Quantitative Restoration of Eroded Carbonate Strata Thickness by Milankovitch Cycle: A Case Study of Ordovician Strata in Lunnan Paleo⁃Uplift, Tarim Basin
-
摘要: 剥蚀量定量恢复对盆地构造研究意义重大.以塔里木盆地轮南古隆起奥陶系一间房-鹰山组为例,通过钍钾比(Th/K)曲线的米兰科维奇旋回分析定量恢复碳酸盐岩地层剥蚀量,取得3项认识:(1)一间房-鹰山组米兰科维奇旋回特征清晰,较长偏心率周期(413 ka、125 ka)不发育,短偏心率周期(95 ka)、斜度周期、岁差周期较为发育.(2)一间房-鹰山组发育86个短偏心率周期旋回,通过对比剥蚀区与内幕区短偏心率周期旋回数量差异,定量恢复8口井剥蚀量.(3)一间房-鹰山组剥蚀区位于H6⁃TS2⁃TS1⁃LG36井以北,存在西北部、北部两个剥蚀中心,剥蚀量分别超过300 m和250 m. 研究成果证实米兰科维奇旋回分析可实现碳酸盐岩地层剥蚀量定量恢复,对海相盆地古构造恢复具有良好的借鉴意义.Abstract: It is of great significance to quantitatively restore eroded strata for tectonic study in a basin. In this paper, through spectral analysis of the ln (Th/K) curve, an indicator of climate variation resulting from Milankovitch cycles, the eroded strata of Ordovician Yijianfang and Yingshan formations are quantitatively restored on Lunnan paleo⁃uplift of Tarim Basin. The following three results are concluded: (1)Milankovitch cycles are characterized by undeveloped longer eccentricity period (413 ka, 125 ka), well developed short eccentricity period of 95 ka, slope period and precession period in Yijianfang and Yingshan formations. (2) There are 86 short eccentricity periods developed in Yijianfang and Yingshan formations. Erosion thicknesses in 8 wells are restored quantitively by comparing the amount of Milankovitch cycles in short eccentricity period in denudation zones and inside strata. (3)Distributed in the north of well zone H6⁃TS2⁃TS1⁃LG36, the denudation zones include northwestern and northern centers, with an erosion thickness of over 300 m and 250 m respectively. It is approved that Milankovitch cycle analysis is a proxy for quantitative restoration of eroded carbonate strata and provide insight for paleo⁃structures restoration in marine carbonate basins.
-
表 1 中奥陶世米兰科维奇旋回周期及相互之间比例关系(据Berger et al., 1992)
Table 1. Middle Ordovician milankovic cycle cycle cycle and its proportional relationship (according to Berger et al., 1992)
基准周期 偏心率周期(ka) 斜度周期(ka) 岁差周期(ka) 413.000(E3) 125.000(E2) 95.000(E1) 36.578(O2) 30.134(O1) 19.131(P2) 16.263(P1) 比值 1.000 0.303 0.230 0.089 0.073 0.046 0.039 - 1.000 0.760 0.293 0.241 0.153 0.130 - - 1.000 0.385 0.317 0.201 0.171 - - - 1.000 0.814 0.517 0.440 - - - - 1.000 0.635 0.540 表 2 内幕区一间房-鹰山组米兰科维奇旋回厚度计算
Table 2. Calculation of Milankovitch cycle thickness of Yijianfang Yingshan formation in inner area
井名 类别 旋回厚度(m) 偏心率周期(ka) 斜度周期(ka) 岁差周期(ka) 413 125 95 36.578 30.134 19.131 16.263 (E3) (E2) (E1) (O2) (O1) (P2) (P1) H6 厚度 8.40 3.19 2.72 1.67 1.48 比值 1 0.380 0.320 0.200 0.176 误差 0 1.36% -2.15% 1.09% -3.04% TS1 厚度 10.96 4.24 3.92 2.23 1.88 比值 1 0.386 0.350 0.203 0.172 误差 0 -0.20% -4.00% -0.20% -0.10% TS2 厚度 10 3.92 3.31 1.92 1.75 比值 1 0.392 0.330 0.192 0.175 误差 0 -1.86% -4.28% 4.33% -2.59% LG36 厚度 7.55 2.79 2.40 1.54 1.28 比值 1 0.370 0.318 0.205 0.170 误差 0 3.93% -0.20% -1.76% 0.70% 表 3 剥蚀区一间房-鹰山组米兰科维奇旋回厚度计算表
Table 3. Calculation of Milankovitch cycle thickness of Yijianfang Yingshan formation in denudation area
井名 类别 旋回厚度(m) 偏心率周期(ka) 斜度周期(ka) 岁差周期(ka) 413 125 95 36.578 30.134 19.131 16.263 (E3) (E2) (E1) (O2) (O1) (P2) (P1) QG5 厚度 9.04 3.35 2.88 1.79 1.55 比值 1 0.371 0.319 0.198 0.171 误差 0 3.53% -0.63% 1.26% -0.03% YQ5 厚度 11.70 4.44 3.82 2.38 2.03 比值 1 0.378 0.325 0.203 0.173 误差 0 1.72% -2.70% -0.94% -1.07% AD16 厚度 10.00 4.06 3.37 2.08 1.77 比值 1 0.403 0.335 0.206 0.176 误差 0 -4.68% -5.72% -2.85% -2.86% YQ6 厚度 13.14 5.07 4.08 2.67 2.26 比值 1 0.386 0.310 0.203 0.172 误差 0 -0.10% 0.70% -0.20% -0.10% LS2 厚度 10.50 3.97 3.55 2.10 1.85 比值 1 0.377 0.337 0.199 0.176 误差 0 1.90% -6.40% 0.80% -2.90% S88 厚度 10.40 3.97 3.30 2.12 1.79 比值 1 0.381 0.316 0.204 0.172 误差 0 1% 0.20% -1.50% -0.70% YQ4 厚度 41.35 9.60 3.76 3.10 1.89 1.59 比值 1 0.391 0.323 0.197 0.166 误差 0 -1.50% -1.90% 1.90% 2.90% LX4 厚度 13.40 5.20 4.19 2.75 1.98 比值 1 0.388 0.313 0.205 0.148 误差 0 -0.80% 1.30% 2.00% 13.40% -
Berger, A., Loutre, M. F., Laskar, J., 1992. Stability of the Astronomical Frequencies over the Earth's History for Paleoclimate Studies. Science, 255(5044): 560-566. https://doi.org/10.1126/science.255.5044.560 Da Silva, A. C., Boulvain, F., 2006. Upper Devonian Carbonate Platform Correlations and Sea Level Variations Recorded in Magnetic Susceptibility. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(3/4): 373-388. https://doi.org/10.1016/j.palaeo.2006.02.012 Du, P. D., Zhao, Z. X., Yang, Z. L., et al., 2017. Distribution and Correlation of Late Ordovician Conodont Taoqupognathus in Tarim Basin. Journal of Stratigraphy, 41(4): 421-427(in Chinese with English abstract). Fan, J., Jiang, Y. L., Cui, X. J., et al. 2018. Unconformable Eroded Thickness Recovery by Cycle Analysis Method. Journal of China University of Mining & Technology, 42(2): 323-331(in Chinese with English abstract). Fang, Q., Wu, H. C., Wang, X. L., et al., 2019. An Astronomically Forced Cooling Event during the Middle Ordovician. Global and Planetary Change, 173: 96-108. https://doi.org/10.1016/j.gloplacha.2018.12.010 Guo, C., Zhang, Z. Y., Wu, L., et al. 2022. Mesozoic-Cenozoic Coupling Process of Tianshan Denudation and Sedimentation in the Northern Margin of the Tarim Basin: Evidence from Low-Temperature Thermochronology (Kuqa River Section, Xinjiang). Earth Science, 47(9): 3417-3430(in Chinese with English abstract). Guo, Y., Tang, L. J., Yue, Y., et al., 2015. Application of Cycle Analysis Method to Estimate the Denuded Strata Thickness: a Case Study of Middle-Lower Ordovician Yingshan Formation of the Eastern Yubei Area, Tarim Basin. Journal of Chinia University of Mining & Technology, 44 (4): 664-672(in Chinese with English abstract). He, D. F., Jia, C. Z., Li, D. S., et al., 2005. Formation and Evolution of Polycyclic Superimposed Tarim Basin. Oil & Gas Geology, 26 (1): 64-77(in Chinese with English abstract). Jiang, Q. C., Hu, S. Y., Jiang, H., et al., 2018. Calculation and Inducement of Lacuna in the Mid-Permian Maokou Fm of Sichuan Basin. Natural Gas Industry, 5(4): 351-359(in Chinese with English abstract). doi: 10.1016/j.ngib.2018.01.009 Jiang, S. H., Xu, X. M., Kang, H. M., et al., 2007. Calculation of the Denuded Amount of the Cenozoic Prototype Basin under the Restriction of the Wave Analysis Method: an Example of Huimin Depression. Periodical of Ocean University of China, 37 (4): 641-646(in Chinese with English abstract). Jin, Z. J., Zhang, Y. W., Chen, S. P., 2005. Tectono-Sedimentary Fluctuation Process in Tarim Basin. Science In China (Ser. D Earth Science), 35(6): 530-539(in Chinese with English abstract). Li, D. Y., Guo, T. Y., Jiang, X. D., et al., 2015. Erosion Thickness Recovery and Tectonic Evolution Characterization of Southern East China Sea Shelf Basin. Oil & Gas Geology, 36 (6): 913-923(in Chinese with English abstract). Li, K., Zhao, X. K., Shen, Z. M., et al., 2007. Application of Trend Thickness Method in Denudation Recovery in the Akekule Lobe of Tarim Basin. Computing Techniques for Geophysical and Geochemical Exploration, 29 (5): 415-419(in Chinese with English abstract). Li, M. S., Ogg, J., Zhang, Y., et al., 2016. Astronomical Tuning of the End-Permian Extinction and the Early Triassic Epoch of South China and Germany. Earth and Planetary Science Letters, 441: 10-25. https://doi.org/10.1016/j.epsl.2016.02.017 Liu, C. G., Qi, L. X., Liu, Y. L., et al., 2016. Positive Carbon Isotope Excursions: Global Correlation and Genesis in the Middle-Upper Ordovician in the Northern Tarim Basin, Northwest China. Petroleum Science, 13(2): 192-203. https://doi.org/10.1007/s12182-016-0096-3 Ma, D. B., Chen, L. X., Tao, X. W., et al., 2018. The Tectonic Evolution and Its Petroleum Geological Significance in Halahatang Area, Tarim Basin. Chinese Journal of Geology, 53 (1): 87-104(in Chinese with English abstract). Ma, D. B., Yang, M., Du, D. D., et al., 2020. Analysis of the Superposition Process of Multiphase Active Paleo-Uplift: Taking the Lunnan Paleo-Uplift in the Tarim Basin as an Example. Acta Petrologica Sinica, 36(11): 3523-3536(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.11.17 Ma, X. Y., Lu, Y. Z., Fan, R., et al., 2021. Cyclostratigraphic Studies of the Middle-Upper Ordovician at Dawangou Section, Kalpin, Xinjiang and Their Geological Implication. Journal of Stratigraphy, 45 (1): 29-37(in Chinese with English abstract). Ma, Y. S., Lou, Z. H., Guo, T. L., et al., 2006. An Exploration on a Technological System of Petroleum Preservation Evaluation for Marine Strata in south China. Acta Geological Sinica, 80 (3): 406-417(in Chinese with English abstract). Pang, Y. M., Guo, X. W., Zhang X H, et al., 2019. Denudation of Indosinian Unconformity and Tectonic Evolution in the Central Uplift of South Yellow Sea Basin: Insights from CSDP-2 Well. Geotectonica et Metallogenia, 43 (2): 235-245(in Chinese with English abstract). Shang, K., Lv, H. T., Cao, Z. C., et al., 2018. Distribution and Significance of Middle Ordovician Yijianfang Formation in Shuntuoguole Lower Uplift, Tarim Basin. Petroleum Geology & Experiment, 40 (3): 353-361 (in Chinese with English abstract). Song, C. Y., Lv, D. W., 2021. Advances in Time Series Analysis Methods for Milankovitch. Acta Sedimentologica Sinica, 40(2): 380-395 (in Chinese with English abstract). Spahn, Z. P., Kodama, K. P., Nereo, P., 2013. High-Resolution Estimate for the Depositional Duration of the Triassic Latemar Plateform: A New Magnetostratigraphy and Magnatic Susceptibility Cyclostratigraphy from Basinal Sediments at Rio Sacuz, Italy. Geochemistry Geophysics Geosystems, 14(4): 1245-1257. doi: 10.1002/ggge.20094 Tian, J. Wu, H. C., Huang, C. J., et al., 2022. Revisiting the Milankovitch Theory from the Perspective of the 405 ka Long Eccentricity Cycle. Earth Science, 47(10): 3543-3568 (in Chinese with English abstract). Wang, J. Q., Li, Z. X., Liu, K., 2021. Restoration of Yanshanian Denudation in the Eastern Qaidam Basin: Evidence from Geophysics and Thermochronology. Earth Science Frontiers, 1-15. https://doi.org/10.13745 /j.esf.sf. 12.6 (in Chinese with English abstract). doi: 10.13745/j.esf.sf.12.6 Wang, T. G., Dai, S. F., Li, M. J., et al., 2010. Stratigraphic Thermohistory and its Implications for Regional Geoevolution in the Tarim Basin, NW China. Science China Earth Sciences, 53(10): 1495-1505 (in Chinese with English abstract). doi: 10.1007/s11430-010-4069-x Wu, H. C., Zhang, S. J, Feng, Q. L., et al., 2011. Theoretical Basis, Research Advancement and Prospects of Cyclostratigraphy. Earth Science, 36 (3): 409-428 (in Chinese with English abstract). Yao. Y. M., Xu. X. H., Liu. C. R., et al. 2011. Calculation of Denudation amount with Milankovitch Cycle Method: a Case Study in Biyang Sag. Petroleum Geology & Experiment, 33(5): 460-467 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2011.05.004 Yuan, Y. S., Zheng, H. R., Tu, W., 2008. Methods of Eroded Strata Thickness Restoration in Sedimentary Basins. Petroleum Geology & Experiment, 30 (6): 636-642 (in Chinese with English abstract). Zhang, X. B., Lv, H. T., He, J. J., et al., 2011. Multi-Stage Erosion Restoration of Superimposed Basins and Its Application. Journal of Oil and Gas Technology, 33 (5): 7-11 (in Chinese with English abstract). Zhang, Y. B., Zhao, Z. J., Yuan, S. Q., et al., 2011. Application of Spectral Analysis to Identify Milankovitch Cycles and High-Frequency Sequences: Take the Lower Ordovician Yingshan Formation of Mid-Tarim Basin as an Example. Journal of Jilin University (Earth Science Edition), 41(2): 400-410 (in Chinese with English abstract). Zhang, Y. W., Jin, Z. J., Liu, G. C., et al., 2000. Study on the Formation of Unconformities and the Amount of Eroded Sedimentation in Tarim Basin. Earth Science Frontiers, 7(4): 449-457 (in Chinese with English abstract). Zhao, J., Cao, Q., Fu, X. D., 2018. Recovery of Denuded Strata Thickness Based on Milankovitch Astronomical Cycles. Petroleum Geology & Experiment, 40 (2): 260-267 (in Chinese with English abstract). Zhao, Z. J., Chen, X., Pan, M., et al., 2010. Milankovitch Cycles in the Upper Ordovician Lianglitage Formation in the Tazhong-Bachu Area, Tarim Basin. Acta Geologica Sinica, 84 (4): 518-536 (in Chinese with English abstract). Zhao, Z. J., Zhao, Z. X., Huang, Z. B., 2006. Ordovician Conodont Zones and Sedimentary Sequences of the Tarim Basin, Xinjiang, NW China. Journal of Stratigraphy, 30 (3): 193-203 (in Chinese with English abstract). Zhao, Z. X., Wu, M. Z., Lai, J. R. 2018. Unconformity between Lower Ordovician and Overlying Strata in Tarim Basin. Xingjiang Petroleum Geology, 39 (5): 530-536 (in Chinese with English abstract). 杜品德, 赵治信, 杨芝林, 等, 2017. 塔里木板块晚奥陶世桃曲坡牙形石属的分布及对比. 地层学杂志, 41(4): 421-427. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201704008.htm 范婕, 蒋有录, 崔小君, 等, 2018. 恢复不整合剥蚀厚度的旋回分析法. 中国矿业大学学报, 47(2): 323-331. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201802013.htm 郭超, 张志勇, 吴林, 等, 2022. 中新生代天山剥蚀与塔里木盆地北缘沉积耦合过程: 新疆库车河剖面的低温热年代学证据. 地球科学, 47(9): 3417-3430. doi: 10.3799/dqkx.2022.152 郭颖, 汤良杰, 岳勇, 等, 2015. 旋回分析法在地层剥蚀量估算中的应用——以塔里木盆地玉北地区东部中下奥陶统鹰山组为例. 中国矿业大学学报, 44(4): 664-672. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201504011.htm 何登发, 贾承造, 李德生, 等, 2005. 塔里木多旋回叠合盆地的形成与演化. 石油与天然气地质, 26(1): 64-77. doi: 10.3321/j.issn:0253-9985.2005.01.010 江青春, 胡素云, 姜华, 等, 2018. 四川盆地中二叠统茅口组地层缺失量计算及成因探讨. 天然气工业, 38(1): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201801006.htm 姜素华, 许新明, 康恒茂, 等, 2007. 波动分析约束下的原型盆地剥蚀量恢复——以惠民凹陷为例. 中国海洋大学学报(自然科学版), 37(4): 641-646. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200704024.htm 金之钧, 张一伟, 陈书平. 2005. 塔里木盆地构造-沉积波动过程. 中国科学(D辑: 地球科学), 35(6): 530-539. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200506005.htm 李德勇, 郭太宇, 姜效典, 等, 2015. 东海陆架盆地南部剥蚀厚度恢复及构造演化特征. 石油与天然气地质, 36(6): 913-923. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201506008.htm 李坤, 赵锡奎, 沈忠民, 等, 2007. "趋势厚度法"在塔里木盆地阿克库勒凸起地层剥蚀量恢复中的应用. 物探化探计算技术, 29(5): 415-419. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT200705008.htm 马德波, 陈利新, 陶小晚, 等, 2018. 塔里木盆地哈拉哈塘地区构造演化及其油气地质意义. 地质科学, 53(1): 87-104. 马德波, 杨敏, 杜德道, 等, 2020. 多期活动古隆起复合叠加过程解析——以塔里木盆地轮南古隆起为例. 岩石学报, 36(11): 3523-3536. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202011017.htm 马雪莹, 卢远征, 樊茹, 等, 2021. 新疆柯坪大湾沟中、上奥陶统旋回地层学研究及其地质意义. 地层学杂志, 45(1): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ202101004.htm 马永生, 楼章华, 郭彤楼, 等, 2006. 中国南方海相地层油气保存条件综合评价技术体系探讨. 地质学报, 80(3): 406-417. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200603013.htm 庞玉茂, 郭兴伟, 张训华, 等, 2019. 南黄海中部隆起印支面剥蚀量恢复与演化过程——来自CSDP-2井的证据. 大地构造与成矿学, 43(2): 235-245. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201902004.htm 尚凯, 吕海涛, 曹自成, 等, 2018. 塔里木盆地顺托果勒低隆起一间房组分布及地质意义. 石油实验地质, 40(3): 353-361. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201803008.htm 宋翠玉, 吕大炜, 2022. 米兰科维奇旋回时间序列分析法研究进展. 沉积学报, 40(2): 380-395. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202202007.htm 田军, 吴怀春, 黄春菊, 等, 2022. 从40万年长偏心率周期看米兰科维奇旋回理论. 地球科学, 47(10): 3543-3568. doi: 10.3799/dqkx.2022.248 王嘉琦, 李宗星, 刘奎, 2022. 达木盆地东部燕山期剥蚀量恢复: 来自地球物理和低温热年代学的证据. 地学前缘: 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202204031.htm 王铁冠, 戴世峰, 李美俊, 等, 2010. 盆地台盆区地层有机质热史及其对区域地质演化研究的启迪. 中国科学: 地球科学, 40(10): 1331-1341. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201010005.htm 吴怀春, 张世红, 冯庆来, 等, 2011. 旋回地层学理论基础、研究进展和展望. 地球科学, 36(3): 409-428. doi: 10.3799/dqkx.2011.045 姚益民, 徐旭辉, 刘翠荣, 等, 2011. 米氏旋回剥蚀量计算方法在泌阳凹陷的应用. 石油实验地质, 33(5): 460-467. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201105006.htm 袁玉松, 郑和荣, 涂伟等. 2008. 沉积盆地剥蚀量恢复方法. 石油实验地质, 30(6): 636-642. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200806022.htm 张小兵, 吕海涛, 何建军, 等, 2011. 叠合盆地同层多期剥蚀量恢复研究及应用. 石油天然气学报, 33(5): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201105003.htm 张一伟, 金之钧, 刘国臣, 等, 2000. 塔里木盆地环满加尔地区主要不整合形成过程及剥蚀量研究. 地学前缘, 7(4): 449-457. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200004020.htm 张运波, 赵宗举, 袁圣强, 等, 2011. 频谱分析法在识别米兰科维奇旋回及高频层序中的应用——以塔里木盆地塔中-巴楚地区下奥陶统鹰山组为例. 吉林大学学报(地球科学版), 41(2): 400-410. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201102011.htm 赵军, 曹强, 付宪弟, 等, 2018. 基于米兰科维奇天文旋回恢复地层剥蚀厚度——以松辽盆地X油田青山口组为例. 石油实验地质, 40(2): 260-267. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201802017.htm 赵治信, 吴美珍, 赖敬容, 2018. 塔里木盆地下奥陶统与上覆地层间的不整合. 新疆石油地质, 39(5): 530-536. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201805005.htm 赵宗举, 陈轩, 潘懋, 等, 2010. 塔里木盆地塔中-巴楚地区上奥陶统良里塔格组米兰科维奇旋回性沉积记录研究. 地质学报, 84(4): 518-536. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201004008.htm 赵宗举, 赵治信, 黄智斌, 2006. 塔里木盆地奥陶系牙形石带及沉积层序. 地层学杂志, 30(3): 193-203. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200603000.htm