j.tecto.2020.228555 Wang, Q., Qiao, X. J., Lan, Q. G., et al., 2011. Rupture of Deep Faults in the 2008 Wenchuan Earthquake and Uplift of the Longmen Shan. Nature Geoscience, 4(9): 634-640. https://doi.org/10.1038/ngeo1210 Scholz, C. H., Cowie, P. A., 1990. Determination of Total Strain from Faulting Using Slip Measurements. Nature, 346(6287): 837-839. https://doi.org/10.1038/346837a0 Shan, B., Xiong, X., Zheng, Y., et al., 2008. Stress Changes on Major Faults Caused by M W7.9 Wenchuan Earthquake, may 12, 2008. Science in China Series D: Earth Sciences, 52(5): 593-601(in Chinese with English abstract). Shan, B., Xiong, X., Zheng, Y., et al., 2013. Stress Changes on Major Faults Caused by 2013 Lushan Earthquake and its Relationship with 2008 Wenchuan Earthquake. Science China Earth Sciences, 56(7): 1169-1176. https://doi.org/10.1007/s11430-013-4642-1 Shan, B., Zheng, Y., Liu, C. L., et al., 2017. Coseismic Coulomb Failure Stress Changes Caused by the 2017 M7.0 Jiuzhaigou Earthquake, and its Relationship with the 2008 Wenchuan Earthquake. Science China Earth Sciences, 60(12): 2181-2189(in Chinese with English abstract). doi: 10.1007/s11430-017-9125-2 Shao, Y. X., Zou, X. B., Yuan, D. Y., et al., 2021. Late Quaternary Slip along Yangguan Fault at Northeastern Section of Altyn Tagh Fault and Implications for Seismic Risk. Earth Science, 46(2): 683-696(in Chinese with English abstract). Shao, Z. G., Wang, R. J., Wu, Y. Q., et al., 2011. Rapid Afterslip and Short-Term Viscoelastic Relaxation Following the 2008 MW7.9 Wenchuan Earthquake. Earthquake Science, 24(2): 163-175. https://doi.org/10.1007/s11589-010-0781-z Shao, Z. G., Zhou, L. Q., Jiang, C. S., et al., 2010. The Impact of Wenchuan MS8.0 Earthquake on the Seismic Activity of Surrounding Faults. Chinese J. Geophys. , 53(8): 1784-1795(in Chinese with English abstract). Stein, R. S., 1999. The Role of Stress Transfer in Earthquake Occurrence. Nature, 402(6762): 605-609. https://doi.org/10.1038/45144 Toda, S., Stein, R. S., Richards-Dinger, K., et al., 2005. Forecasting the Evolution of Seismicity in Southern California: Animations Built on Earthquake Stress Transfer. Journal of Geophysical Research: Solid Earth, 110(B5): 1-15. https://doi.org/10.1029/2004jb003415 Wan, Y. G., Shen, Z. K., Sheng, Z. S., et al., 2009. The Influence of 2008 Wenchuan Earthquake on Surrounding Faults. Acta Seismologica Sinica, 31(2): 128-139(in Chinese with English abstract). doi: 10.3321/j.issn:0253-3782.2009.02.002 Wang, C. Y., Han, W. B., Wu, J. P., et al., 2003. Crustal Structure beneath the Songpan: Garze Orogenic Belt. Acta Seismologica Sinica, 16(3): 237-250(in Chinese with English abstract). doi: 10.1007/s11589-003-0028-3 Wang, J., Zhang, G. W., Li, C. F., et al., 2018. Correlating Seismicity to Curie-Point Depths in the Eastern Margin of the Tibetan Plateau. Chinese J. Geophys. , 61(5): 1840-1852(in Chinese with English abstract). Wang, R. J., Lorenzo-Martín, F., Roth, F., 2006. PSGRN/PSCMP: a New Code for Calculating Co- And Post-Seismic Deformation, Geoid and Gravity Changes Based on the Viscoelastic-Gravitational Dislocation Theory. Computers & Geosciences, 32(4): 527-541. https://doi.org/10.1016/j.cageo.2005.08.006 Wang, X. S., Lu, J., Xie, Z. J., et al., 2015. Focal Mechanisms and Tectonic Stress Field in the North-South Seismic Belt of China. Chinese Journal of Geophysics, 58(11): 4149-4162(in Chinese with English abstract). doi: 10.6038/cjg20151122 Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/bssa0840040974 Wessel, P., Smith, W. H. F., 1998. New, Improved Version of Generic Mapping Tools Released. Eos, Transactions American Geophysical Union, 79(47): 579-579. https://doi.org/10.1029/98eo00426 Wu, J., Yao, D. D., Meng, X. F., et al., 2017. Spatial‐temporal Evolutions of Early Aftershocks Following the 2013 Mw 6.6 Lushan Earthquake in Sichuan, China. Journal of Geophysical Research: Solid Earth, 122(4): 2873-2889. https://doi.org/10.1002/2016jb013706 Xiong, X., Shan, B., Zheng, Y., et al., 2010. Stress Transfer and Its Implication for Earthquake Hazard on the Kunlun Fault, Tibet. Tectonophysics, 482 Xu, C. J., Liu, Y., Wen, Y. M., 2009. Mw 7.9 Wenchuan Earthquake Slip Distribution Inversion from GPS Measurements. Acta Geodaetica et Cartographica Sinica, 38(3): 195-201(in Chinese with English abstract). doi: 10.3321/j.issn:1001-1595.2009.03.002 Xu, X. W., Wen, X. Z., Han, Z. J., et al., 2013. Lushan M S7.0 Earthquake: A Blind Reserve-Fault Event. Chinese Science Bulletin, 58(28/29): 3437-3443(in Chinese with English abstract). Zhang, C. J., Cao, J. L., Shi, Y. L., 2009. Studying the Viscosity of Lower Crust of Qinghai-Tibet Plateau According to Post-Seismic Deformation. Science in China Series D: Earth Sciences, 52(3): 411-419(in Chinese with English abstract). doi: 10.1007/s11430-009-0028-9 Zhao, J., Ren, J. W., Jiang, Z. S., et al., 2018. Fault Locking and Deformation Characteristics in Southwestern Segment of the Longmenshan Fault. J. Seismol. Res. , 41: 216-225(in Chinese with English abstract). Zhao, J., Wu, Y. Q., Jiang, Z. S., et al., 2013. Fault Locking and Dynamic Deformation of the Longmenshan Fault Zone before the 2013 Lushan MS 7.0 Earthquake. Acta Seismologica Sinica, 35(5): 681-691(in Chinese with English abstract). doi: 10.3969/j.issn.0253-3782.2013.05.007 Zheng, Y., Ma, H. S., Lü, J., et al., 2009. Source Mechanism of Strong Aftershocks (MS⩾5.6) of the 2008/05/12 Wenchuan Earthquake and the Implication for Seismotectonics. Science in China Series D: Earth Sciences, 52(6): 739-753. https://doi.org/10.1007/s11430-009-0074-3 Zhou, S. Y., 2008. Seismicity Simulation in Western Sichuan of China Based on the Fault Interaction Sand Its Implication on the Estimation of the Regional Earthquake Risk. Chinese Journal of Geophysics, 51(1): 165-174(in Chinese with English abstract). 陈运泰, 杨智娴, 张勇, 等, 2013. 从汶川地震到芦山地震. 中国科学: 地球科学, 43(6): 1064-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306015.htm 邓起东, 张培震, 冉勇康, 等, 2003. 中国活动构造与地震活动. 地学前缘, 10: 66-73 doi: 10.3321/j.issn:1005-2321.2003.z1.012 房立华, 吴建平, 王未来, 等, 2013. 四川芦山Ms7.0级地震及其余震序列重定位. 科学通报, 58(20): 1901-1909. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320004.htm 冯雅杉, 熊熊, 单斌, 等, 2022. 2021年玛多MS7.4地震导致的周边地区库仑应力加载及地震活动性变化. 中国科学: 地球科学, 52(6): 1100-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202206010.htm 宫猛, 徐锡伟, 李康, 2020. 汶川MW7.9地震起始破裂断层几何结构. 地球物理学报, 63(3): 1224-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202003038.htm 黄禄渊, 程惠红, 张怀, 等, 2019. 2008年汶川地震同震-震后应力演化及其对2017年九寨沟MS 7.0地震的影响. 地球物理学报, 62(4): 1268-1281. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202101012.htm 靳志同, 万永革, 刘兆才, 等, 2019. 2017年九寨沟MS 7.0地震对周围地区的静态应力影响. 地球物理学报, 62(4): 1282-1299. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201912009.htm 李兵, 谢富仁, 黄金水, 等, 2022. 龙门山断裂带大邑地震空区地应力状态与地震危险性. 中国科学: 地球科学, https://doi.org/10.1360/SSTe-2021-0280 李平恩, 廖力, 奉建州, 2022. 2019年6月17日四川长宁6.0级地震震后应力演化与余震关系. 地球科学, 47(6): 2149-2164. doi: 10.3799/dqkx.2021.143 梁春涛, 黄焱羚, 王朝亮, 等, 2018. 汶川和芦山地震之间地震空区综合研究进展. 地球物理学报, 61(5): 1996-2010. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201805026.htm 刘成利, 郑勇, 葛粲, 等, 2013. 2013年芦山7.0级地震的动态破裂过程. 中国科学: 地球科学, 43(06): 1020-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306010.htm 鲁人齐, 房立华, 郭志, 等, 2022. 2022年6月1日四川芦山MS 6.1强震构造精细特征. 地球物理学报, 65(11): 4299-4310. doi: 10.6038/cjg2022Q0438 单斌, 熊熊, 郑勇, 等, 2009. 2008年5月12日MW7.9汶川地震导致的周边断层应力变化. 中国科学: D辑, (5): 537-545. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200905001.htm 单斌, 熊熊, 郑勇, 等, 2013. 2013年芦山地震导致的周边断层应力变化及其与2008年汶川地震的关系. 中国科学: 地球科学, 43(6): 1002-1009. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306008.htm 单斌, 郑勇, 刘成利, 等, 2017. 2017年M7.0级九寨沟地震同震库仑应力变化及其与2008年汶川地震的关系. 中国科学: 地球科学, 47(11): 1329-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201711005.htm 邵延秀, 邹小波, 袁道阳, 等, 2021. 阿尔金断裂东北段敦煌阳关断裂晚第四纪活动性及其强震危险性影响分析. 地球科学, 46(2): 683-696. doi: 10.3799/dqkx.2020.082 邵志刚, 周龙泉, 蒋长胜, 等, 2010. 2008年汶川MS8.0地震对周边断层地震活动的影响. 地球物理学报, 2010, 53(8): 1784-1795. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201008005.htm 万永革, 沈正康, 盛书中, 等, 2009. 2008年汶川大地震对周围断层的影响. 地震学报, 31(2): 128-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200902002.htm 王椿镛, 韩渭宾, 吴建平, 等, 2003. 松潘-甘孜造山带地壳速度结构. 地震学报, 25(3): 229-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200303000.htm 王健, 张广伟, 李春峰, 等, 2018. 青藏高原东缘地震活动与居里点深度之间的相关性. 地球物理学报, 61(5): 1840-1852. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201805014.htm 王晓山, 吕坚, 谢祖军, 等, 2015. 南北地震带震源机制解与构造应力场特征. 地球物理学报, 58(11): 4149-4162. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511023.htm 许才军, 刘洋, 温扬茂, 2009. 利用GPS资料反演汶川MW7.9级地震滑动分布. 测绘学报, 38(3). https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200903002.htm 徐锡伟, 闻学泽, 韩竹军, 等, 2013. 四川芦山7.0级强震: 一次典型的盲逆断层型地震. 科学通报, 58(20): 1887-1893. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320002.htm 张晁军, 曹建玲, 石耀霖, 2008. 从震后形变探讨青藏高原下地壳黏滞系数. 中国科学: D辑, 38(10): 1250-1257. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200810009.htm 赵静, 任金卫, 江在森, 等, 2018. 龙门山断裂带西南段闭锁与变形特征. 地震研究, 41(2): 216-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201802009.htm 赵静, 武艳强, 江在森, 等, 2013. 芦山地震前龙门山断裂带闭锁程度与变形动态特征研究. 地震学报, 35(5): 681-691. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201305007.htm 郑勇, 马宏生, 吕坚, 等, 2009. 汶川地震强余震(MS≥ 5.6) 的震源机制解及其与发震构造的关系. 中国科学: D辑, (4): 413-426. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXG202310014.htm 周仕勇, 2008. 川西及邻近地区地震活动性模拟和断层间相互作用研究. 地球物理学报, 51(1): 165-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200801022.htm -