• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    考虑地层变异和趋势非线性的海床波速结构非平稳随机场模拟方法

    张岩 陈国兴 赵凯 方怡 彭艳菊

    张岩, 陈国兴, 赵凯, 方怡, 彭艳菊, 2024. 考虑地层变异和趋势非线性的海床波速结构非平稳随机场模拟方法. 地球科学, 49(11): 4225-4237. doi: 10.3799/dqkx.2023.055
    引用本文: 张岩, 陈国兴, 赵凯, 方怡, 彭艳菊, 2024. 考虑地层变异和趋势非线性的海床波速结构非平稳随机场模拟方法. 地球科学, 49(11): 4225-4237. doi: 10.3799/dqkx.2023.055
    Zhang Yan, Chen Guoxing, Zhao Kai, Fang Yi, Peng Yanjü, 2024. Non-Stationary Random Field Simulation Method of Seabed Site Shear Wave Velocity Structures Considering Stratigraphy Variation and Nonlinear Trend. Earth Science, 49(11): 4225-4237. doi: 10.3799/dqkx.2023.055
    Citation: Zhang Yan, Chen Guoxing, Zhao Kai, Fang Yi, Peng Yanjü, 2024. Non-Stationary Random Field Simulation Method of Seabed Site Shear Wave Velocity Structures Considering Stratigraphy Variation and Nonlinear Trend. Earth Science, 49(11): 4225-4237. doi: 10.3799/dqkx.2023.055

    考虑地层变异和趋势非线性的海床波速结构非平稳随机场模拟方法

    doi: 10.3799/dqkx.2023.055
    基金项目: 

    国家自然科学基金面上项目 51978334

    国家自然科学基金面上项目 51978335

    详细信息
      作者简介:

      张岩(1992-),男,博士研究生,主要从事岩土地震工程研究. ORCID:0000-0002-6572-1744. E-mail:zzzzyan123@163.com

      通讯作者:

      陈国兴, E-mail: gxc6307@163.com

    • 中图分类号: P694

    Non-Stationary Random Field Simulation Method of Seabed Site Shear Wave Velocity Structures Considering Stratigraphy Variation and Nonlinear Trend

    • 摘要: 地层及其剪切波速(Vs)结构的空间变异性对场地地震反应有显著影响. 基于渤海湾海床钻孔资料,采用与耦合马尔可夫链相比对随机地层模拟范围更广、对地层界限模拟效果更光滑的嵌入式马尔可夫链模型模拟钻孔深度h以浅地层的变异性,模拟结果具有较高的精度.采用点估计法给出了以幂函数和线性函数描述海床Vsh变化的趋势时相应Vs的均值和标准差随h的变化.基于实测钻孔的Vs剖面,采用非平稳条件随机场模拟随机Vs-结构的空间变异性. 发现考虑地层的变异性以及忽略Vs沿h变化的非线性趋势均显著增大随机Vs-结构模拟结果的标准差.采用隶属函数和模糊马尔可夫链模型,建立海域钻孔深度外延的未知地层和近岸陆地相应深度已知地层的相关性和转移概率,给出了钻孔深度以深的海床随机地层及其Vs-结构的可能空间分布. 为开展海洋工程场地地震反应分析提供了合理的随机地层和Vs-结构资料.

       

    • 图  1  随机地层空间变异性的模拟

      Fig.  1.  Simulation of spatial variabilities of random stratigraphy

      图  2  地层转移的一维马尔可夫链模型

      Fig.  2.  1D Markov chain model of stratigraphy transfers

      图  3  二维海床和剪切波速结构的随机模拟流程

      Fig.  3.  Random simulation flow of 2D seabed stratigraphy and S-wave velocity structures

      图  4  耦合和嵌入式马尔可夫链模型模拟效果对比[基于(祁小辉等, 2017)的钻孔资料]

      Fig.  4.  Comparison of simulation effects of coupled and embedded Markov chain models (based on borehole data given by Qi et al., 2017)

      图  5  各钻孔剖面中的土类和剪切波速值

      Fig.  5.  Soil profiles and the corresponding S-wave velocity values in each borehole

      图  6  随机地层和随机Vs-结构的变异性和模拟次数关系

      Fig.  6.  Variabilities of random stratigraphy and random Vs -structures with simulation times

      图  7  网格尺寸对随机地层模拟效果的影响

      Fig.  7.  Influences of grid sizes on the simulation effects of random stratigraphy

      图  8  随机地层模拟精度的频数分布

      Fig.  8.  Frequency distribution of random stratigraphy simulation accuracy

      图  9  图 7b地层剪切波速结构的一种可能分布

      Fig.  9.  A possible distribution of S-wave velocity structure of the stratigraphy shown in Fig. 7b

      图  10  随机地层空间变异性对随机Vs-结构空间变异性的影响

      Fig.  10.  Influence of random stratigraphy spatial variabilities on random Vs-structure spatial variabilities

      图  11  以线性函数为趋势函数得到的随机Vs-结构模拟结果的标准差

      Fig.  11.  Standard deviation of random Vs-structure simulation results obtained with linear function as trend function

      图  12  从近岸陆地剖面[秦蕴珊(1985)给出]中提取的虚拟钻孔

      Fig.  12.  Virtual boreholes extracted from the near-shore land cross-section given by Qin (1985)

      图  13  研究区和近岸陆地虚拟钻孔之间距离的计算

      Fig.  13.  Calculation of distance between virtual boreholes in the investigation region and the nearshore land

      图  14  研究区内和近岸陆地虚拟钻孔之间隶属关系的确定

      Fig.  14.  Determination of affiliation between virtual boreholes in the investigation region and the nearshore land

      图  15  模拟的研究区自海床表面到相对高程-270 m范围内随机地层(a)和随机Vs-结构(b)的一种可能分布

      Fig.  15.  A possible distribution for random stratigraphy (a) and random Vs-structure (b) from the seabed surface to the relative elevation of - 270 m in the investigation region

      表  1  土体剪切波速拟合参数的统计特征

      Table  1.   Statistical characteristics of S-wave velocity fitting parameters of soils

      土类 参数a 参数b
      均值 标准差 均值 标准差
      粉砂 25.13 3.48 0.65 0.06
      粉土 23.02 4.24 0.58 0.05
      粉质黏土 33.14 4.00 0.56 0.03
      砂质粉土 73.35 7.78 0.40 0.04
      细砂 111.59 12.47 0.33 0.02
      下载: 导出CSV
    • Carle, S. F., Fogg, G. E., 1997. Modeling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains. Mathematical Geology, 29(7): 891-918. https://doi.org/10.1023/A: 1022303706942 doi: 10.1023/A:1022303706942
      Carle, S. F., Fogg, G. E., 2020. Integration of Soft Data into Geostatistical Simulation of Categorical Variables. Frontiers in Earth Science, 8: 565707. https://doi.org/10.3389/feart.2020.565707
      Chen, G. X., Zhu, J., Qiang, M. Y., et al., 2018. Three-Dimensional Site Characterization with Borehole Data-A Case Study of Suzhou Area. Engineering Geology, 234: 65-82. https://doi.org/10.1016/j.enggeo.2017.12.019
      Chen, Z. S., Yuan, X. M., Sun, R., et al., 2019. Impact of Uncertainty in In-Situ Shear-Wave Velocity on the Judgement of Site Stiffness. Rock and Soil Mechanics, 40(7): 2748-2754, 2798 (in Chinese with English abstract).
      Cui, P., Wang, J., Wang, H., et al., 2022. How to Scientifically Prevent, Manage and Prewarn Catastrophic Risk? Earth Science, 47(10) : 3897-3899 (in Chinese with English abstract).
      Deng, Z. P., Li, D. Q., Qi, X. H., et al., 2018. Simulation of Geological Uncertainty Using Modified Generalized Coupled Markov Chain. Chinese Journal of Geotechnical Engineering, 40(11): 2041-2050 (in Chinese with English abstract). doi: 10.11779/CJGE201811010
      Elfeki, A., Dekking, M. A., 2001. Markov Chain Model for Subsurface Characterization: Theory and Applications. Mathematical Geology, 33(5): 569-589. doi: 10.1023/A:1011044812133
      Gong, W. P., Juang, C. H., Martin, J. R., et al., 2018. Probabilistic Analysis of Tunnel Longitudinal Performance Based upon Conditional Random Field Simulation of Soil Properties. Tunnelling and Underground Space Technology, 73: 1-14. https://doi.org/10.1016/j.tust.2017.11.026
      Gong, W. P., Zhao, C., Juang, C. H., et al., 2021. Coupled Characterization of Stratigraphic and Geo-Properties Uncertainties-A Conditional Random Field Approach. Engineering Geology, 294: 106348. https://doi.org/10.1016/j.enggeo.2021.106348
      Griffiths, D. V., Yu, X., 2015. Another Look at the Stability of Slopes with Linearly Increasing Undrained Strength. Géotechnique, 65(10): 824-830. https://doi.org/10.1680/geot.14.t.030
      Hoffman, Y., 2008. Gaussian Fields and Constrained Simulations of the Large-Scale Structure. Lecture Notes in Physics. Berlin, Heidelberg: Springer Berlin Heidelberg: 565-583. https://doi.org/10.1007/978-3-540-44767-2_17
      Jiang, S. H., Huang, J. S., 2018. Modeling of Non-Stationary Random Field of Undrained Shear Strength of Soil for Slope Reliability Analysis. Soils and Foundations, 58(1): 185-198. https://doi.org/10.1016/j.sandf.2017.11.006
      Li, J. H., Cai, Y. M., Li, X. Y., et al., 2019. Simulating Realistic Geological Stratigraphy Using Direction-Dependent Coupled Markov Chain Model. Computers and Geotechnics, 115: 103147. https://doi.org/10.1016/j.compgeo.2019.103147
      Li, Z., Wang, X. R., Wang, H., et al., 2016. Quantifying Stratigraphic Uncertainties by Stochastic Simulation Techniques Based on Markov Random Field. Engineering Geology, 201: 106-122. https://doi.org/10.1016/j.enggeo.2015.12.017
      Phoon, K. K., Cao, Z. J., Ji, J., et al., 2022. Geotechnical Uncertainty, Modeling, and Decision Making. Soils and Foundations, 62(5): 101189. https://doi.org/10.1016/j.sandf.2022.101189
      Qi, X. H., Li, D. Q., Cao, Z. J., et al., 2017. Uncertainty Analysis of Slope Stability Considering Geological Uncertainty. Rock and Soil Mechanics, 38(5): 1385-1396 (in Chinese with English abstract).
      Qi, X. H., Li, D. Q., Phoon, K. K., et al., 2016. Simulation of Geologic Uncertainty Using Coupled Markov Chain. Engineering Geology, 207: 129-140. https://doi.org/10.1016/j.enggeo.2016.04.017
      Qin, Y. S., 1985. Geology of the Bohai Sea. Science Press, Beijing (in Chinese with English abstract).
      Sun, Q., 2019. Improvement and Application of Groundwater Flow Stochastic Simulation Method Based on TPOGS (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Zhang, W. G., Wang, Q., Chen, F. Y., et al., 2021. Reliability Analysis of Slope and Random Response of Anti-Sliding Pile Considering Spatial Variability of Rock Mass Properties. Rock and Soil Mechanics, 42(11): 3157-3168 (in Chinese with English abstract).
      Zhang, W. L., Deng, L., Pang, Y. T., et al., 2022. CIHA Method for Rapid and Accurate Vulnerability Analysis of Embankment Dams under Strong Earthquakes. Earth Science, 47(12): 4390-4400 (in Chinese with English abstract).
      Zhang, Y., Chen, G. X., Zhao, K., et al., 2023. Uncertainties of Shear Modulus Reduction and Damping Ration Curves of Marine Soils. Engineering Mechanics, 40(5): 161-171 (in Chinese with English abstract).
      Zhao, F., Yu, S. B., Li, B., et al., 2022. Research Advances on Large-Scale Shaking Table Test for Rock Slopes under Earthquake. Earth Science, 47(12): 4498-4512 (in Chinese with English abstract).
      Zhu, J., Chen, G. X., Xu, H. G., 2015. Effect of Seismic Bedrock Interface Depth on Surface Motion Parameters of Deep Site. Chinese Journal of Geotechnical Engineering, 37(11): 2079-2087 (in Chinese with English abstract). doi: 10.11779/CJGE201511020
      陈卓识, 袁晓铭, 孙锐, 等, 2019. 土层剪切波速不确定性对场地刚性判断的影响. 岩土力学, 40(7): 2748-2754, 2798.
      崔鹏, 王姣, 王昊, 等, 2022. 如何科学防控与预警巨灾风险? 地球科学, 47(10): 3897-3899. doi: 10.3799/dqkx.2022.855
      邓志平, 李典庆, 祁小辉, 等, 2018. 基于广义耦合马尔可夫链的地层变异性模拟方法. 岩土工程学报, 40(11): 2041-2050. doi: 10.11779/CJGE201811010
      祁小辉, 李典庆, 曹子君, 等, 2017. 考虑地层变异的边坡稳定不确定性分析. 岩土力学, 38(5): 1385-1396.
      秦蕴珊, 1985. 渤海地质. 北京: 科学出版社.
      孙倩, 2019. 基于T-PROGS的地下水流随机模拟方法改进和应用(博士学位论文). 北京: 中国地质大学.
      仉文岗, 王琦, 陈福勇, 等, 2021. 考虑岩体空间变异性的边坡可靠度分析及抗滑桩随机响应研究. 岩土力学, 42(11): 3157-3168.
      张伟丽, 邓黎, 庞于涛, 等, 2022. 强震作用下土石坝易损性快速精准分析的CIHA方法. 地球科学, 47(12): 4390-4400. doi: 10.3799/dqkx.2022.362
      张岩, 陈国兴, 赵凯, 等, 2023. 海洋土动剪切模量比和阻尼比预测不确定性特性. 工程力学, 40(5): 161-171.
      赵飞, 俞松波, 李博, 等, 2022. 地震作用下岩质边坡大型振动台试验研究进展. 地球科学, 47(12): 4498-4512. doi: 10.3799/dqkx.2022.317
      朱姣, 陈国兴, 许汉刚, 2015. 地震基岩面的选取对深厚场地地表地震动参数的影响. 岩土工程学报, 37(11): 2079-2087. doi: 10.11779/CJGE201511020
    • 加载中
    图(15) / 表(1)
    计量
    • 文章访问数:  258
    • HTML全文浏览量:  62
    • PDF下载量:  26
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-02-21
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回