Structure and Application of SHF Classification Method for Surrounding Rock of Sandy Dolomite Tunnel
-
摘要: 砂化白云岩在我国西南地区分布广泛,在该地层中修建隧洞,常出现掌子面塌方、突水涌砂等地质灾害,因此在滇中引水工程建设中面临的砂化白云岩问题备受关注. 砂化等级和地下水条件是控制砂化白云岩隧洞围岩破坏模式与稳定性的关键因素,然而,在传统围岩分类方法中往往没有全面考虑到这些因素,例如在Q系统中未考虑岩石强度、RMR法未考虑地应力、BQ法对砂化白云岩的结构面状态、粗糙度等,同时,传统方法均未直接考虑砂化等级对于砂化白云岩工程特性的影响. 为实现更为快速、客观地进行砂化白云岩隧洞围岩分类,需构建一种适合于砂化白云岩隧洞的围岩分类方法. 为解决以上缺陷,以在建的滇中引水工程为依托,首先分析了Q法、RMR法、RMi法、GSI法、BQ法等传统方法在砂化白云岩隧洞中的适用性. 其次,结合砂化白云岩工程地质特性及赋存地质环境,构建了以砂化等级、结构面状态、地下水、主要结构面状态、地应力为评价指标的围岩分类体系SHF,并选取依托工程典型洞段对SHF分类方法进行了验证和应用. 建立的砂化白云岩隧洞围岩分类方法SHF易于操作,应用该方法所得的围岩分类结果更符合工程实际,研究可为砂化白云岩隧洞支护设计和施工提供理论依据.Abstract: Sandy dolomite is widely distributed in the southwest of China. When tunnels are built in this stratum, geological disasters such as face collapse, water inrush and sand gushing often occur. Therefore, the problem of sandy dolomite faced in the construction of water diversion project in central Yunnan has attracted much attention. The sanding grade and groundwater conditions are the key factors to control the failure mode and stability of the surrounding rock of the sanded dolomite tunnel. However, these factors are often not fully considered in the traditional surrounding rock classification methods, such as the rock strength is not considered in the Q system, the ground stress is not considered in the RMR method, and the joint state and roughness of the sandy dolomite are not considered in the BQ method. Totally, these classification methods do not take into account the influence of sanding grade. In order to make the surrounding rock classification results of the sandy dolomite tunnel more accurate and faster, it is necessary to build a classification method suitable for the sandy dolomite tunnel. Based on the water diversion project in central Yunnan under construction, we analyze the applicability of traditional methods such as Q method, RMR method, RMi method, GSI method and BQ method in sandy dolomite tunnel. Secondly, combined with the engineering characteristics of sandy dolomite and the external environmental factors, the surrounding rock classification system SHF with the evaluation indexes of sanding grade, structural plane state, groundwater, main structural plane state and ground stress is constructed, and the SHF classification method is verified and applied by selected typical tunnel sections of the project. The established classification method SHF for surrounding rock of sandy dolomite tunnel is prone to operate and highly consistent with the actual situation of the project. The research can provide a theoretical basis for the design and construction of sanded dolomite tunnel support.
-
表 1 SHF评价标准
Table 1. SHF evaluation criteria
围岩类别 SHF评分 围岩稳定性评价 初期支护措施 Ⅰ SHF > 85 围岩可长期稳定,无灾害风险 — Ⅱ 65 < SHF≤85 围岩基本稳定 1、洞顶布置临时排水孔,入岩3 m,前后交错布置,不做初支 Ⅲ Ⅲ1 55 < SHF≤65 围岩局部稳定性差 1、洞顶布置临时排水孔,入岩3 m,前后交错布置;2、随机砂浆锚杆;3、喷混凝土厚50 mm Ⅲ2 45 < SHF≤55 1、洞顶布置临时排水孔,入岩3 m,前后交错布置;2、挂钢筋网、喷混凝土厚80 mm;3、系统砂浆锚杆,梅花形布置 Ⅳ 25 < SHF≤45 围岩不稳定,可能发生大规模变形破坏,有突水涌砂危险 1、洞顶布置临时排水孔,入岩3 m,前后交错布置;2、I16工字钢,榀距1.2 m;3、L型锁脚锚杆,L=3 m,工字钢上下游侧各1根;4、砂浆锚杆,L=3m,排距1.5 m,梅花形布置;5、挂钢筋网,喷混凝土厚160 mm Ⅴ Ⅴ1 15 < SHF≤25 围岩极不稳定,变形破坏严重,突水涌砂风险大 1、洞顶布置临时排水孔,入岩3 m,前后交错布置;2、超前锚杆,L=4.5 m;3、I16工字钢,榀距0.8 m;4、L型锁脚锚杆,L=3 m,工字钢上下游侧各1根;5、系统砂浆锚杆,L=3 m,排距与钢支撑榀距相同,梅花形布置;6、挂钢筋网,喷混凝土厚160 mm Ⅴ2 SHF < 15 1、超前预固结灌浆;2、跨断层带时采用超前小导管,L=4.5 m;强烈、剧烈砂化风险洞段采用超前大管棚,L=12 m;3、I16工字钢,榀距0.6 m;4、L型锁脚锚杆,L=3 m,工字钢上下游侧各1根;5、系统砂浆锚杆,L=3 m,排距与钢支撑榀距相同,梅花形布置;6、挂钢筋网,喷混凝土厚160 mm 表 2 砂化白云岩砂化等级划分表(李建国等,2018)
Table 2. Classification of sanding degree of dolomite rock mass(Li et al., 2018)
砂化等级 主要地质特征 岩体主要特征值 剧烈砂化 全部变色,光泽消失,岩石的组织结构完全破坏,锤击有松软感,出现凹坑,手可捏碎,用锹可以挖动 Vp < 1.0km/s 强烈砂化 大部分变色,只有局部岩块保持原有颜色,岩石的组织结构大部分已破坏,部分岩石已分解或崩解成粗砂粒或砾砂状,锤击哑声,岩石大部分变酥,易碎,用镐锹可以挖动,坚硬部分需爆破 RQD < 20%;KV=0.10~0.15
VP=1.0~2.0 km/s弱砂化 岩石表面或裂隙面大部分变色,断口色译较新鲜~新鲜,岩石原始组织结构淸楚完整,岩体多呈碎裂结构,锤击哑声至发音较淸脆,开挖需用爆破 RQD=20%~40%;KV=0.15~0.35
VP=0~3.5 km/s微砂化 岩石表面成裂隙面有轻微褪色~色泽新鮮.岩石组织结构无变化保持原始完整结构大部分裂隙闭合紧密,锤击发音淸脆,开挖需用爆破 RQD > 50%;KV > 0.04
VP > 3.5km/s表 3 砂化等级取值标准
Table 3. Value standard of sanding grade
砂化等级 评分值 微砂化 40~70 弱砂化 18~40 强烈砂化 10~18 剧烈砂化 0 注:*剧烈砂化洞段定为Ⅴ类围岩,结构面特征、产状、地下水以及地应力不评分 表 4 结构面状态评分标准
Table 4. Scoring criteria for structural plane status
结构面长度 < 1 m 1~3 m 3~10 m 10~20 m > 20 m 评分 12 8 4 2 0 张开度W(mm) 闭合< 1 微张,1~3.0 张开,≥3.0 充填物 — 无充填 岩屑 泥质 岩屑 泥质 评分 12 8 4 2 2 1 起伏粗糙状况 起伏粗糙 平直粗糙 起伏光滑 平直光滑 镜面 评分 6 4 2 1 0 表 5 地下水取值标准
Table 5. Groundwater value standard
活动状态 干燥~渗水滴水 线状流水 涌水 突水 水量Q[L/(min•10m洞长)] Q≤25 25 < Q≤125 125 < Q≤250 Q > 250 A+B > 85 地下水评分C 0 0 -2 -6 85≥A+B > 65 0 -2 -6 -10 65≥A+B > 45 -2 -6 -10 -14 45≥A+B > 25 -6 -10 -14 -18 A+B≤25 -10 -14 -18 -20 表 6 主要结构面状态取值标准
Table 6. Value standard of main structural plane status
主要结构面走向与洞轴线夹角 90°~60° 60°~30° 30°~0° 结构面倾角 > 70 70~45 45~20 < 20 > 70 70~45 45~20 < 20 > 70 70~45 45~20 < 20 评分 洞顶 0 -2 -5 -10 -2 -5 -10 -12 -5 -10 -12 -12 边墙 -2 -5 -2 0 -5 -10 -2 0 -10 -12 -5 0 表 7 地应力修正取值标准
Table 7. In situ stress correction value standard
地应力 极高地应力 高地应力 中等地应力 低地应力 围岩强度应力比S < 2 2 < S≤4 4 < S≤7 S > 7 评分 -10 -5 -2 0 表 8 典型砂化白云岩洞段SHF法围岩分类结果
Table 8. Classification results of surrounding rock by SHF method
位置 桩号 A 评分 B结构面长度 评分 B闭合度、充填物 评分 C 评分 D洞顶评分 D边墙评分 E 评分 总评分 围岩类别 实际围岩类别 Q系统 RMR法 BQ法 小扑隧洞2#主洞(上游、下游) YX6+601.2~644.4 强烈 10 5 4 张开、岩屑、平直粗糙 6 25 -6 -5 -10 10.79 0 4 Ⅴ2 Ⅴ Ⅳ Ⅳ Ⅴ YX6+644.4~694.8 强烈 15 1 8 张开、岩屑、平直粗糙 6 60 -10 -10 -2 6.79 0 9 Ⅴ2 Ⅴ Ⅳ Ⅳ Ⅴ YX6+688.8~690.6 弱 20 4 8 闭合、无填充、平直粗糙 12 0 -2 -10 -2 7.04 0 28 Ⅳ Ⅳ Ⅲ Ⅲ Ⅳ YX6+690.6~691.5 强烈 15 3.1 4 张开、泥质、平直粗糙 5 40 -14 -10 -2 6.68 0 0 Ⅴ2 Ⅴ Ⅴ Ⅳ Ⅴ 老尖山隧洞 YX44+932~978.3 弱 25 0.1 12 张开、岩屑、起伏粗糙 8 0 -2 -10 0 96.1 0 33 Ⅳ Ⅳ Ⅴ Ⅳ Ⅴ -
Barton, N., Lien, R., Lunde, J., 1974. Engineering Classification of Rock Masses for the Design of Tunnel Support. Rock Mechanics Felsmechanik Mécanique des Roches, 6(4): 189-236. https://doi.org/10.1007/bf01239496 Bieniawski, Z. T., 1974. Engineering Classification of Jointed Rock Masses. Discussions of Paper by Z. T. Bieniawski, Trans. S. Afr. Instn. Civ. Engrs. V15, N12, Dec. 1973, and Authors Reply. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 11(12): 244. https://doi.org/10.1016/0148-9062(74)92075-0 Cai, M., 2011. Rock Mass Characterization and Rock Property Variability Considerations for Tunnel and Cavern Design. Rock Mechanics and Rock Engineering, 44(4): 379-399. https://doi.org/10.1007/s00603-011-0138-5 Cai, M., Kaiser, P. K., Tasaka, Y., et al., 2007. Determination of Residual Strength Parameters of Jointed Rock Masses Using the GSI System. International Journal of Rock Mechanics and Mining Sciences, 44(2): 247-265. https://doi.org/10.1016/j.ijrmms.2006.07.005 Jiang, Y. F., Zhou, P., Zhou, F. C., et al., 2022. Failure Analysis and Control Measures for Tunnel Faces in Water-Rich Sandy Dolomite Formations. Engineering Failure Analysis, 138(6): 106350. https://doi.org/10.1016/j.engfailanal.2022.106350 Li, J. G., Mu, H. Y., Mi, J., 2018. Preliminary Study on Engineering Geological Characteristics of Sandy Dolomite. Proceedings of the 2nd National Rock Tunnel Boring Machine Engineering Technology Seminar. China Water & Power Press, Beijing, 52-58(in Chinese). Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2016. GB 50287-2016 Code for Hydropower Engineering Geological Investigation. Beijing. (in Chinese) Palmstrom, A., 1995. RMI: a Rock Mass Characterization System for Rock Engineering Purposes(Dissertation). University of Oslo, Denmark. Palmstrom, A., 2000. Recent Developments in Rock Supportestimates by the RMi. Rock Mech Tunnel Technoligy, 6: 1-9 Shen, Y. J., 2012. Research on Surrounding Rockmass Classification System and Mechanical Parameters of Large-Scale Underground Caverns during Construction Period(Dissertation), China University of Geoscienes, Wuhan(in Chinese with English abstract) Shen, Y. J., Xu, G. L., Song, S. W., et al., 2014. A Classification Method of Surrounding Rock Mass in Hydropower Project in High Geostress Area. Chinese Journal of Rock Mechanics and Engineering, (11): 2267-2275(in Chinese with English abstract). Shen, Y. J., Xu, G. l., Yang, G. S., et al., 2014. Probability Distribution Characteristics of Rock Mass Classification and its Mechanical Parameters Based on Fine Description. Rock and Soil Mechanics, (2): 565-572(in Chinese with English abstract). Shen, Y. J., Xu, G. L., Zhu, K. J., 2011. Optimization of RMi Rockmass Quality Evaluation Method and its Application. Journal of Central South University(Science and Technology), (5): 1375-1383(in Chinese). Si, F. A., Li, K., Duan, S. W., 2020. Comprehensive Classification of Surrounding Rock of Deep Buried Long Hydraulic Tunnel Constructed with Tunnel Boring Machine. Journal of Yangtze River Scientific Research Institute, (8): 150-154(in Chinese with English abstract) State General Administration of Market Supervision and Administration, 2014. GB/T 50218-2014 Standard for Classification of Engineering Rock Mass. Beijing(in Chinese). Tian, Q. W., Yue, C. L., 2014. Characteristics of Karst Sanded Fine-Crystalline Dolomite and Wall Rock Classification for Pingtou Hydropower Stati. Advances in Science and Technology of Water Resources, (5): 45-49(in Chinese with English abstract) Wang, P. P., Yao, J., Jiang, L., 2019. Sandification Characteristics of Guizhou Dolomite and the Influence on Tunnel Support Structure. Journal of Guizhou University(Natural Sciences), 36(3): 44-48. (in Chinese with English abstract) Wang, Z. J., Du, Y. W., Jiang, Y. F., et al., 2021. Study on the Mechanism of Instability of Tunnel Face in Sandy Dolomite Stratum. Chinese Journal of Rock Mechanics and Engineering, 40 (202): 3118-3126(in Chinese with English abstract) Xiong, Q. R., Xiao, M., Hu, T. Q., 2013. Numerical Analysis of Sandificated Rock Masses Under the Disturbance of Excavation Based on Elastoplastic Damage Model. Journal of Sichuan University (Natural Science Edition), (1): 90-96(in Chinese) Zhang, Z. Q., Fan, J. Q., Zeng, P., 2023. Research on Probability Classification Prediction and Application of Large Deformation Disaster in Tunnel Survey and Design Period Based on Bayesian Network. Earth Science, 48(5): 1923-1934 (in Chinese with English abstract). Zhang, H. Q., Zhao, Q. H., Peng, S. Q., 2012. Rock Mass Quality Classification and Deep Karst Sandification of Dolomite about Pingtou Hydroelectric Station at the Meigu River. China Rural Water and Hydropower, (7): 151-155(in Chinese) Zhang, L. X., Zhang, H. Q., Zhao, Q. H., et al., 2012. Characteristics and Distribution of Dolomite Sandification at Pingtou Hydropower Station. Yangtze River, (19): 42-44, 78(in Chinese) Zhao, Y., 2019. The Most Representative National Key Water Conservancy Project under Construction: Central Yunnan Water Diversion Project. Tunnel Construction, 39(3): 511-522(in Chinese). Zhao, Y. R., 2021. Study on Physical and Mechanical Properties of Strong to Severe Sandification Dolomite in Central Yunnan Water Diversion Project(Dissertation). Kunming University of Science and Technology, Kunming(in Chinese with English abstract). Zhou, P., Jiang, Y. F., Zhou, F. C., et al., 2022. Disaster Mechanism of Tunnel Face with Large Section in Sandy Dolomite Stratum. Engineering Failure Analysis, 131(3): 105905. https://doi.org/10.1016/j.engfailanal.2021.105905 Zhou, H., Liao, X., Chen, S. K., et al., 2022. Rock Burst Risk Assessment of Deep-Buried Tunnel Based on Combination Weighting and Unascertained Measure: Taking Sangzhuling Tunnel as an Example. Earth Science, 47(6): 2130-2148(in Chinese with English abstract). 国家市场监督管理总局, 2014. GB/T 50218-2014工程岩体分级标准. 北京. 李建国, 沐红元, 米健, 2018. 砂化白云岩工程地质特性初步研究. 见: 刘志明, 温续余, 尹讯飞等编. 第2届全国岩石隧道掘进机工程技术研讨会论文集. 北京: 中国水利水电出版社, 52-58. 申艳军, 2012. 大型地下洞室施工期围岩分类体系及力学参数动态分析(博士毕业论文). 武汉: 中国地质大学 申艳军, 徐光黎, 宋胜武, 等, 2014. 高地应力区水电工程围岩分类法系统研究. 岩石力学与工程学报, (11): 2267-2275. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201411011.htm 申艳军, 徐光黎, 朱可俊, 2011. RMI岩体指标评价法优化及其应用. 中南大学学报(自然科学版), 42(5): 1375-1383. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201105034.htm 司富安, 李坤, 段世委, 2020. TBM施工深埋水工长隧洞围岩综合分类研究. 长江科学院院报, 37(8): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202008027.htm 田启文, 岳朝林, 2014. 坪头水电站岩溶砂化细晶白云岩的特性及围岩分类. 水利水电科技进展, 34(5): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201405010.htm 王朋朋, 姚静, 姜笠, 2019. 贵州白云岩砂化特征及其对隧道支护结构影响. 贵州大学学报(自然科学版), 36(3): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDI201903008.htm 王志杰, 杜逸文, 姜逸帆, 等, 2021. 砂化白云岩地层隧道掌子面失稳机制研究. 岩石力学与工程学报, 40(202): 3118-3126. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2012.htm 熊清蓉, 肖明, 胡田清, 2013. 砂化岩体在开挖干扰下弹塑性损伤数值模拟. 四川大学学报(自然科学版), (1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201301019.htm 张海泉, 赵其华, 彭社琴, 2012. 美姑河坪头水电站深部白云岩岩溶砂化岩体质量分级. 中国农村水利水电, (7): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201207042.htm 张良喜, 张海泉, 赵其华, 等, 2012. 四川坪头水电站白云岩砂化特征及发育分布规律. 人民长江, (19): 42-44, 78. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201219020.htm 张志强, 范俊奇, 曾鹏等, 2023. 基于贝叶斯网络的隧道勘察设计期大变形灾害概率分级预测与应用研究. 地球科学, 48(5): 1923-1934. doi: 10.3799/dqkx.2022.274 赵毅, 2019. 在建国家重点水利标志性工程之首——滇中引水工程. 隧道建设(中英文), 39(3): 511-522. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201903031.htm 赵毅然, 2021. 滇中引水工程强烈-剧烈砂化白云岩物理力学特性研究(博士毕业论文). 昆明: 昆明理工大学. 中华人民共和国住房和城乡建设部, 2016. GB 50287-2016水力发电工程地质勘察规范. 北京. 周航, 廖昕, 陈仕阔, 等, 2022. 基于组合赋权和未确知测度的深埋隧道岩爆危险性评价——以川藏交通廊道桑珠岭隧道为例. 地球科学, 47 (6): 2130-2148. doi: 10.3799/dqkx.2021.170 -