Vibration Response Caused by Silt Layer in Underground Subway under Small Radius Curve Tunnel
-
摘要: 小曲线地铁盾构隧道位于粉细砂层中对于列车运营水平及竖向循环荷载的响应较为敏感,特别是离心水平荷载,而郑州大部分地层以此地质构成为主,因此地铁在长期运营状态下,由于粉细砂土层的动力响应导致的砂土层沉降,给列车运行会带较大隐患.进行了长期孔隙水监测,并利用MIDAS有限元计算平台建立地铁道床-衬砌-土体耦合动力模型进行相互验证,研究了单列列车运行与双向会车、不同隧道埋深时对隧道周围土层的振动响应规律.结果表明,孔隙水压力在列车运营初期较大,后期逐渐减小并稳定,其中受到上下班高峰期、季节性气候,以及地下水位的影响,孔压可能造成小幅度上升,但总体趋势是下降.由于荷载叠加效应,双向列车同时经过会使孔隙水压力增幅大于单向列车运行的情况,在隧道下方的最大沉降发生在隧道左端,离隧道越远沉降量越小;在地下水位一定时,隧道埋深与孔隙水压力大小成正比,与隧道周围土体沉降成反比.
-
关键词:
- 小半径曲线段 /
- 粉细砂土层 /
- 循环荷载 /
- 孔隙水监测: 数值模拟 /
- 工程地质 /
Abstract: The response of the powdered sandy soil to the cyclic load in the operation of the metro in small curves is sensitive, especially the centrifugal force on the track when the train is moving particularly serious, and most areas in Zhengzhou belong to the Yellow River alluvial powdered sand layer, so the metro in long-term operation, due to the dynamic response of the powdered sandy soil layer caused by the settlement of the sandy soil layer, to train operation will bring greater potential problems.In this paper, long-term pore water monitoring was carried out, and the MIDAS finite element calculation platform was used to establish a coupled dynamic model of the metro bed-lining-soil for mutual verification, and the vibration response law of the soil around the tunnel was studied for single train operation and two-way meeting, and for different tunnel burial depths. The results show that the pore water pressure is large in the early stage of train operation, and gradually decreases in the later stage and becomes stable. Due to the influence of peak work hours, seasonal climate, and groundwater level, the pore pressure may cause a small increase, but the overall trend is to decline.the simultaneous passage of two-way trains will cause the pore water pressure to increase more than in the case of one-way train operation due to the load superposition effect, the maximum settlement below the tunnel occurs at the left end of the tunnel, the further away from the tunnel the smaller the settlement; at a certain water table, the tunnel burial depth is positively proportional to the pore water pressure magnitude, and inversely proportional to the settlement of the soil around the tunnel. -
表 1 监测点距隧道布置深度
Table 1. Depth between monitoring points and tunnel layout
监测点 监测点距区间隧道外轮廓平面净距(m) 孔底距隧道底板间距(m) 监测点孔深(m) 监测方式 K1 4.8 0.5 21.5 自动 K2 3.6 0.9 21.5 人工 K3-1 4.6 0.6 20.0 人工 K3-2 4.6 3.6 23.0 自动 K3-3 4.6 8.6 28.0 自动 K3-4 4.6 18.6 38.0 自动 K4 4.8 0.8 19.0 人工 K5 3.3 0.8 18.0 自动 K6 3.7 0.5 21.5 人工 K7 3.9 0.9 21.5 人工 K8 4.4 0.5 20.0 人工 K9 3.8 0.6 19.0 人工 K10 3.6 0.6 18.0 人工 K11-1 4.0 0.5 20.0 人工 K11-2 4.0 3.5 23.0 人工 K11-3 4.0 8.5 28.0 人工 K11-4 4.0 18.5 38.0 人工 表 2 土层物理力学参数
Table 2. Physical and mechanical parameters of soil layer
土层编号 土层名称 厚度(m) 压缩模量(MPa) 泊松比μ 重度(KN/m3) 内摩擦角(°) 黏聚力(kPa) 渗透系数(m/s) 1 粉质粘土 2.885 16.0 0.37 17.0 18 10 5.8×10-6 2 粉土 10.095 10.9 0.30 19.6 20 14 5.8×10-6 3 粉质粘土 4.040 7.0 0.30 19.2 10 19 5.8×10-7 4 粉砂 2.347 17.0 0.30 20.2 24 0 1.2×10-4 5 中砂 9.510 41.5 0.25 20.8 31 0 2.4×10-4 6 粉质粘土 4.028 13.9 0.25 0.2 13 22 5.8×10-6 7 中砂 6.775 40.0 0.25 20.8 30 0 2.4×10-4 8 粉质黏土 5.350 27.4 0.30 20.1 14 16 5.8×10-6 9 衬砌 0.300 36 000 0.20 2 500 / / / 10 道床 0.440 34 500 0.20 2 500 / / / -
Karakan, E., Sezer, A., Tanrinian, N., 2019. Evaluation of Effect of Limited Pore Water Pressure Development on Cyclic Behavior of a Nonplastic Silt. Soils and Foundations, 59(5): 1302-1312. https://doi.org/10.1016/j.sandf.2019.05.009 Ge, S. P., Yao, X. J., 2015. Response Characteristics of Pore Pressure in Soils nearby Metro Tunnel Due to Train Vibration Loading. Journal of Engineering Geology, 23(6): 1093-1099(in Chinese with English abstract). Li, Z. H., 2022. Study on Cumulative Deformation of Calcareous Sand under Cyclic Load. Guangdong University of Technology, Guangzhou(in Chinese with English abstract). Ma, K. W., 2020. Analysis of Subway Train Vibration Response in Sand Stratum (Dissertation). Shijiazhuang Tiedao University, Shijiazhuang(in Chinese with English abstract). Ren, L., Zhu, Y., Cui, T. L., 2021. Study on Protection Scheme of Shield Tunnel Passing through Railway Bridge Pile at a Short Distance. Earth Science, 46(6): 2278-2286(in Chinese with English abstract). Wang, C. Y., Zhao, J. Z., Xu, X., et al., 2018. Three-Dimensional Finite Element Analysis of Wheel-Rail Contact for Curved Subway. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 31(2): 36-42(in Chinese with English abstract). Wang, L. H., Lu, G. Y., 2013. Vehicle Type Selection for Zhengzhou Metro Line 1. Urban Rapid Rail Transit, 26(3): 119-123(in Chinese with English abstract). doi: 10.3969/j.issn.1672-6073.2013.03.030 Wang, M. F., 2009. Dynamic Response of Saturated Silt Soil and Liquefaction by the Subway's Vibration (Dissertation). Beijing Jiaotong University, Beijing(in Chinese with English abstract). Wang, T., Shi, B., Ma, L. X., et al., 2020. Dynamic Response and Long-Term Cumulative Deformation of Silty Sand Stratum Induced by Metro Train Vibration Loads. Journal of Engineering Geology, 28(6): 1378-1385(in Chinese with English abstract). Wang, X. R., Cai, S., Yang, W., et al., 2022. Influence of Existing Buildings on Construction of Earth Pressure Shield in Extremely Soft Rock Stratum. Earth Science, 47(4): 1483-1491(in Chinese with English abstract). Wang, X. R., Jiang, H. J., Zhu, K., et al., 2019. Research on Ground Settlement Laws of Urban Subway Tunnel Construction Process Based on Earth Pressure Shield. Earth Science, 44(12): 4293-4298(in Chinese with English abstract). Wang, Y. G., 2020. Study on Dynamic Response and Long-Term Settlement of Curved Tunnel under VibrationLoad of Train in Silty Strata (Dissertation). Henan University of Technology, Zhengzhou(in Chinese with English abstract). Yang, W. B., Li, L. G., Shang, Y. C., et al., 2018. An Experimental Study of the Dynamic Response of Shield Tunnels under Long-Term Train Loads. Tunnelling and Underground Space Technology, 79: 67-75. https://doi.org/10.1016/j.tust.2018.04.031 Yuan, Y., Liu, W. N., Liu, W. F., 2012. Propagation Law of Ground Vibration in the Curve Section of Metro Based on In-Situ Measurement. China Railway Science, 33(4): 133-138(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4632.2012.04.21 Zhang, X., Tang, Y. Q., Zhou, N. Q., et al., 2007. Dynamic Response of Saturated Soft Clay around a Subway Tunnel under Vibration Load. China Civil Engineering Journal, 40(2): 85-88(in Chinese with English abstract). doi: 10.3321/j.issn:1000-131X.2007.02.015 Zhou, J., Lu, D. Y., 2020. Liquifiable Sandy Settlement Characteristics Analysis under Metro Train Vibration Load. China Civil Engineering Journal, 53(Suppl. 1): 226-232(in Chinese with English abstract). Zhou, N. Q., Tang, Y. Q., Wang, J. X., et al., 2006. Response Characteristics of Pore Pressure in Saturated Soft Clay to the Metro Vibration Loading. Chinese Journal of Geotechnical Engineering, 28(12): 2149-2152(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2006.12.019 Zhou, Y., Yang, W. B., Yang, L. L., et al., 2022. Analysis of Dynamic Response Characteristics of Shield Tunnels in Water-Rich Soft Strata under Train Loads. Chinese Journal of Rock Mechanics and Engineering, 41(5): 1067-1080(in Chinese with English abstract). 葛世平, 姚湘静, 2015. 地铁振动荷载下隧道周边土体孔压响应特征研究. 工程地质学报, 23(6): 1093-1099. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201506010.htm 李子豪, 2022. 循环荷载作用下钙质砂的累积变形规律研究(硕士学位论文). 广州: 广东工业大学. 马伟凯, 2020. 砂土地层地铁列车振动响应分析(硕士学位论文). 石家庄: 石家庄铁道大学. 任磊, 朱颖, 崔天麟, 2021. 盾构超近距离侧穿铁路桥桩保护方案探讨. 地球科学, 46(6): 2278-2286. doi: 10.3799/dqkx.2021.041 王晨阳, 赵吉中, 徐祥, 等, 2018. 地铁曲线段轮轨接触三维有限元分析. 四川理工学院学报(自然科学版), 31(2): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SCQX201802006.htm 王丽红, 卢桂云, 2013. 郑州地铁1号线车辆选型. 都市快轨交通, 26(3): 119-123. doi: 10.3969/j.issn.1672-6073.2013.03.030 王明飞, 2009. 地铁列车振动引起饱和粉土地基动力响应及液化(硕士学位论文). 北京: 北京交通大学. 王涛, 施斌, 马龙祥, 等, 2020. 粉细砂地层对地铁列车荷载的动力响应及长期变形研究. 工程地质学报, 28(6): 1378-1385. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202006024.htm 王晓睿, 蔡松, 杨伟, 等, 2022. 既有建筑对极软岩地层中土压盾构的施工影响. 地球科学, 47(4): 1483-1491. doi: 10.3799/dqkx.2020.326 王晓睿, 姜洪建, 朱坤, 等, 2019. 基于土压盾构的城市地铁隧道构筑过程地表沉降规律. 地球科学, 44(12): 4293-4298. doi: 10.3799/dqkx.2019.269 王永刚, 2020. 粉砂地层中列车振动荷载下曲线隧道的动力响应及长期沉降研究(硕士学位论文). 郑州: 河南工业大学. 袁扬, 刘维宁, 刘卫丰, 2012. 基于现场测试的曲线段地铁地面振动传播规律. 中国铁道科学, 33(4): 133-138. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201204025.htm 张曦, 唐益群, 周念清, 等, 2007. 地铁振动荷载作用下隧道周围饱和软黏土动力响应研究. 土木工程学报, 40(2): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200702016.htm 周军, 卢岱岳, 2020. 可液化砂土地铁列车振动作用下沉降特性分析. 土木工程学报, 53(增刊1): 226-232. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2020S1036.htm 周念清, 唐益群, 王建秀, 等, 2006. 饱和粘性土体中孔隙水压力对地铁振动荷载响应特征分析. 岩土工程学报, 28(12): 2149-2152. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200612018.htm 周扬, 杨文波, 杨林霖, 等, 2022. 车致振动荷载作用下富水软弱地层中盾构隧道动力响应分析. 岩石力学与工程学报, 41(5): 1067-1080. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202205017.htm -