• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    珠江口盆地珠二坳陷中部“对向拆离型复合洼陷”结构特征及其成因探讨

    彭光荣 郑金云 蔡嵩 陈兆明 韩晋阳 王梓颐

    彭光荣, 郑金云, 蔡嵩, 陈兆明, 韩晋阳, 王梓颐, 2024. 珠江口盆地珠二坳陷中部“对向拆离型复合洼陷”结构特征及其成因探讨. 地球科学, 49(4): 1385-1399. doi: 10.3799/dqkx.2023.068
    引用本文: 彭光荣, 郑金云, 蔡嵩, 陈兆明, 韩晋阳, 王梓颐, 2024. 珠江口盆地珠二坳陷中部“对向拆离型复合洼陷”结构特征及其成因探讨. 地球科学, 49(4): 1385-1399. doi: 10.3799/dqkx.2023.068
    Peng Guangrong, Zheng Jinyun, Cai Song, Chen Zhaoming, Han Jinyang, Wang Ziyi, 2024. Structural Characteristics and Genesis of Opposite Detachment Type Composite Sag in Middle of Zhu Ⅱ Depression, Pearl River Mouth Basin. Earth Science, 49(4): 1385-1399. doi: 10.3799/dqkx.2023.068
    Citation: Peng Guangrong, Zheng Jinyun, Cai Song, Chen Zhaoming, Han Jinyang, Wang Ziyi, 2024. Structural Characteristics and Genesis of Opposite Detachment Type Composite Sag in Middle of Zhu Ⅱ Depression, Pearl River Mouth Basin. Earth Science, 49(4): 1385-1399. doi: 10.3799/dqkx.2023.068

    珠江口盆地珠二坳陷中部“对向拆离型复合洼陷”结构特征及其成因探讨

    doi: 10.3799/dqkx.2023.068
    基金项目: 

    中国海洋石油有限公司“十四五”重大科技项目 KJGG2022-0102

    详细信息
      作者简介:

      彭光荣(1978-),男,高级工程师,主要从事油气地质与油气勘探综合研究工作.ORCID:0000-0003-2014-4653. E-mail:penggr@cnooc.com.cn

    • 中图分类号: P595

    Structural Characteristics and Genesis of Opposite Detachment Type Composite Sag in Middle of Zhu Ⅱ Depression, Pearl River Mouth Basin

    • 摘要: 南海北部陆缘深水区始新世多发育单向拆离断层,而珠二坳陷中部处于珠江口盆地珠二与珠一、珠三坳陷衔接带的南倾单一拆离断裂与北倾多级拆离断裂系交汇区,形成特有的“对向拆离型复合洼陷”,然而其结构特征及成因机制有待深入研究.基于最新高精度全覆盖三维地震数据和始新世全序列钻井数据,恢复始新世关键地质时期(T80/T83)洼陷构造地貌为窄深分隔型至宽浅汇聚型转换格局,沉积中心从两侧近源陡坡带向中央带拆离迁移,对向断裂交汇区隆升断块沿东西向长轴展布;构造演化序列揭示出对向拆离断裂系启动于始新世关键构造变革期(T83~43 Ma),响应远程太平洋板块俯冲方向的变化,区内地壳在伸展应力的作用下拆离减薄,拆离断面之上广泛发生断块翘倾与差异隆升现象,从而接受剥蚀成为动态源区,同时伴生强烈岩浆活动,重塑了对向分布的箕状断陷结构,形成对向拆离区内长轴动态供给模型.厘定对向拆离型复合洼陷长轴动态源区与沉积中心时空配置,可为深水区始新世裂陷期优质烃-储组合预测提供有力支撑.

       

    • 图  1  珠二坳陷中部构造位置图(a)、构造纲要图(b)及珠江口盆地层序地层综合柱状图(c)

      Fig.  1.  Structural location map (a) and structural outline map (b) of the middle of the Zhu Ⅱ depression and sequence stratigraphy comprehensive bar chart of the Pearl River Mouth basin(c)

      图  2  珠二坳陷中部“对向拆离型复合洼陷”三维地震剖面构造解释图

      a.开平凹陷南倾拆离体系;b.番禺25洼南倾-北倾复合拆离体系;c.白云3洼北倾拆离体系(剖面位置见图 1b

      Fig.  2.  Structural interpretation diagram of 3D seismic profile of "opposite detachment type composite sag" in the middle of Zhu Ⅱ depression

      图  3  云开低凸起中生代基底NEE向先存断裂(a)、番禺低隆起中生代基底EW-NWW向先存断裂(b)以及珠二坳陷中部基底高程图(c)

      Fig.  3.  NEE and EW-NWW preexisting faults of Mesozoic basement in Yunkai low uplift (a) and Panyu low uplift (b) and basement elevation map in the middle of Zhu Ⅱ depression (c)

      图  4  珠二坳陷中部始新世先存断裂体系差异活化示意图(据叶青,2019修改)

      Fig.  4.  The differential activation diagram of Eocene preexisting fault system in the middle of Zhu Ⅱ depression (modified from Ye, 2019)

      图  5  珠二坳陷中部基底韧性地壳顶界面T0图

      Fig.  5.  T0 diagram of the top interface of the basement ductile crust in the middle of Zhu Ⅱ depression

      图  6  珠二坳陷中部中下地壳隆升剖面

      a.白云3洼北倾拆离体系;b.开平凹陷南倾拆离体系

      Fig.  6.  Middle and lower crust uplift profile in the middle of Zhu Ⅱ depression

      图  7  珠二坳陷中部典型火成岩地震相剖面与钻井标定(a)以及始新世火山机构平面展布图(b)

      Fig.  7.  Typical igneous seismic facies profile and drilling calibration(a) and planar layout of volcanic structures in in the middle of Zhu Ⅱ depression in Eocene(b)

      图  8  珠二坳陷中部始新世对向拆离作用演化模型

      a.下文昌脆性张裂期;b.上文昌韧性拆离期

      Fig.  8.  Evolution model of antidirectional detachment during Wenchang period in the middle of Zhu Ⅱ depression in Eocene

      图  9  珠二坳陷中部对向拆离型复合洼陷“三元”结构模型

      Fig.  9.  "Ternary" structural model of opposite compound detachment sag in the middle of Zhu Ⅱ depression

    • Cai, G. F., Peng, G. R., Wu, J., et al., 2022. Sedimentary Filling Response to Detachment Structural Deformation in Shallow-Water Continental Shelf of Pearl River Mouth Basin: A Case Study of Enping Sag. Earth Science, 47(7): 2391-2409(in Chinese with English abstract).
      Cai, G. F., Zhang, X. T., Peng, G. R., et al., 2021. Neogene Volcanism and Tectonics along the Yangjiang-Yitong'ansha Fault Zone in the Northern South China Sea Margin. Geotectonica et Metallogenia, 45(1): 40-52(in Chinese with English abstract).
      Cheng, S. X., Li, S. Z., Suo, Y. H., et al., 2012. Cenozoic Tectonics and Dynamics of Basin Groups of the Northern South China Sea. Marine Geology & Quaternary Geology, 32(6): 79-93(in Chinese with English abstract).
      Deng, P., Mei, L. F., Du, J. Y., et al., 2020. Characteristics and Genetic Development of a Low-Angle Boundary Normal Fault in Xijiang Main Sag, Pearl River Mouth Basin, China. Oil & Gas Geology, 41(3): 606-616(in Chinese with English abstract).
      Gao, Y. D., Zhang, X. T., Zhang, L. L., et al., 2022. Geological Characteristics and Tectonic Settings of Mesozoic Continental Margin Magmatic Arc in Pearl River Mouth Basin. Earth Science, 47(7): 2317-2327(in Chinese with English abstract).
      Guo, W., Xu, G. Q., Liu, B. J., et al., 2022. Structure-Sedimentary Response Relationship of Wenchang Formation in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 47(7): 2433-2453(in Chinese with English abstract).
      Hao, T. Y., Huang, S., Xu, Y., et al., 2008. Comprehensive Geophysical Research on the Deep Structure of Northeastern South China Sea. Chinese Journal of Geophysics, 51(6): 1785-1796(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.2008.06.019
      He, W. Y., Liu, B., Zhang, J. Y., et al., 2023. Geological Characteristics and Key Scientific and Technological Problems of Gulong Shale Oil in Songliao Basin. Earth Science, 48(1): 49-62(in Chinese with English abstract).
      Jing, S., 2016. Research on the Structural Feature during Rifting in the Western Baiyun Sag, Pearl River Mouth Basin (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract).
      Li, H. B., Zheng, J. Y., Pang, X., et al., 2020. Structural Patterns and Controlling Factors of Differential Detachment in the Northern Continental Margin of the South China Sea: Taking Baiyun-Liwan Deep Water Area in the Pearl River Mouth Basin as an Example. China Offshore Oil and Gas, 32(4): 24-35(in Chinese with English abstract).
      Li, J., 2018. The Research on Sedimentary System in the Wenchang and Enping Formation of Pearl River Mouth Basin Baiyun West Depression and Panyu 27 Sag (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract).
      Li, R. B., Shi, N., Chen, Z. M., et al., 2020. Characteristics and Genetic Analysis of the "Near Critical Fluids" of Oil 1 Reservoir in Western Baiyun Sag. Journal of Guilin University of Technology, 40(3): 494-499(in Chinese with English abstract). doi: 10.3969/j.issn.1674-9057.2020.03.005
      Liu, B. J., Pang, X., Wang, J. H., et al., 2019. Response Process of Sedimentary System under the Background of Crustal Thinning of Extended Continental Margin in Deep Water Area of Pearl River Mouth Basin and Its Significance for Oil and Gas Exploration. Acta Petrolei Sinica, 40(S1): 124-138(in Chinese with English abstract).
      Liu, Q. Y., He, L. J., 2023. Neoid Major Tectono-Thermal Events and Their Potential Impacts on Deep Geothermal Energy. Earth Science, 48(3): 835-856(in Chinese with English abstract).
      Ma, X. Q., Liu, J., Zhu, D. W., et al., 2021. Sedimentary Response of Multi-Stage Pull-apart Basin: Insights from the Pearl River Mouth Basin in the Northern South China Sea Margin. Geotectonica et Metallogenia, 45(1): 64-78(in Chinese with English abstract).
      Mao, Y. H., Zhao, Z. X., Sun, Z., 2020. Extensional Thinning Mechanism of the Western Continental Margin of the Pearl River Mouth Basin. Earth Science, 45(5): 1622-1635(in Chinese with English abstract).
      Mohn, G., Manatschal, G., Beltrando, M., et al., 2012. Necking of Continental Crust in Magma-Poor Rifted Margins: Evidence from the Fossil Alpine Tethys Margins. Tectonics, 31(1): TC1012. https://doi.org/10.1029/2011TC002961
      Morley, C. K., 2014. The Widespread Occurrence of Low-Angle Normal Faults in a Rift Setting: Review of Examples from Thailand, and Implications for Their Origin and Evolution. Earth Science Reviews, 133: 18-42. https://doi.org/10.1016/j.earscirev.2014.02.007
      Pang, X., Chen, J., Dai, Y. D., et al., 1995. Study on Hydrocarbon Accumulation and Exploration Targets in West Baiyun-Kaiping Sag of Pearl River Mouth Basin. China Offshore Oil and Gas, 7(4): 237-245(in Chinese with English abstract).
      Pang, X., Ren, J. Y., Zheng, J. Y., et al., 2018. Petroleum Geology Controlled by Extensive Detachment Thinning of Continental Margin Crust: A Case Study of Baiyun Sag in the Deep-Water Area of Northern South China Sea. Petroleum Exploration and Development, 45(1): 27-39(in Chinese with English abstract).
      Pang, X., Zheng, J. Y., Mei, L. F., et al., 2021. Characteristics and Origin of Continental Marginal Fault Depressions under the Background of Preexisting Subduction Continental Margin, Northern South China Sea, China. Petroleum Exploration and Development, 48(5): 1069-1080(in Chinese with English abstract).
      Pang, X., Zheng, J. Y., Ren, J. Y., et al., 2022. Structural Evolution and Magmatism of Fault Depression in Baiyun Sag, Northern Margin of South China Sea. Earth Science, 47(7): 2303-2316(in Chinese with English abstract).
      Parsons, T., Thompson, G. A., 1993. Does Magmatism Influence Low-Angle Normal Faulting? Geology, 21(3): 247. https://doi.org/10.1130/0091-7613(1993)0210247: dmilan>2.3.co;2 doi: 10.1130/0091-7613(1993)0210247:dmilan>2.3.co;2
      Qi, J. F., Wu, J. F., Ma, B. S., et al., 2019. The Structural Model and Dynamics Concerning Middle Section, Pearl River Mouth Basin in North Margin of South China Sea. Earth Science Frontiers, 26(2): 203-221(in Chinese with English abstract).
      Reid, I. D., 1994. Crustal Structure of a Nonvolcanic Rifted Margin East of Newfoundland. Journal of Geophysical Research: Solid Earth, 99(B8): 15161-15180. https://doi.org/10.1029/94jb00935
      Ren, J. Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114(in Chinese with English abstract).
      Ren, J. Y., Pang, X., Yu, P., et al., 2018. Characteristics and Formation Mechanism of Deepwater and Ultra-Deepwater Basins in the Northern Continental Margin of the South China Sea. Chinese Journal of Geophysics, 61(12): 4901-4920(in Chinese with English abstract).
      Shi, H. S., Du, J. Y., Mei, L. F., et al., 2020. Huizhou Movement and Its Significance in Pearl River Mouth Basin, China. Petroleum Exploration and Development, 47(3): 447-461(in Chinese with English abstract). http://doc.paperpass.com/journal/20200038syktykfywb.html
      Unternehr, P., Péron-Pinvidic, G., Manatschal, G., et al., 2010. Hyper-Extended Crust in the South Atlantic: In Search of a Model. Petroleum Geoscience, 16(3): 207-215. https://doi.org/10.1144/1354-079309-904
      Wang, J., Luan, X. W., He, B. S., et al., 2021. Study on the Structural Characteristics and Dynamic Mechanism of Faults in the Kaiping Sag of Zhujiang River Mouth Basin. Haiyang Xuebao, 43(8): 41-53(in Chinese with English abstract).
      Whitney, D. L., Teyssier, C., Rey, P., et al., 2013. Continental and Oceanic Core Complexes. Geological Society of America Bulletin, 125(3/4): 273-298. https://doi.org/10.1130/b30754.1
      Wu, K. Q., Xie, X. J., Liao, J. H., et al., 2023. The Rules of Reservoir Characteristics and Dissolution of Paleogene Clastic Rocks in Offshore China. Earth Science, 48(2): 385-397(in Chinese with English abstract).
      Ye, Q., 2019. The Late Mesozoic Structure Systems in the Northern South China Sea Margin: Geodynamics and Their Influence on the Cenozoic Structures in the Pearl River Mouth Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Ye, Q., Mei, L. F., Jiang, D. P., et al., 2022.3-D Structure and Development of a Metamorphic Core Complex in the Northern South China Sea Rifted Margin. Journal of Geophysical Research: Solid Earth, 127(2): e2021JB022595. https://doi.org/10.1029/2021jb022595
      Ye, Q., Mei, L. F., Shi, H. S., et al., 2018. A Low-Angle Normal Fault and Basement Structures within the Enping Sag, Pearl River Mouth Basin: Insights into Late Mesozoic to Early Cenozoic Tectonic Evolution of the South China Sea Area. Tectonophysics, 731: 1-16. https://doi.org/10.1016/j.tecto.2018.03.003
      Zhang, C. M., Sun, Z., Zhao, M. H., et al., 2022. Crustal Structure and Tectono-Magmatic Evolution of Northern South China Sea. Earth Science, 47(7): 2337-2353(in Chinese with English abstract).
      Zhang, Y. Z., Qi, J. F., Wu, J. F., 2019. Cenozoic Faults Systems and Its Geodynamics of the Continental Margin Basins in the Northern of South China Sea. Earth Science, 44(2): 603-625(in Chinese with English abstract).
      Zhang, Z. H., 2017. Study on Characteristics of Hydrocarbon Conduit System in the West of Baiyun Sag, Pearl River Mouth Basin, South China Sea (Dissertation). China University of Petroleum, Beijing(in Chinese with English abstract).
      Zhang, Z. Y., He, D. F., Li, Z., et al., 2018.3D Geometry and Kinematics of the Boundary Fault in the Kaiping Depression, Pearl River Mouth Basin. Chinese Journal of Geophysics, 61(10): 4296-4307(in Chinese with English abstract).
      Zheng, J. Y., Gao, Y. D., Zhang, X. T., et al., 2022. Tectonic Evolution Cycles and Cenozoic Sedimentary Environment Changes in Pearl River Mouth Basin. Earth Science, 47(7): 2374-2390(in Chinese with English abstract).
      Zhou, Y. S., He, C. R., Yang, X. S., 2008. Water and Deformation Mechanism in Ductile Shear Zone of Middle Crust. Science in China (Series D), 38(7): 819-832(in Chinese).
      Zhou, Z. C., Mei, L. F., Liu, J., et al., 2018. Continentward-Dipping Detachment Fault System and Asymmetric Rift Structure of the Baiyun Sag, Northern South China Sea. Tectonophysics, 726: 121-136. https://doi.org/10.1016/j.tecto.2018.02.002
      蔡国富, 彭光荣, 吴静, 等, 2022. 珠江口盆地浅水陆架区拆离断陷的构造变形与沉积充填响应: 以恩平凹陷为例. 地球科学, 47(7): 2391-2409. doi: 10.3799/dqkx.2022.215
      蔡国富, 张向涛, 彭光荣, 等, 2021. 南海北部阳江-一统暗沙断裂带与新近纪岩浆活动. 大地构造与成矿学, 45(1): 40-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202101004.htm
      程世秀, 李三忠, 索艳慧, 等, 2012. 南海北部新生代盆地群构造特征及其成因. 海洋地质与第四纪地质, 32(6): 79-93. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201206011.htm
      邓棚, 梅廉夫, 杜家元, 等, 2020. 珠江口盆地西江主洼低角度边界正断层特征及成因演化. 石油与天然气地质, 41(3): 606-616. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003017.htm
      高阳东, 张向涛, 张丽丽, 等, 2022. 珠江口盆地中生代陆缘岩浆弧地质特征及构造背景. 地球科学, 47(7): 2317-2327. doi: 10.3799/dqkx.2021.247
      郭伟, 徐国强, 柳保军, 等, 2022. 珠江口盆地白云凹陷文昌组构造-沉积响应关系. 地球科学, 47(7): 2433-2453. doi: 10.3799/dqkx.2022.156
      郝天珧, 黄松, 徐亚, 等, 2008. 南海东北部及邻区深部结构的综合地球物理研究. 地球物理学报, 51(6): 1785-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200806020.htm
      何文渊, 柳波, 张金友, 等, 2023. 松辽盆地古龙页岩油地质特征及关键科学问题探索. 地球科学, 48(1): 49-62. doi: 10.3799/dqkx.2022.320
      敬嵩, 2016. 珠江口盆地白云西凹裂谷期构造特征研究(硕士学位论文). 北京: 中国石油大学(北京).
      李洪博, 郑金云, 庞雄, 等, 2020. 南海北部陆缘差异拆离作用结构样式与控制因素: 以珠江口盆地白云-荔湾深水区为例. 中国海上油气, 32(4): 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202004003.htm
      李骥, 2018. 珠江口盆地白云西凹与番禺27洼文昌及恩平组沉积体系研究(硕士学位论文). 北京: 中国石油大学(北京).
      李瑞彪, 石宁, 陈兆明, 等, 2020. 白云西洼油藏的"近临界流体"特征及成因分析. 桂林理工大学学报, 40(3): 494-499. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX202003006.htm
      柳保军, 庞雄, 王家豪, 等, 2019. 珠江口盆地深水区伸展陆缘地壳减薄背景下的沉积体系响应过程及油气勘探意义. 石油学报, 40(S1): 124-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1011.htm
      刘琼颖, 何丽娟, 2023. 挽近重大构造-热事件及其对深层地热能的潜在影响. 地球科学, 48(3): 835-856. doi: 10.3799/dqkx.2022.297
      马晓倩, 刘军, 朱定伟, 等, 2021. 多期走滑拉分盆地的沉积响应: 以南海北部珠江口盆地为例. 大地构造与成矿学, 45(1): 64-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202101006.htm
      毛云华, 赵中贤, 孙珍, 2020. 珠江口盆地西部陆缘伸展-减薄机制. 地球科学, 45(5): 1622-1635. doi: 10.3799/dqkx.2019.160
      庞雄, 陈隽, 戴一丁, 等, 1995. 珠江口盆地白云西-开平凹陷油气聚集及勘探目标研究. 中国海上油气地质, 7(4): 237-245. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199504004.htm
      庞雄, 任建业, 郑金云, 等, 2018. 陆缘地壳强烈拆离薄化作用下的油气地质特征: 以南海北部陆缘深水区白云凹陷为例. 石油勘探与开发, 45(1): 27-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801004.htm
      庞雄, 郑金云, 梅廉夫, 等, 2021. 先存俯冲陆缘背景下南海北部陆缘断陷特征及成因. 石油勘探与开发, 48(5): 1069-1080. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202105021.htm
      庞雄, 郑金云, 任建业, 等, 2022. 南海北部陆缘超伸展区白云凹陷断陷结构演化与岩浆作用. 地球科学, 47(7): 2303-2316. doi: 10.3799/dqkx.2022.064
      漆家福, 吴景富, 马兵山, 等, 2019. 南海北部珠江口盆地中段伸展构造模型及其动力学. 地学前缘, 26(2): 203-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201902019.htm
      任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501011.htm
      任建业, 庞雄, 于鹏, 等, 2018. 南海北部陆缘深水-超深水盆地成因机制分析. 地球物理学报, 61(12): 4901-4920. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812016.htm
      施和生, 杜家元, 梅廉夫, 等, 2020. 珠江口盆地惠州运动及其意义. 石油勘探与开发, 47(3): 447-461. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003003.htm
      王嘉, 栾锡武, 何兵寿, 等, 2021. 珠江口盆地开平凹陷断裂构造特征与动力学机制探讨. 海洋学报, 43(8): 41-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC202108004.htm
      吴克强, 谢晓军, 廖计华, 等, 2023. 中国近海古近纪碎屑岩储层特征与溶蚀作用规律. 地球科学, 48(2): 385-397. doi: 10.3799/dqkx.2022.151
      叶青, 2019. 南海北部陆缘晚中生代构造体系: 动力学以及对珠江口盆地新生代构造的制约(博士学位论文). 武汉: 中国地质大学.
      张翠梅, 孙珍, 赵明辉, 等, 2022. 南海北部陆缘结构及构造-岩浆演化. 地球科学, 47(7): 2337-2353. doi: 10.3799/dqkx.2021.208
      张远泽, 漆家福, 吴景富, 2019. 南海北部新生代盆地断裂系统及构造动力学影响因素. 地球科学, 44(2): 603-625. doi: 10.3799/dqkx.2018.542
      张志业, 何登发, 李智, 等, 2018. 珠江口盆地开平凹陷边界断层三维几何学与运动学. 地球物理学报, 61(10): 4296-4307. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201810031.htm
      张智辉, 2017. 珠江口盆地白云西洼油气输导体系特征研究(硕士学位论文). 北京: 中国石油大学.
      郑金云, 高阳东, 张向涛, 等, 2022. 珠江口盆地构造演化旋回及其新生代沉积环境变迁. 地球科学, 47(7): 2374-2390. doi: 10.3799/dqkx.2021.258
      周永胜, 何昌荣, 杨晓松, 2008. 中地壳韧性剪切带中的水与变形机制. 中国科学(D辑), 38(7): 819-832. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200807004.htm
    • 加载中
    图(9)
    计量
    • 文章访问数:  304
    • HTML全文浏览量:  148
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-09
    • 网络出版日期:  2024-04-30
    • 刊出日期:  2024-04-25

    目录

      /

      返回文章
      返回