• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    2022年芦山MS6.1地震应力触发及地震危险性分析

    肖阳 单斌 刘成利 周万里

    肖阳, 单斌, 刘成利, 周万里, 2024. 2022年芦山MS6.1地震应力触发及地震危险性分析. 地球科学, 49(8): 2979-2991. doi: 10.3799/dqkx.2023.053
    引用本文: 肖阳, 单斌, 刘成利, 周万里, 2024. 2022年芦山MS6.1地震应力触发及地震危险性分析. 地球科学, 49(8): 2979-2991. doi: 10.3799/dqkx.2023.053
    Xiao Yang, Shan Bin, Liu Chengli, Zhou Wanli, 2024. Stress Triggering and Seismic Hazard Assessment of the 2022 Lushan MS6.1 Earthquake. Earth Science, 49(8): 2979-2991. doi: 10.3799/dqkx.2023.053
    Citation: Xiao Yang, Shan Bin, Liu Chengli, Zhou Wanli, 2024. Stress Triggering and Seismic Hazard Assessment of the 2022 Lushan MS6.1 Earthquake. Earth Science, 49(8): 2979-2991. doi: 10.3799/dqkx.2023.053

    2022年芦山MS6.1地震应力触发及地震危险性分析

    doi: 10.3799/dqkx.2023.053
    基金项目: 

    国家重点研发计划项目 2017YFC1500302

    国家自然科学基金 41674106

    详细信息
      作者简介:

      肖阳(1998-),男,博士研究生,主要从事群震发震机制、地震危险性研究.ORCID:0000-0001-7341-5854. E-mail:1353373281@qq.com

      通讯作者:

      单斌,E-mail: binshan@cug.edu.cn

    • 中图分类号: P315.5

    Stress Triggering and Seismic Hazard Assessment of the 2022 Lushan MS6.1 Earthquake

    • 摘要: 2022年6月1日,四川芦山县地区发生了Ms6.1地震,造成4死14伤以及周围地区多县经济损失. 考虑到地区丰富的断层背景、历史地震以及地震空区,对该地区重要历史地震序列的回溯研究以及未来危险性评估对防震御灾具有重要意义. 基于弹性位错理论以及地区岩石圈分层模型,计算了Mw7.9汶川地震以及Ms7.0芦山地震对本次地震在不同深度上的同震及震后粘弹松弛效应影响,讨论历史地震对本次地震发生的影响. 同时,对未来十年该地区及周边活跃断层的应力积累进行计算,圈定未来地震危险性较高的区域. 结果表明:(1)Mw7.9汶川地震导致2022年Ms6.1芦山地震震中的同震应力增量为0.014 MPa,可能有效的促进了芦山地震的发生,而Ms7.0芦山地震的发生导致其应力释放0.174 MPa,起到抑制作用. 考虑到震后粘弹松弛的影响,本次地震震中发震前应力积累为0.086 MPa,已恢复到较高应力水平,具备发震背景;(2)大邑地震空区中段、抚边河断裂带未来库仑应力增量进一步提升,地震危险性较强.

       

    • 图  1  2022年芦山地震及周边历史地震、地区构造背景图

      Fig.  1.  2022 Lushan earthquake and historical earthquakes, regional tectonic background map in the surroundings

      图  2  本次芦山地震同震破裂模型

      a. 芦山MS6.1地震的破裂模型,箭头标示破裂滑移方向和大小,白色等值线为破裂开始时间;b. 震源时间函数.

      Fig.  2.  The coseismic rupture model of the Lushan earthquake

      图  3  2008年汶川Mw7.9地震和2013年芦山Ms7.0地震对2022年芦山地震的库仑应力影响

      Fig.  3.  Influence of Coulomb stress accumulated from 2008 Mw7.9 Wenchuan earthquake and 2013 Ms7.0 Lushan earthquakeon the 2022 Lushan earthquake

      图  4  2008年汶川Mw7.9地震和2013年芦山Ms7.0地震对2022年芦山地震的同震库仑应力影响

      a. 2008年汶川地震对本次地震的同震库仑应力影响;b. 2013年芦山地震对本次地震的同震库仑应力影响. 计算选取的参数同图 3

      Fig.  4.  Coseismic Coulomb stress changes caused by 2008 Mw7.9 Wenchuan earthquake and 2013 Ms7.0 Lushan earthquake on the 2022 Lushan earthquake

      图  5  不同深度2008年汶川Mw7.9地震和2013年芦山Ms7.0地震对2022年芦山地震的库仑应力影响

      a、b、c分别表示5 km、15 km、20 km深度的结果示意图

      Fig.  5.  Accumulated Coulomb stress changes caused by 2008 Mw7.9 Wenchuan earthquake and 2013 Ms7.0 Lushan earthquake at different depths on the 2022 Lushan earthquake

      图  6  不同深度2008年汶川Mw7.9地震和2013年芦山Ms7.0地震对2022年芦山地震的同震库仑应力影响

      a、b、c分别表示汶川地震对本次地震在5 km、15 km、20 km深度的同震影响;d、e、f分别表示2013年芦山地震对本次地震在5 km、15 km、20 km深度的同震影响

      Fig.  6.  Respective coseismic Coulomb stress changes caused by 2008 Mw7.9 Wenchuan earthquake and 2013 Ms7.0 Lushan earthquake at different depths on 2022 Lushan earthquake

      图  7  2022年芦山地震震中10 km深度库仑应力变化

      黑色实线表示2008年汶川地震和2013年芦山地震对同震及震后库仑应力之和,红色虚线表示这两个地震各自造成的同震库仑应力变化

      Fig.  7.  Variation of Coulomb stress at 10 km depth from the epicenter of the 2022 Lushan earthquake

      图  8  未来十年芦山地区周边断层地震危险性

      Fig.  8.  Earthquake hazard on surrounding faults in the Lushan area in the next decade

      图  9  各历史地震对周边断层的影响

      a、b、c分别表示2008年汶川地震、2013年芦山地震、2022年芦山地震对周围断层未来的影响. 白色五角星表示2008年汶川、2013年芦山、2022年芦山地震、2022年泸定地震,绿色正方形表示重要城市,黑色圆框圈闭的区域为历史地震空区,其中地震空区A为大邑地震空区

      Fig.  9.  Influence of historical earthquakes on surrounding faults

      表  1  地震位错模型

      Table  1.   Seismic dislocation model

      发震时间 震级(M) 纬度(°N) 经度(°E) Stirke/dip/rake/° 深度(km) 长(km) 宽(km) 走向滑动(m) 倾向滑动(m) 参考文献
      2008/5/12 Mw7.9 31.013 103.392 Wang et al.(2011) 8.2 Wang et al.(2011)
      2013/4/20 Ms7.0 30.291 102.983 214/38/102 17.6 43.652 18.197 -0.137 0.646 房立华等(2013)
      徐锡伟等(2013)
      2022/6/1 Mw6.0 30.370 102.940 211/39/98 17.0 11.482 7.079 -0.076 0.544
      下载: 导出CSV

      表  2  岩石圈分层模型

      Table  2.   Lithospheric layering model

      深度(km) P波波速(km/s) S波波速(km/s) 密度(kg/m3 粘滞系数(Pa·s)
      1 0~1 2.5 1.2 2.10 -
      2 1~2 4.0 2.1 2.40 -
      3 2~22 6.1 3.5 2.75 -
      4 22~42 6.3 3.6 2.80 4.0×1018
      5 42~46 7.2 4.0 3.10 2.0×1018
      下载: 导出CSV

      表  3  主要断层参数

      Table  3.   Major fault parameters

      断层名称 起点 终点 走向(°) 倾角(°) 滑动角(°) 滑移速率(mm/a)
      1 鲜水河A 100.534°E 31.448°N 101.933°E 30.038°N 142.0~159.5 90 0~45 15±5
      2 鲜水河B 101.966°E 30.010°N 102.336°E 29.029°N 142.0~159.5 90 0~45 15±5
      3 抚边河 101.720°E 32.267°N 102.526°E 31.371°N 160~205 >70 135 6.7±2.3
      4 岷江 103.679°E 32.133°N 103.646°E 31.752°N 180 45~56 45 <1
      5 彭县—灌县A 102.728°E 30.010°N 102.806°E 30.248°N 200~207 44 94 <1
      6 彭县—灌县B 102.806°E 30.286°N 103.657°E 30.971°N 200~207 44 94 <1
      7 北川—映秀A 102.257°E 29.714°N 102.403°E 30.171°N 205 33 142 0.07·0.5
      8 北川—映秀B 102.425°E 30.190°N 103.019°E 30.629°N 205 33 142 0.07·0.5
      9 江油—灌县 103.668°E 30.971°N 104.731°E 31.762°N 220 23 100 0.6
      10 江油—广元 104.743°E 31.771°N 105.403°E 32.229°N 225 50 104 <1
      11 龙泉山A 103.914°E 29.667°N 104.194°E 30.162°N 30 50 90
      12 龙泉山B 104.060°E 30.171°N 104.474°E 30.857°N 30 50 90
      下载: 导出CSV

      表  4  不同有效摩擦系数选取的影响

      Table  4.   Influence of different effective friction coefficients

      历史地震导致的2022年芦山地震震中库仑应力变化(MPa)
      μ'=0.0 μ'=0.2 μ'=0.4 μ'=0.6 μ'=0.8
      同震 -0.120 -0.156 -0.191 -0.227 -0.263
      同震+震后 -0.110 -0.141 -0.173 -0.204 -0.235
      下载: 导出CSV

      表  5  不同粘滞系数模型选取的影响

      Table  5.   Influence of different viscosity coefficients

      历史地震导致的2022年芦山地震震中库仑应力变化(MPa)
      模型Ⅰ 模型Ⅱ 模型Ⅲ 模型Ⅳ
      ηC/1021 Pa·s ηC/1020 Pa·s ηC/1019 Pa·s ηC/1018 Pa·s
      ηM/1020 Pa·s ηM/1019 Pa·s ηM/1018 Pa·s ηM/1017 Pa·s
      同震+震后 -0.154 -0.141 -0.027 +0.086
      下载: 导出CSV

      表  6  不同接收断层参数选取的影响

      Table  6.   Influence of different Receiving fault parameters

      选取不同接收断层参数时2022年芦山地震震中库仑应力变化(MPa)
      鲁人齐等(2022) 中国地震台网中心
      同震 -0.156 -0.125 -0.135 -0.085
      同震+震后 +0.086 +0.104 +0.111 +0.070
      下载: 导出CSV
    • Allen, C. R., Luo, Z. L., Qian, H., et al., 1991. Field Study of a Highly Active Fault Zone: The Xianshuihe Fault of Southwestern China. Geological Society of America Bulletin, 103(9): 1178-1199. https://doi.org/10.1130/0016-7606(1991)103<1178:fsoaha>2.3.co;2 doi: 10.1130/0016-7606(1991)103<1178:fsoaha>2.3.co;2
      Chen, Y. T., Yang, Z. X., Zhang, Y., et al., 2013. From 2008 Wenchuan Earthquake to 2013 Lushan Earthquake. Scientia Sinica Terrae, 43(6): 1064-1072(in Chinese with English abstract). doi: 10.1360/zd-2013-43-6-1064
      Deng, Q. D., Zhang, P. Z., Ran, Y. K., et al., 2003. Active Tectonics and Seismicity in China. Earth Science Frontiers, 10: 66-73(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2003.z1.012
      Fang, L. H., Wu, J. P., Wang, W. L., et al., 2013. Relocation of the Mainshock and Aftershock Sequences of M S7.0 Sichuan Lushan Earthquake. Chinese Science Bulletin, 58(28/29): 3451-3459(in Chinese with English abstract).
      Feng, Y. S., Xiong, X., Shan, B., et al., 2022. Coulomb Stress Changes Due to the 2021 MS7.4 Maduo Earthquake and Expected Seismicity Rate Changes in the Surroundings. Science China Earth Sciences, 65(4): 675-686(in Chinese with English abstract). doi: 10.1007/s11430-021-9882-8
      Gong, M., Xu, X. W., Li, K., 2020. Fault Geometry Responsible for the Initial Rupture Process of Wenchuan Earthquake. Chinese Journal of Geophysics, 63(3): 1224-1234(in Chinese with English abstract).
      Harris, R. A., Simpson, R. W., 1998. Suppression of Large Earthquakes by Stress Shadows: A Comparison of Coulomb and Rate‐and‐State Failure. Journal of Geophysical Research: Solid Earth, 103(B10): 24439-24451. https://doi.org/10.1029/98jb00793
      Huang, L. Y., Cheng, H. H., Zhang, H., et al., 2019. Coseismic and Postseismic Stress Evolution Caused by the 2008 Wenchuan Earthquake and Its Effects on the 2017 MS 7.0 Jiuzhaigou Earthquake. Chinese J. Geophys. , 62(4): 1268-1281(in Chinese with English abstract).
      Huang, M. H., Bürgmann, R., Freed, A. M., 2014. Probing the Lithospheric Rheology across the Eastern Margin of the Tibetan Plateau. Earth and Planetary Science Letters, 396(8): 88-96. https://doi.org/10.1016/j.epsl.2014.04.003
      Jia, K., Zhou, S., Wang, R., 2012. Stress Interactions within the Strong Earthquake Sequence from 2001 to 2010 in the Bayankala Block of Eastern Tibet. Bulletin of the Seismological Society of America, 102(5): 2157-2164. https://doi.org/10.1785/0120110333
      Jia, K., Zhou, S. Y., Zhuang, J. C., et al., 2018. Did the 2008 Mw 7.9 Wenchuan Earthquake Trigger the Occurrence of the 2017 Mw 6.5 Jiuzhaigou Earthquake in Sichuan, China?. Journal of Geophysical Research: Solid Earth, 123(4): 2965-2983. https://doi.org/10.1002/2017jb015165
      Jia, K., Zhou, S., Zhuang, J., et al., 2014. Possibility of the Independence between the 2013 Lushan Earthquake and the 2008 Wenchuan Earthquake on Longmen Shan Fault, Sichuan, China. Seismological Research Letters, 85(1): 60-67. https://doi.org/10.1785/0220130115
      Jin, Z. T., Wan, Y. G., Liu, Z. C., et al., 2019. The Static Stress Triggering Influences of the 2017 MS7.0 Jiuzhaigou Earthquake on Neighboring Areas. Chinese J. Geophys. , 62(4): 1282-1299(in Chinese with English abstract).
      King, G. C. P., Hubert-Ferrari, A., Nalbant, S. S., et al., 2001. Coulomb Interactions and the 17 August 1999 Izmit, Turkey Earthquake. Comptes Rendus de l'Académie des Science-Series IIA-Earth and Planetary Science, 333(9): 557-569. https://doi.org/10.1016/s1251-8050(01)01676-7
      King, G. C. P., Stein, R. S., Lin, J., 1994. Static Stress Changes and the Triggering of Earthquakes. Bulletin of the Seismological Society of America, 84(3): 935-953.160(in Chinese with English abstract).
      Li, B., Xie, F. R., Huang, J. S., et al., 2022. In Situ Stress State and Seismic Hazard in the Dayi Seismic Gap of the Longmenshan Thrust Belt. Science China Earth Sciences, 65(7): 1388-1398(in Chinese with English abstract). doi: 10.1007/s11430-021-9915-4
      Li, P. E., Liao, L., Feng, J. Z., 2022. Relationship between Stress Evolution and Aftershocks after Changning M 6.0 Earthquake in Sichuan on 17 June, 2019. Earth Science, 47(6): 2149-2164(in Chinese with English abstract).
      Li, Z. W., Ni, S. D., Hao, T. Y., et al., 2012. Uppermost Mantle Structure of the Eastern Margin of the Tibetan Plateau from Interstation Pn Traveltime Difference Tomography. Earth and Planetary Science Letters, 335-336(3): 195-205. https://doi.org/10.1016/j.epsl.2012.05.005
      Liang, C. T., Huang, Y. L., Wang, C. L., et al., 2018. Progress in the Studies of the Seismic Gap between the 2008 Wenchuan and 2013 Lushan Earthquakes. Chinese J. Geophys. , 61(5): 1996-2010(in Chinese with English abstract).
      Liu, C., Zhu, B. J., Shi, Y. L., 2020. Do the Two Seismic Gaps in the Southwestern Section of the Longmen Shan Fault Present the Same Seismic Hazard?. Journal of Geophysical Research: Solid Earth, 125(3): 1-15. https://doi.org/10.1029/2019jb018160
      Liu, C. L., Zheng, Y., Ge, C., et al., 2013. Rupture Process of the M S7.0 Lushan Earthquake, 2013. Science China Earth Sciences, 56(7): 1187-1192(in Chinese with English abstract).
      Lu, R. Q., Fang, L. H., Guo, Z., et al., 2022. Detailed Structural Characteristics of the 1 June 2022 MS 6.1 Sichuan Lushan Strong Earthquake. Chinese Journal of Geophysics, 65(11): 4299-4310(in Chinese with English abstract). doi: 10.6038/cjg2022Q0438
      Luo, Y., Zhao, L., Tian, J. H., 2019. Spatial and Temporal Variations of Stress Field in the Longmenshan Fault Zone after the 2008 Wenchuan, China Earthquake. Tectonophysics, 767(2): 228172. https://doi.org/10.1016/j.tecto.2019.228172
      Pei, S. P., Zhang, H. J., Su, J. R., et al., 2014. Ductile Gap between the Wenchuan and Lushan Earthquakes Revealed from the Two-Dimensional Pg Seismic Tomography. Scientific Reports, 4(1): 1-15. https://doi.org/10.1038/srep06489
      Pope, N., Mooney, W. D., 2020. Coulomb Stress Models for the 2019 Ridgecrest, California Earthquake Sequence. Tectonophysics, 791: 228555. https://doi.org/10.1016/j.tecto.2020.228555
      Wang, Q., Qiao, X. J., Lan, Q. G., et al., 2011. Rupture of Deep Faults in the 2008 Wenchuan Earthquake and Uplift of the Longmen Shan. Nature Geoscience, 4(9): 634-640. https://doi.org/10.1038/ngeo1210
      Scholz, C. H., Cowie, P. A., 1990. Determination of Total Strain from Faulting Using Slip Measurements. Nature, 346(6287): 837-839. https://doi.org/10.1038/346837a0
      Shan, B., Xiong, X., Zheng, Y., et al., 2008. Stress Changes on Major Faults Caused by M W7.9 Wenchuan Earthquake, may 12, 2008. Science in China Series D: Earth Sciences, 52(5): 593-601(in Chinese with English abstract).
      Shan, B., Xiong, X., Zheng, Y., et al., 2013. Stress Changes on Major Faults Caused by 2013 Lushan Earthquake and its Relationship with 2008 Wenchuan Earthquake. Science China Earth Sciences, 56(7): 1169-1176. https://doi.org/10.1007/s11430-013-4642-1
      Shan, B., Zheng, Y., Liu, C. L., et al., 2017. Coseismic Coulomb Failure Stress Changes Caused by the 2017 M7.0 Jiuzhaigou Earthquake, and its Relationship with the 2008 Wenchuan Earthquake. Science China Earth Sciences, 60(12): 2181-2189(in Chinese with English abstract). doi: 10.1007/s11430-017-9125-2
      Shao, Y. X., Zou, X. B., Yuan, D. Y., et al., 2021. Late Quaternary Slip along Yangguan Fault at Northeastern Section of Altyn Tagh Fault and Implications for Seismic Risk. Earth Science, 46(2): 683-696(in Chinese with English abstract).
      Shao, Z. G., Wang, R. J., Wu, Y. Q., et al., 2011. Rapid Afterslip and Short-Term Viscoelastic Relaxation Following the 2008 MW7.9 Wenchuan Earthquake. Earthquake Science, 24(2): 163-175. https://doi.org/10.1007/s11589-010-0781-z
      Shao, Z. G., Zhou, L. Q., Jiang, C. S., et al., 2010. The Impact of Wenchuan MS8.0 Earthquake on the Seismic Activity of Surrounding Faults. Chinese J. Geophys. , 53(8): 1784-1795(in Chinese with English abstract).
      Stein, R. S., 1999. The Role of Stress Transfer in Earthquake Occurrence. Nature, 402(6762): 605-609. https://doi.org/10.1038/45144
      Toda, S., Stein, R. S., Richards-Dinger, K., et al., 2005. Forecasting the Evolution of Seismicity in Southern California: Animations Built on Earthquake Stress Transfer. Journal of Geophysical Research: Solid Earth, 110(B5): 1-15. https://doi.org/10.1029/2004jb003415
      Wan, Y. G., Shen, Z. K., Sheng, Z. S., et al., 2009. The Influence of 2008 Wenchuan Earthquake on Surrounding Faults. Acta Seismologica Sinica, 31(2): 128-139(in Chinese with English abstract). doi: 10.3321/j.issn:0253-3782.2009.02.002
      Wang, C. Y., Han, W. B., Wu, J. P., et al., 2003. Crustal Structure beneath the Songpan: Garze Orogenic Belt. Acta Seismologica Sinica, 16(3): 237-250(in Chinese with English abstract). doi: 10.1007/s11589-003-0028-3
      Wang, J., Zhang, G. W., Li, C. F., et al., 2018. Correlating Seismicity to Curie-Point Depths in the Eastern Margin of the Tibetan Plateau. Chinese J. Geophys. , 61(5): 1840-1852(in Chinese with English abstract).
      Wang, R. J., Lorenzo-Martín, F., Roth, F., 2006. PSGRN/PSCMP: a New Code for Calculating Co- And Post-Seismic Deformation, Geoid and Gravity Changes Based on the Viscoelastic-Gravitational Dislocation Theory. Computers & Geosciences, 32(4): 527-541. https://doi.org/10.1016/j.cageo.2005.08.006
      Wang, X. S., Lu, J., Xie, Z. J., et al., 2015. Focal Mechanisms and Tectonic Stress Field in the North-South Seismic Belt of China. Chinese Journal of Geophysics, 58(11): 4149-4162(in Chinese with English abstract). doi: 10.6038/cjg20151122
      Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/bssa0840040974
      Wessel, P., Smith, W. H. F., 1998. New, Improved Version of Generic Mapping Tools Released. Eos, Transactions American Geophysical Union, 79(47): 579-579. https://doi.org/10.1029/98eo00426
      Wu, J., Yao, D. D., Meng, X. F., et al., 2017. Spatial‐temporal Evolutions of Early Aftershocks Following the 2013 Mw 6.6 Lushan Earthquake in Sichuan, China. Journal of Geophysical Research: Solid Earth, 122(4): 2873-2889. https://doi.org/10.1002/2016jb013706
      Xiong, X., Shan, B., Zheng, Y., et al., 2010. Stress Transfer and Its Implication for Earthquake Hazard on the Kunlun Fault, Tibet. Tectonophysics, 482
      Xu, C. J., Liu, Y., Wen, Y. M., 2009. Mw 7.9 Wenchuan Earthquake Slip Distribution Inversion from GPS Measurements. Acta Geodaetica et Cartographica Sinica, 38(3): 195-201(in Chinese with English abstract). doi: 10.3321/j.issn:1001-1595.2009.03.002
      Xu, X. W., Wen, X. Z., Han, Z. J., et al., 2013. Lushan M S7.0 Earthquake: A Blind Reserve-Fault Event. Chinese Science Bulletin, 58(28/29): 3437-3443(in Chinese with English abstract).
      Zhang, C. J., Cao, J. L., Shi, Y. L., 2009. Studying the Viscosity of Lower Crust of Qinghai-Tibet Plateau According to Post-Seismic Deformation. Science in China Series D: Earth Sciences, 52(3): 411-419(in Chinese with English abstract). doi: 10.1007/s11430-009-0028-9
      Zhao, J., Ren, J. W., Jiang, Z. S., et al., 2018. Fault Locking and Deformation Characteristics in Southwestern Segment of the Longmenshan Fault. J. Seismol. Res. , 41: 216-225(in Chinese with English abstract).
      Zhao, J., Wu, Y. Q., Jiang, Z. S., et al., 2013. Fault Locking and Dynamic Deformation of the Longmenshan Fault Zone before the 2013 Lushan MS 7.0 Earthquake. Acta Seismologica Sinica, 35(5): 681-691(in Chinese with English abstract). doi: 10.3969/j.issn.0253-3782.2013.05.007
      Zheng, Y., Ma, H. S., Lü, J., et al., 2009. Source Mechanism of Strong Aftershocks (MS⩾5.6) of the 2008/05/12 Wenchuan Earthquake and the Implication for Seismotectonics. Science in China Series D: Earth Sciences, 52(6): 739-753. https://doi.org/10.1007/s11430-009-0074-3
      Zhou, S. Y., 2008. Seismicity Simulation in Western Sichuan of China Based on the Fault Interaction Sand Its Implication on the Estimation of the Regional Earthquake Risk. Chinese Journal of Geophysics, 51(1): 165-174(in Chinese with English abstract).
      陈运泰, 杨智娴, 张勇, 等, 2013. 从汶川地震到芦山地震. 中国科学: 地球科学, 43(6): 1064-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306015.htm
      邓起东, 张培震, 冉勇康, 等, 2003. 中国活动构造与地震活动. 地学前缘, 10: 66-73 doi: 10.3321/j.issn:1005-2321.2003.z1.012
      房立华, 吴建平, 王未来, 等, 2013. 四川芦山Ms7.0级地震及其余震序列重定位. 科学通报, 58(20): 1901-1909. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320004.htm
      冯雅杉, 熊熊, 单斌, 等, 2022. 2021年玛多MS7.4地震导致的周边地区库仑应力加载及地震活动性变化. 中国科学: 地球科学, 52(6): 1100-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202206010.htm
      宫猛, 徐锡伟, 李康, 2020. 汶川MW7.9地震起始破裂断层几何结构. 地球物理学报, 63(3): 1224-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202003038.htm
      黄禄渊, 程惠红, 张怀, 等, 2019. 2008年汶川地震同震-震后应力演化及其对2017年九寨沟MS 7.0地震的影响. 地球物理学报, 62(4): 1268-1281. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202101012.htm
      靳志同, 万永革, 刘兆才, 等, 2019. 2017年九寨沟MS 7.0地震对周围地区的静态应力影响. 地球物理学报, 62(4): 1282-1299. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201912009.htm
      李兵, 谢富仁, 黄金水, 等, 2022. 龙门山断裂带大邑地震空区地应力状态与地震危险性. 中国科学: 地球科学, https://doi.org/10.1360/SSTe-2021-0280
      李平恩, 廖力, 奉建州, 2022. 2019年6月17日四川长宁6.0级地震震后应力演化与余震关系. 地球科学, 47(6): 2149-2164. doi: 10.3799/dqkx.2021.143
      梁春涛, 黄焱羚, 王朝亮, 等, 2018. 汶川和芦山地震之间地震空区综合研究进展. 地球物理学报, 61(5): 1996-2010. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201805026.htm
      刘成利, 郑勇, 葛粲, 等, 2013. 2013年芦山7.0级地震的动态破裂过程. 中国科学: 地球科学, 43(06): 1020-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306010.htm
      鲁人齐, 房立华, 郭志, 等, 2022. 2022年6月1日四川芦山MS 6.1强震构造精细特征. 地球物理学报, 65(11): 4299-4310. doi: 10.6038/cjg2022Q0438
      单斌, 熊熊, 郑勇, 等, 2009. 2008年5月12日MW7.9汶川地震导致的周边断层应力变化. 中国科学: D辑, (5): 537-545. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200905001.htm
      单斌, 熊熊, 郑勇, 等, 2013. 2013年芦山地震导致的周边断层应力变化及其与2008年汶川地震的关系. 中国科学: 地球科学, 43(6): 1002-1009. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306008.htm
      单斌, 郑勇, 刘成利, 等, 2017. 2017年M7.0级九寨沟地震同震库仑应力变化及其与2008年汶川地震的关系. 中国科学: 地球科学, 47(11): 1329-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201711005.htm
      邵延秀, 邹小波, 袁道阳, 等, 2021. 阿尔金断裂东北段敦煌阳关断裂晚第四纪活动性及其强震危险性影响分析. 地球科学, 46(2): 683-696. doi: 10.3799/dqkx.2020.082
      邵志刚, 周龙泉, 蒋长胜, 等, 2010. 2008年汶川MS8.0地震对周边断层地震活动的影响. 地球物理学报, 2010, 53(8): 1784-1795. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201008005.htm
      万永革, 沈正康, 盛书中, 等, 2009. 2008年汶川大地震对周围断层的影响. 地震学报, 31(2): 128-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200902002.htm
      王椿镛, 韩渭宾, 吴建平, 等, 2003. 松潘-甘孜造山带地壳速度结构. 地震学报, 25(3): 229-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200303000.htm
      王健, 张广伟, 李春峰, 等, 2018. 青藏高原东缘地震活动与居里点深度之间的相关性. 地球物理学报, 61(5): 1840-1852. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201805014.htm
      王晓山, 吕坚, 谢祖军, 等, 2015. 南北地震带震源机制解与构造应力场特征. 地球物理学报, 58(11): 4149-4162. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511023.htm
      许才军, 刘洋, 温扬茂, 2009. 利用GPS资料反演汶川MW7.9级地震滑动分布. 测绘学报, 38(3). https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200903002.htm
      徐锡伟, 闻学泽, 韩竹军, 等, 2013. 四川芦山7.0级强震: 一次典型的盲逆断层型地震. 科学通报, 58(20): 1887-1893. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320002.htm
      张晁军, 曹建玲, 石耀霖, 2008. 从震后形变探讨青藏高原下地壳黏滞系数. 中国科学: D辑, 38(10): 1250-1257. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200810009.htm
      赵静, 任金卫, 江在森, 等, 2018. 龙门山断裂带西南段闭锁与变形特征. 地震研究, 41(2): 216-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201802009.htm
      赵静, 武艳强, 江在森, 等, 2013. 芦山地震前龙门山断裂带闭锁程度与变形动态特征研究. 地震学报, 35(5): 681-691. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201305007.htm
      郑勇, 马宏生, 吕坚, 等, 2009. 汶川地震强余震(MS≥ 5.6) 的震源机制解及其与发震构造的关系. 中国科学: D辑, (4): 413-426. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXG202310014.htm
      周仕勇, 2008. 川西及邻近地区地震活动性模拟和断层间相互作用研究. 地球物理学报, 51(1): 165-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200801022.htm
    • 加载中
    图(9) / 表(6)
    计量
    • 文章访问数:  441
    • HTML全文浏览量:  76
    • PDF下载量:  50
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-02
    • 刊出日期:  2024-08-25

    目录

      /

      返回文章
      返回