The Origin and Evolution of Late Pleistocene River Terracesin Western Hainan Island
-
摘要: 晚更新世以来,海南岛构造活动活跃且差异性构造升降特征明显. 受这些构造活动影响,海南岛上各条主要河流发育了一系列河流阶地,深刻理解这些阶地的形成演化过程无疑将有助于更好地揭示海南岛不同部位的构造差异活动特征.运用光释光测年技术对海南岛西部6条河流的河流阶地沉积物进行定年,结合野外地质调查与地貌学研究,系统建立了4级河流阶地年代框架:27.3~29.6 ka、2.82~3.92 ka、0.60~0.93 ka、~0.40~0.50 ka,进而结合海南岛构造活动和区域气候演化等探讨了河流阶地的成因.研究结果表明,T4阶地的形成主要受控于气候变化,它改变了径流搬运能力和沉积物通量,进而导致了河流产生堆积和侵蚀作用;T3、T2、T1阶地的形成受控于多条断裂活动,间歇性的差异性构造升降运动是这些河流阶地形成的主要驱动力,而且河流下切速率差异性表明0.60~3.92 ka海南岛中西部构造隆升速率高于西南部.Abstract: The Late Pleistocene tectonic activities of Hainan Island appear various vertical movements and results in a series of river terraces developed in the island. The evolution of these terraces can reveal the characteristics of differential structural activities in different areas of Hainan Island. The optically stimulated luminescence (OSL) dating is used to date the river terraces of 6 rivers in the western Hainan Island. Based on a detailed field geological survey and geomorphology researches, the chronological framework of river terraces (27.3-29.6 ka, 2.82-3.92 ka, 0.60-0.93 ka, ~0.40-0.50 ka) are set up. Combined with the tectonic activity and regional climate evolution around Hainan Island, the origin of those river terraces is discussed. The results show that T4 would be mainly caused by the climate changes. Climate changes altered runoff carrying capacity and sediment flux, leading to accumulation and erosion of these rivers. T3, T2 and T1 terraces would be controlled by multiple faults and the key factor for the development of terraces would be the intermittent differential tectonic uplift movement. The difference of river incision rate indicates that the rate of tectonic uplift rate in its mid-western area is higher than those of southwester area during 0.60-3.92 ka.
-
Key words:
- Hainan Island /
- river terrace /
- OSL dating /
- tectonic activity /
- climate change /
- marine geology
-
图 1 海南岛地貌特征及断裂与水系分布图
河流分布据李高聪等(2016);断层分布据胡亚轩等(2018);F1. 王五-文教断裂带;F2. 昌江-琼海断裂带;F3. 尖峰-万宁断裂带;F4. 九所-陵水断裂带
Fig. 1. The characteristics of geomorphology and distributions of faults and drainage system in Hainan Island
表 1 海南岛西部河流阶地光释光测年结果
Table 1. The results of OSL dating on the river terraces in Western Hainan Island
样品编号 埋藏深度(m) U(10-6) Th(10-6) K(%) 含水率(%) 等效剂量(Gy) 环境剂量率(μGy/a) 释光年龄(ka) BMJ-01 0.91 3.09±0.11 13.40±0.36 2.74±0.08 1.5 3.78±0.21 4.56±0.07 0.83±0.05 BMJ-02 0.61 2.34±0.09 9.28±0.27 2.99±0.08 5.5 4.24±0.29 4.23±0.07 1.00±0.07 CHJ-01 0.85 2.93±0.11 6.36±0.21 3.48±0.09 3.3 4.27±0.17 4.65±0.08 0.90±0.04 CHJ-02 0.63 6.87±0.21 32.10±0.83 3.52±0.10 4.0 20.98±1.22 7.44±0.11 2.82±0.25 LDH-01 0.32 2.26±0.09 11.50±0.32 3.40±0.09 5.1 2.80±0.37 4.77±0.08 0.59±0.08 LDH-02 0.58 1.39±0.07 7.70±0.25 2.38±0.07 2.5 3.24±0.75 3.45±0.06 0.93±0.22 LDH-03 0.50 2.74±0.11 12.30±0.34 2.91±0.08 1.3 14.94±0.69 4.67±0.07 3.20±0.16 NGH-02 0.32 2.14±0.09 19.10±0.52 3.97±0.10 0.6 3.64±0.93 6.11±0.09 0.60±0.15 NGH-03 0.43 5.82±0.17 19.70±0.49 3.91±0.12 8.2 23.36±3.88 6.41±0.10 3.65±0.61 BSH-01 0.55 2.80±0.10 14.80±0.37 3.45±0.09 1.9 3.43±0.39 5.36±0.08 0.64±0.07 BSH-03 0.61 2.96±0.13 16.50±0.48 3.68±0.09 4.8 164.53±22.22 5.56±0.08 29.60±4.00 WLH-02 0.93 1.93±0.10 7.34±0.26 3.21±0.09 3.1 16.62±1.85 4.24±0.08 3.92±0.44 WLH-03 0.67 1.30±0.13 8.00±0.29 2.67±0.07 12.1 99.47±15.73 3.65±0.06 27.30±4.30 WLH-04 1.10 1.59±0.08 6.53±0.21 2.85±0.07 2.3 3.00±0.21 3.78±0.06 0.79±0.06 表 2 海南岛西部河流下切速率
Table 2. The fluvial incision rate of river in Western Hainan Island
河流 阶地 阶地面年代(ka) 下切高度(m) 河流下切速率(m/ka) 昌化江 T3 2.82 7.30 3.40 T2 0.90 - - 罗带河 T3 3.20 0.90 0.40 T2 0.93 - - 南港河 T3 3.65 1.40 0.46 T2 0.60 - - 望楼河 T3 3.92 0.60 0.19 T2 0.79 - - -
Beck, J. W., Zhou, W., Li, C., et al., 2018. A 550, 000-Year Record of East Asian Monsoon Rainfall from 10Be in Loess. Science, 360(6391): 877-881. https://doi.org/10.1126/science.aam5825. Bridgland, D., Westaway, R., 2008. Climatically Controlled River Terrace Staircases: A Worldwide Quaternary Phenomenon. Geomorphology, 98(3/4): 285-315. https://doi.org/10.1016/j.geomorph.2006.12.032 Bridgland, D. R., 2000. River Terrace Systems in North-West Europe: An Archive of Environmental Change, Uplift and Early Human Occupation. Quaternary Science Reviews, 19(13): 1293-1303. https://doi.org/10.1016/s0277-3791(99)00095-5 Bull, W. B., 1990. Stream-Terrace Genesis: Implications for Soil Development. Geomorphology, 3(3/4): 351-367. https://doi.org/10.1016/0169-555x(90)90011-e Chen, H. J., Huang, W. K., Qiu, Y., 2017. The Inversion of Late Quaternary Paleo-Water Depth in Southwestern Offshore Hainan Island. Marine Geology & Quaternary Geology, 37(6): 128-139(in Chinese with English abstract). Chao, H. X., Han, X. H., Yang, Z. H., et al., 2016. New Exploration of Geotectonic Characteristics of Hainan Island. Earth Science Frontiers, 23(4): 200-211 (in Chinese with English abstract). Duller, G. A. T., 1995. Luminescence Dating Using Single Aliquots: Methods and Applications. Radiation Measurements, 24(3): 217-226. https://doi.org/10.1016/1350-4487(95)00150-d Durcan, J. A., King, G. E., Duller, G. A. T., 2015. DRAC: Dose Rate and Age Calculator for Trapped Charge Dating. Quaternary Geochronology, 28(2): 54-61. https://doi.org/10.1016/j.quageo.2015.03.012 Fan, G. M., Zhang, Z. Y., Gu, Y. S., et al., 2003. Uplifting since Quaternary in Southeastern Qilian Mountains and Its Dynamic Analysis. Earth Science, 28(4): 389-394(in Chinese with English abstract). Gao, H. S., Li, Z. M., Pan, B. T., et al., 2016. Fluvial Responses to Late Quaternary Climate Change in the Shiyang River Drainage System, Western China. Geomorphology, 258(1): 82-94. https://doi.org/10.1016/j.geomorph. 2016.01.018 doi: 10.1016/j.geomorph.2016.01.018 Hu, C. S., 2014. Progress in Research on River Terraces. Journal of Earth Environment, 5: 353-362 (in Chinese with English abstract). Hu, Y. X., Hao, M., Qin, S. L., et al., 2018. Present-Day 3D Crustal Motion and Fault Activity in the Hainan Island. Chinese Journal of Geophysics, 61(6): 2310-2315(in Chinese with English abstract). Hu, Y. R., Yan, J. A., 2009. Paleoclimate Fluctuations Analysis of Hainan Islands after Holocene Warm Period. Journal of Meteorological Research and Application, 30(4): 42-44 (in Chinese with English abstract). Hu, Z. B., Pan, B. T., Wang, J. P., et al., 2012. Fluvial Terrace Formation in the Eastern Fenwei Basin, China, during the Past 1.2 Ma as a Combined Archive of Tectonics and Climate Change. Journal of Asian Earth Sciences, 60: 235-245. https://doi.org/10.1016/j.jseaes.2012.09.016 Huang, W. L., Yang, X. P., Li, A., et al., 2014. Climatically Controlled Formation of River Terraces in a Tectonically Active Region along the Southern Piedmont of the Tian Shan, NW China. Geomorphology, 220: 15-29. https://doi.org/10.1016/j.geomorph.2014.05.024 Jia, L. Y., Zhang, X. J., Ye, P. S., et al., 2017. Chronology Sequence of the River Terraces Development in Western Yinshan Mountains, China: Implications for the Tectonic Uplifting. Acta Geologica Sinica, 91(1): 249-265 (in Chinese with English abstract). doi: 10.1111/1755-6724.13075 Jiang G. L., Nie Z. L., Liu Z., et al., 2021. OSL Ages and Its Hydrological Implications of Alluvial-Diluvial Deposits from the Southern Margin of Badain Jaran Desert. Earth Science, 46(5): 1829-1839 (in Chinese with English abstract). Jiang, T., Hu, Y. P., Zhou, C. Y., et al., 2022. A review of Luminescence Dating on Marine Sediments. Bulletin of Geological Science and Technology, 41(5): 31-54 (in Chinese with English abstract). Jiang, T., Liu, X. J., Yu, T., et al., 2018. OSL Dating of Late Holocene Coastal Sediments and its Implication for Sea-Level Eustacy in Hainan Island, Southern China. Quaternary International, 468(3): 24-32. https://doi.org/10.1016/j.quaint.2017.11.039 Lai, Z. P., Ou, X. J., 2013. Basic Procedures of Optically Stimulated Luminescence (OSL) Dating. Progress in Geography, 32(5): 683-693 (in Chinese with English abstract). Laskar, J., Robutel, P., Joutel, F., et al., 2004. A Long-Term Numerical Solution for the Insolation Quantities of the Earth. Astronomy & Astrophysics, 428(1): 261-285. https://doi.org/10.1051/0004-6361:20041335 Li, G. C., Gao, S., Dai, C., 2016. Geomorphologic Evolution of Major Catchment Basins of Hainan Island, Southern China. Quaternary Sciences, 36(1): 121-130 (in Chinese with English abstract). Liu, S. F., Li, S., Nie, X., et al., 2021. Detrital Zircon Geochronology from Southeastern Sea of Hainan Island: Provenance Tracing and Tectonic Implications. Earth Science, 46(11): 4084-4096 (in Chinese with English abstract). Long, W. G., Ding, S. J., Ma, D. Q., et al., 2005. Formation and Evolution of the Precambrian Basement in Hainan Island. Earth Science, 30(4): 421-429 (in Chinese with English abstract). Maddy, D., Bridgland, D., Westaway, R., 2001. Uplift-Driven Valley Incision and Climate-Controlled River Terrace Development in the Thames Valley, UK. Quaternary International, 79(1): 23-36. https://doi.org/10.1016/s1040-6182(0)00120-8 Murray, A. S., Wintle, A. G., 2000a. Application of the Single-Aliquot Regenerative-Dose Protocol to the 375 ℃ Quartz TL Signal. Radiation Measurements, 32(5/6): 579-583. https://doi.org/10.1016/s1350-4487(0)00089-5 Murray, A. S., Wintle, A. G., 2000b. Luminescence Dating of Quartz Using an Improved Single-Aliquot Regenerative-Dose Protocol. Radiation Measurements, 32(1): 57-73. https://doi.org/10.1016/s1350-4487(99)00253-x Oppo, D. W., Sun, Y. B., 2005. Amplitude and Timing of Sea-Surface Temperature Change in the Northern South China Sea: Dynamic Link to the East Asian Monsoon. Geology, 33(10): 785. https://doi.org/10.1130/g21867.1 Rittenour, T. M., 2008. Luminescence Dating of Fluvial Deposits: Applications to Geomorphic, Palaeoseismic and Archaeological Research. Boreas, 37(4): 613-635. https://doi.org/10.1111/j.1502-3885.2008.00056.x Vandenberghe, D., Derese, C., Houbrechts, G., 2007. Residual Doses in Recent Alluvial Sediments from the Ardenne (S Belgium). Geochronometria, 28: 1-8. https://doi.org/10.2478/v10003-007-0024-z Vandenberghe, J., 1995. Timescales, Climate and River Development. Quaternary Science Reviews, 14(6): 631-638. https://doi.org/10.1016/0277-3791(95)00043-o Wang, A., Wang, G. C., Xiang, S. Y., 2003. Characteristics of River Terraces in North Slope of Eastern Kunlun Mountains and Their Relationship with Plateau Uplift. Earth Science, 28(6): 675-679 (in Chinese with English abstract). Wang, P. X., Li, Q. Y., Tian, J., et al., 2016. Monsoon Influence on Planktic Δ18O Records from the South China Sea. Quaternary Science Reviews, 142(17): 26-39. https://doi.org/10.1016/j.quascirev.2016.04.009 Whipple, K. X., Kirby, E., Brocklehurst, S. H., 1999. Geomorphic Limits to Climate-Induced Increases in Topographic Relief. Nature, 401(6748): 39-43. https://doi.org/10.1038/43375 Xu, L. B., Zhou, S. Z., 2007. Formation Process and Driving Mechanisms of Fluvial Terrace. Scientia Geographica Sinica, 27(5): 672-677 (in Chinese with English abstract). Yan, J. A., 2006. Paleontology and Ecologic Environmental Evolution of the Quaternary in Hainan Island. Journal of Palaeogeogaphy(Chinese Edition), 8(1): 103-115 (in Chinese with English abstract). Yu, T., Jiang, T., 2014. Research Progress and Prospect of Optical Stimulated Luminescence Dating for Marine Sediments. Geological Science and Technology Information, 33(2): 38-44 (in Chinese with English abstract). . Zhang, H. N., Zhang, F. L., Wu, Z. L., 1985. Seismicity and Seismic Structure of the Hainan Island. Earthquake Research in China, 1(3): 61-65 (in Chinese with English abstract). Zhang, J. L, Tian, Q. J., Li, F., et al., 2008. Study on Neotectonic Characteristics and its Evolution in Northwestern Hainan Island. Earthquake, 28(3): 85-94 (in Chinese with English abstract). Zhang, Z. L., Wu, S. R., Tang, H. M., et al., 2015. Control Effect of Evolution Process of the Yellow River Terrace in Lanzhou on Landslide Activity. Earth Science, 40(9): 1585-1597 (in Chinese with English abstract). 陈泓君, 黄文凯, 邱燕, 2017. 海南岛西南海域晚第四纪古水深反演. 海洋地质与第四纪地质, 37(6): 128-139. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201706015.htm 晁会霞, 韩孝辉, 杨志华, 等, 2016. 对海南岛大地构造特征的新探索. 地学前缘, 23(4): 200-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201604021.htm 樊光明, 张智勇, 顾延生, 等, 2003. 祁连山东南缘第四纪以来的隆升作用及动力学分析. 地球科学, 28(4): 389-394. doi: 10.3321/j.issn:1000-2383.2003.04.005 胡春生, 2014. 河流阶地研究进展综述. 地球环境学报, 5(5): 354-362. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201405007.htm 胡亚轩, 郝明, 秦姗兰, 等, 2018. 海南岛现今三维地壳运动与断裂活动性研究. 地球物理学报, 61(6): 2310-2315. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201806013.htm 胡玉蓉, 颜家安, 2009. 海南岛全新世大暖期后的古气候波动分析. 气象研究与应用, 30(4): 42-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GXQX200904012.htm 贾丽云, 张绪教, 叶培盛, 等, 2017. 阴山西段河流阶地发育的年代序列及其对构造隆升的指示意义. 地质学报, 91(1): 249-265. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201701015.htm 姜高磊, 聂振龙, 刘哲, 等, 2021. 巴丹吉林沙漠南缘冲洪积物的光释光年代及其水文学意义. 地球科学, 46(5): 1829-1839. 10.3799/dqkx.2020.148 姜涛, 胡亦潘, 周从艳, 等, 2022. 海洋沉积物释光测年现状与展望. 地质科技通报, 41(5): 31-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202205007.htm 赖忠平, 欧先交, 2013. 光释光测年基本流程. 地理科学进展, 32(5): 683-693. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201305003.htm 李高聪, 高抒, 戴晨, 2016. 海南岛主要入海河流流域地貌演化. 第四纪研究, 36(1): 121-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201601012.htm 刘松峰, 李顺, 聂鑫, 等, 2021. 海南岛东南海域碎屑锆石年代学物源示踪及构造指示意义. 地球科学, 46(11): 4084-4096. doi: 10.3799/dqkx.2021.024 龙文国, 丁式江, 马大铨, 等, 2005. 海南岛前寒武纪基底组成及演化. 地球科学, 30(4): 421-429. http://www.earth-science.net/article/id/1396 王岸, 王国灿, 向树元, 2003. 东昆仑山东段北坡河流阶地发育及其与构造隆升的关系. 地球科学, 28(6): 675-679. http://www.earth-science.net/article/id/1302 许刘兵, 周尚哲, 2007. 河流阶地形成过程及其驱动机制再研究. 地理科学, 27(5): 672-677. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200705010.htm 颜家安, 2006. 海南岛第四纪古生物及生态环境演变. 古地理学报, 8(1): 103-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200601016.htm 余涛, 姜涛, 2014. 光释光测年技术在海洋沉积物研究中的应用现状与展望. 地质科技情报, 33(2): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402007.htm 张虎男, 张福来, 吴泽龙, 1985. 海南岛的地震活动与地震构造. 中国地震, 1(3): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD198503011.htm 张军龙, 田勤俭, 李峰, 等, 2008. 海南岛北西部新构造特征及其演化研究. 地震, 28(3): 85-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZN200803013.htm 张泽林, 吴树仁, 唐辉明, 等, 2015. 兰州黄河阶地演变过程对滑坡活动的控制效应. 地球科学, 24(9): 1585–1597. doi: 10.3799/dqkx.2015.143 -