• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    越流含水层系统中渗透系数随深度衰减的抽水试验解析模型

    樊娟 侯恩科 靳德武 刘英锋 田干 施文光 王全荣

    樊娟, 侯恩科, 靳德武, 刘英锋, 田干, 施文光, 王全荣, 2024. 越流含水层系统中渗透系数随深度衰减的抽水试验解析模型. 地球科学, 49(6): 2148-2157. doi: 10.3799/dqkx.2023.074
    引用本文: 樊娟, 侯恩科, 靳德武, 刘英锋, 田干, 施文光, 王全荣, 2024. 越流含水层系统中渗透系数随深度衰减的抽水试验解析模型. 地球科学, 49(6): 2148-2157. doi: 10.3799/dqkx.2023.074
    Fan Juan, Hou Enke, Jin Dewu, Liu Yingfeng, Tian Gan, Shi Wenguang, Wang Quanrong, 2024. Analytical Model of Pumping Tests with Depth-Dependent Hydraulic Conductivity in Leakage Aquifer System. Earth Science, 49(6): 2148-2157. doi: 10.3799/dqkx.2023.074
    Citation: Fan Juan, Hou Enke, Jin Dewu, Liu Yingfeng, Tian Gan, Shi Wenguang, Wang Quanrong, 2024. Analytical Model of Pumping Tests with Depth-Dependent Hydraulic Conductivity in Leakage Aquifer System. Earth Science, 49(6): 2148-2157. doi: 10.3799/dqkx.2023.074

    越流含水层系统中渗透系数随深度衰减的抽水试验解析模型

    doi: 10.3799/dqkx.2023.074
    基金项目: 

    国家重点研发计划项目 2017YFC0804108

    中煤科工西安研究院(集团)有限公司科技创新基金项目 2021XAYKF02

    湖北省自然科学基金 2021CFA089

    详细信息
      作者简介:

      樊娟(1983-),女,副研究员,博士研究生,主要从事煤矿山水害防治、三维地质建模、多源数据处理和融合等.ORCID:0009-0007-5134-198X. E-mail: ableboo@163.com

      通讯作者:

      侯恩科, E-mail: houek@xust.edu.cn

    • 中图分类号: P641

    Analytical Model of Pumping Tests with Depth-Dependent Hydraulic Conductivity in Leakage Aquifer System

    • 摘要: 传统的抽水试验模型假定含水层的渗透系数是恒定的,然而,由于地质作用等因素的影响,含水层渗透系数存在随深度衰减的现象.建立考虑越流、井储效应和随深度衰减的渗透系数的抽水试验数学模型,并推导了半解析解,其中,假设渗透系数随深度呈指数衰减.系统分析随深度衰减的渗透系数对抽水试验结果的影响.结果表明:含水层渗透系数随深度衰减系数(A)越大,井筒内地下水的降深越大;当含水层渗透系数随深度衰减时,滤水管的位置对抽水试验结果的影响比较显著,滤水管在含水层顶部时的井筒内降深比滤水管在含水层底部时的井筒水位降深要小;传统的抽水试验模型采用井筒水位降深数据反演的常数渗透系数与随深度衰减的渗透系数平均值近似.

       

    • 图  1  考虑越流和变化渗透系数的抽水试验模型

      Fig.  1.  Schematic diagram of the pumping test model considering the leakage and depth-decaying hydraulic conductivity

      图  2  本研究模型和Yang et al. (2006)在不同$ r $处的水位降深对比

      Fig.  2.  Comparison of drawdown calculated by this study and Yang et al.(2006) at different locations

      图  3  不同$ A $值下井筒内的水位降深

      Fig.  3.  The drawdown at the wellbore for different $ A $

      图  4  不同$ A $值在$ t=2\ \mathrm{d} $的降深等值线

      Fig.  4.  The drawdown contour map for different $ A $ when $ t=2\ \mathrm{d} $

      图  5  井筒内不同$ \mathrm{越}\mathrm{流}\mathrm{系}\mathrm{数}R $下地下水降深

      Fig.  5.  The drawdown at the wellbore for different $ R $

      图  6  不同井半径下的井筒内的水位降深

      Fig.  6.  The drawdown at the wellbore for different well radius

      图  7  不同滤水管位置下的井筒内的水位降深

      Fig.  7.  The drawdown at the wellbore for different locations of well screen

      图  8  不同$ A $值下的井筒内的水位降深

      Fig.  8.  The drawdown at the wellbore for different $ A $

      表  1  模型参数(据Zheng et al., 2019)

      Table  1.   Parameters used in this study (from Zheng et al., 2019)

      参数 单位 取值
      抽水流量($ Q $) $ {\mathrm{m}}^{3}/\mathrm{d} $ 83
      井半径($ {r}_{w} $) $ \mathrm{m} $ 0.15
      弹性贮水或释水率($ {S}_{s} $) $ 1/\mathrm{m} $ 0.000 5
      含水层顶部渗透系数($ {K}_{0} $) $ \mathrm{m}/\mathrm{d} $ 4.0
      衰减系数($ A $) $ 1/\mathrm{m} $ 0.11
      弱透水层渗透系数($ {K}_{a} $) $ \mathrm{m}/\mathrm{d} $ 0.1
      含水层厚度($ B $) $ \mathrm{m} $ 8.0
      弱透水层厚度($ m $) $ \mathrm{m} $ 15
      滤水管顶部位置($ d $) $ \mathrm{m} $ 2.0
      滤水管底部位置($ l $) $ \mathrm{m} $ 6.0
      下载: 导出CSV

      表  2  不同$ A $下的$ {K}_{\mathrm{a}\mathrm{v}\mathrm{g}} $、$ {K}_{\mathrm{e}\mathrm{s}\mathrm{t}} $和$ E $值

      Table  2.   The values of $ {K}_{\mathrm{a}\mathrm{v}\mathrm{g}}, {K}_{\mathrm{e}\mathrm{s}\mathrm{t}} $ and $ E $ for different $ A $

      $ A $(1/m) $ {K}_{\mathrm{a}\mathrm{v}\mathrm{g}} $(m/d) $ {K}_{\mathrm{e}\mathrm{s}\mathrm{t}} $(m/d) $ E $
      0.01 3.844 3.90 1.46%
      0.10 2.753 2.74 0.47%
      0.20 1.995 2.00 0.25%
      0.30 1.516 1.51 0.40%
      下载: 导出CSV
    • Achtziger-Zupančič, P., Loew, S., Mariéthoz, G., 2017. A New Global Database to Improve Predictions of Permeability Distribution in Crystalline Rocks at Site Scale. Journal of Geophysical Research: Solid Earth, 122(5): 3513-3539. https://doi.org/10.1002/2017jb014106
      Cassiani, G., Kabala, Z. J., Medina, M. A., 1999. Flowing Partially Penetrating Well: Solution to a Mixed-Type Boundary Value Problem. Advances in Water Resources, 23(1): 59-68. https://doi.org/10.1016/s0309-1708(99)00002-0
      Chen, C., Wen, Z., Zhou, H., et al., 2020. New Semi-Analytical Model for an Exponentially Decaying Pumping Rate with a Finite-Thickness Skin in a Leaky Aquifer. Journal of Hydrologic Engineering, 25(8). https://doi.org/10.1061/(asce)he.1943-5584.0001956
      Chen, C. X., 2020. Improvement of Dupuit Model: With Infiltration Recharge. Hydrogeology & Engineering Geology, 47(5): 1-4(in Chinese with English abstract).
      Chen, C. X., Tang, Z. H., 2021. Improvement of the Theis Unsteady Well Flow Model with Infiltration Recharge in a Phreatic Aquifer. Hydrogeology & Engineering Geology, 48(6): 1-12(in Chinese with English abstract).
      Chen, Y. F., Ling, X. M., Liu, M. M., et al., 2018. Statistical Distribution of Hydraulic Conductivity of Rocks in Deep-Incised Valleys, Southwest China. Journal of Hydrology, 566: 216-226. https://doi.org/10.1016/j.jhydrol.2018.09.016
      Hantush, M. S., 1964. Advances in Hydroscience. Elsevier, Amsterdam, 281-432. https://doi.org/10.1016/b978-1-4831-9932-0.50010-3
      Hantush, M. S., 1960. Modification of the Theory of Leaky Aquifers. Journal of Geophysical Research, 65(11): 3713-3725. https://doi.org/10.1029/jz065i011p03713
      Kabala, Z. J., Cassiani, G., 1997. Well Hydraulics with the Weber-Goldstein Transforms. Transport in Porous Media, 29(2): 225-246. https://doi.org/10.1023/A:1006542203102
      Lai, R. Y. S., Su, C. W., 1974. Nonsteady Flow to a Large Well in a Leaky Aquifer. Journal of Hydrology, 22(3-4): 333-345. https://doi.org/10.1016/0022-1694(74)90085-7
      Lin, Y. C., Yang, S. Y., Fen, C. S., et al., 2016. A General Analytical Model for Pumping Tests in Radial Finite Two-Zone Confined Aquifers with Robin-Type Outer Boundary. Journal of Hydrology, 540: 1162-1175. https://doi.org/10.1016/j.jhydrol.2016.07.028
      Louis, C., 1972. Rock Hydraulics. In: Müller, L., ed., Rock Mechanics. International Centre for Mechanical Sciences. Springer, Vienna.
      Luo, Y., Liu, P., Chen, W. X., et al., 2023. Pumping Test to Interpret Karst Aquifer Types and Hydrogeological Parameters. Journal of China Hydrology, 43(5): 39-44(in Chinese with English abstract).
      Mathias, S. A., Todman, L. C., 2010. Step-Drawdown Tests and the Forchheimer Equation. Water Resources Research, 46(7): W07514. https://doi.org/10.1029/2009wr008635
      Novakowski, K. S., 1989. A Composite Analytical Model for Analysis of Pumping Tests Affected by Well Bore Storage and Finite Thickness Skin. Water Resources Research, 25(9): 1937-1946. https://doi.org/10.1029/wr025i009p01937
      Papadopulos, I. S., Cooper, H. H. Jr., 1967. Drawdown in a Well of Large Diameter. Water Resources Research, 3(1): 241-244. https://doi.org/10.1029/wr003i001p00241
      Saar, M. O., Manga, M., 2004. Depth Dependence of Permeability in the Oregon Cascades Inferred from Hydrogeologic, Thermal, Seismic, and Magmatic Modeling Constraints. Journal of Geophysical Research: Solid Earth, 109(B4). https://doi.org/10.1029/2003jb002855
      Sakata, Y., Ikeda, R., 2013. Depth Dependence and Exponential Models of Permeability in Alluvial-Fan Gravel Deposits. Hydrogeology Journal, 21(4): 773-786. https://doi.org/10.1007/s10040-013-0961-8
      Theis, C. V., 1935. The Relation between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Ground-Water Storage. Transactions, American Geophysical Union, 16(2): 519-524. https://doi.org/10.1029/tr016i002p00519
      Tsai, C. S., Yeh, H. D., 2012. Wellbore Flow-Rate Solution for a Constant-Head Test in Two-Zone Finite Confined Aquifers. Hydrological Processes, 26(21): 3216-3224. https://doi.org/10.1002/hyp.8322
      Wan, L., Jiang, X. W., Wang, X. S., 2010. A Common Regularity of Aquifers: The Decay in Hydraulic Conductivity with Depth. Geological Journal of China Universities, 16(1): 7-12(in Chinese with English abstract).
      Wang, Q. R., Shi, W. G., Zhan, H. B., et al., 2018. Models of Single-Well Push-Pull Test with Mixing Effect in the Wellbore. Water Resources Research, 54(12): 10155-10171. https://doi.org/10.1029/2018wr023317
      Wang, Q. R., Zhan, H. B., 2015. On Different Numerical Inverse Laplace Methods for Solute Transport Problems. Advances in Water Resources, 75: 80-92. https://doi.org/10.1016/j.advwatres.2014.11.001
      Wei, S. Y., Wan, J. W., Sun, W., et al., 2022. Identification of Hydrogeological Parameter in Double-Porosity Fractured Aquifer Based on Single-Well Pumping Test. Earth Science(in press)(in Chinese with English abstract).
      Wang, X. S., Jiang, X. W., Wan, L., et al., 2009. Evaluation of Depth-Dependent Porosity and Bulk Modulus of a Shear Using Permeability-Depth Trends. International Journal of Rock Mechanics and Mining Sciences, 46(7): 1175-1181. https://doi.org/10.1016/j.ijrmms.2009.02.002
      Wang, Y. L., Zhan, H. B., Huang, K., et al., 2021. Identification of Non-Darcian Flow Effect in Double-Porosity Fractured Aquifer Based on Multi-Well Pumping Test. Journal of Hydrology, 600: 126541. https://doi.org/10.1016/j.jhydrol.2021.126541
      Wen, Z., Huang, G. H., Zhan, H. B., 2011. Non-Darcian Flow to a Well in a Leaky Aquifer Using the Forchheimer Equation. Hydrogeology Journal, 19(3): 563-572. https://doi.org/10.1007/s10040-011-0709-2
      Wen, Z., Huang, G. H., Zhan, H. B., et al., 2008. Two-Region Non-Darcian Flow Toward a Well in a Confined Aquifer. Advances in Water Resources, 31(5): 818-827. https://doi.org/10.1016/j.advwatres.2008.01.014
      Wen, Z., Huang, G. H., Liu, Z. T., et al., 2011. An Approximate Analytical Solution for Two-Region Non-Darcian Flow Toward a Well in a Leaky Aquifer. Earth Science, 36(6): 1165-1172(in Chinese with English abstract).
      Yang, S. Y., Yeh, H. D., Chiu, P. Y., 2006. A Closed Form Solution for Constant Flux Pumping in a Well under Partial Penetration Condition. Water Resources Research, 42(5). https://doi.org/10.1029/2004wr003889
      Yang, S. Y., Yeh, H. D., 2005. Laplace-Domain Solutions for Radial Two-Zone Flow Equations under the Conditions of Constant-Head and Partially Penetrating Well. Journal of Hydraulic Engineering, 131(3): 209-216. https://doi.org/10.1061/(asce)0733-9429(2005)131:3(209)
      Zhang, L., Franklin, J. A., 1993. Prediction of Water Flow into Rock Tunnels: an Analytical Solution Assuming an Hydraulic Conductivity Gradient. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(1): 37-46. https://doi.org/10.1016/0148-9062(93)90174-c
      Zheng, G., Ha, D., Loaiciga, H., et al., 2019. Estimation of the Hydraulic Parameters of Leaky Aquifers Based on Pumping Tests and Coupled Simulation/Optimization: Verification Using a Layered Aquifer in Tianjin, China. Hydrogeology Journal, 27(8): 3081-3095. https://doi.org/10.1007/s10040-019-02021-z
      Zhuang, C., Li, Y. B., Zhou, Z. F., et al., 2022. Effects of Exponentially Decaying Aquitard Hydraulic Conductivity on Well Hydraulics and Fractions of Groundwater Withdrawal in a Leaky Aquifer System. Journal of Hydrology, 607: 127439. https://doi.org/10.1016/j.jhydrol.2022.127439
      Zhou, Z. F., 2018. Application of the Monoexponential Decay Function on Analyzing Water-Inflow in Underground Boreholes. Journal of Mining & Safety Engineering, 35(3): 642-648(in Chinese with English abstract).
      陈崇希, 2020. Dupuit模型的改进: 具入渗补给. 水文地质工程地质, 47(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202106001.htm
      陈崇希, 唐仲华, 2021. Theis不稳定潜水井流模型的改进: 具入渗补给. 水文地质工程地质, 48(6): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202106001.htm
      罗颖, 刘埔, 陈维孝, 等, 2023. 抽水试验解译岩溶含水层类型及水文地质参数. 水文, 43(5): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ202305007.htm
      万力, 蒋小伟, 王旭升, 2010. 含水层的一种普遍规律: 渗透系数随深度衰减. 高校地质学报, 16(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201001003.htm
      文章, 黄冠华, 刘壮添, 等, 2011. 越流含水层中抽水井附近非达西流两区模型近似解析解. 地球科学, 36(6): 1165-1172. doi: 10.3799/dqkx.2011.123
      魏世毅, 万军伟, 孙伟, 等, 2022. 考虑井储效应的双重介质单孔抽水非稳定流解析模型. 地球科学(待刊).
      周振方, 2018. 单指数模型在分析井下钻孔疏水规律中的应用. 采矿与安全工程学报, 35(3): 642-648. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201803028.htm
    • 加载中
    图(8) / 表(2)
    计量
    • 文章访问数:  335
    • HTML全文浏览量:  120
    • PDF下载量:  29
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-11-26
    • 网络出版日期:  2024-07-11
    • 刊出日期:  2024-06-25

    目录

      /

      返回文章
      返回