Petrogenesis and Geotectonica Significance of TTG Gneiss in Late Neoarchean Dengfeng Complex
-
摘要: 英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)是地球早期大陆地壳最重要的组成部分,与早期构造环境和地壳分异过程关系紧密.通过岩相学、强烈的轻重稀土元素分异等地球化学特征、锆石的Hf模式年龄和U-Pb年龄以及微量元素模拟等手段,界定了登封地区TTG片麻岩的源岩及其残留相.锆石U-Pb定年显示登封杂岩内有两期TTG岩浆作用(2.57~2.55 Ga和2.55~2.51 Ga).并且,同位素系统研究表明,登封杂岩中具有较高的εHf(t)和εNd(t)值(1.7~9.7和0.23~3.87),接近同时代亏损地幔值.TTG片麻岩具有较高的SiO2和Na2O含量,较低的Mg#、Cr、Ni、Yb和Y含量,具有较高的La/Yb和Sr/Y比值.这些资料表明,登封地区的岩石代表了成熟地壳的主要岩石组成.该地区的岩性组合、构造样式和地球化学等多方面证据表明登封杂岩内部的绿岩带组合(变质火山沉积岩)是弧前杂岩和增生杂岩;以TTG为主的东部和西部登封杂岩可能是岛弧核部,它们共同组成了板块汇聚的标志性产物.微量元素模拟进一步表明登封地区TTG片麻岩是由俯冲洋壳的含水玄武岩(角闪岩)部分熔融形成,并留下了含石榴子石的角闪岩残余物.据此推断在此期间发生了年轻地壳生长,而华北克拉通南缘的新太古代晚期TTG片麻岩(2.57~2.50 Ga)见证了新陆壳的生长.Abstract: Tonalite-trondhjemite-granodiorite (TTG) is the most important component of the early continental crust of the Earth, which is closely related to the early tectonic environment and crustal differentiation process. By means of petrography, rare earth element differentiation, U-Pb age and Hf model age of zircon and trace element simulation based on the partial melting degree, this paper defines the protolith of TTG gneiss in Dengfeng area and its residual phase during partial melting. Meanwhile, zircon U-Pb dating shows that Dengfeng complex recorded two TTG magmatism (2.57-2.55 Ga and 2.55-2.51 Ga). TTG in Dengfeng complex has high εHf(t) and εNd(t) values (1.7-9.7 and 0.23-3.87), which are close to the depleted mantle values of the same period. In addition, TTG gneiss has high SiO2, Na2O, La/Yb and Sr/Y ratios and low Mg#, Cr, Ni, Yb, and Y contents. These data indicate that the rocks in the Dengfeng area represent the main components of mature crust. It is suggested by various data, including rock types, structural patterns, and geochemistry, that the greenstone belt combination (metamorphic volcanic sedimentary rocks) within the Dengfeng complex is forearc and accretionary terranes. The TTG-dominated Dengfeng complexes in the eastern and western parts may represent the island arc's core, and they collectively constitute the signature product of plate convergence. Further simulations of trace elements indicate that TTG gneisses in the Dengfeng area were partially melted from hydrated basaltic (amphibolite) rocks of the subducted oceanic crust, leaving behind garnet-bearing amphibolite residues. As such, we can infer that there was significant growth of young crust during this period, and the late Neoarchean TTG gneiss (2.57- 2.50 Ga) found along the southern margin of the North China Craton provides evidence to the formation of a new continental crust.
-
Key words:
- North China Craton /
- TTG /
- trace element simulation /
- Hf isotope /
- continental crust evolution /
- petrology /
- geochemistry
-
图 1 华北克拉通基底构造单元划分图据(Zhai and Santosh, 2011)
Fig. 1. Tectonic subdivision of the North China Craton (after Zhai and Santosh, 2011)
图 2 登封地区地质简图(据Diwu et al., 2011)
Fig. 2. Geological map of Dengfeng area (after Diwu et al., 2011)
图 4 登封地区TTG岩石性质判别图
a. SiO2-K2O+Na2O,底图据Middlemost(1994);b. An-Ab-Or三角图,底图据Barker and Arth(1976);c. SiO2-K2O,底图据Rickwood(1989);d. K2O-Na2O-CaO三角图;e. SiO2-MgO,PMB. 实验条件下变质玄武岩的部分熔融;LSA.低硅adakite;HAS.高硅adakite,底图据(Martin et al.2005);f. A/CNK-A/NK,底图据Maniar and Piccoli(1989)
Fig. 4. TTG rock property discrimination diagram in Dengfeng area
图 6 登封地区基性岩微量元素模拟结果对比
a~b. 以Wang et al.(2017b)报道的斜长角闪岩进行1%~25%批式部分熔融的结果;c~d. 以周艳艳等(2009)报道的斜长角闪岩包体进行1%~25%批式部分熔融的结果;e~f. 以周艳艳等(2009)报道的类MORB型斜长角闪岩进行1%~25%批式部分熔融的结果;分配系数来自Barth et al.(2002)、Xiong(2006);原始地幔标准化值来自Sun and McDonough(1989)
Fig. 6. Comparative diagram of trace element simulation results of basic rocks in Dengfeng area
图 8 登封地区TTG片麻岩构造成因判别图
a. La/Yb-Sr/Y,底图据Moyen(2011);b. Y-Ce/Sr底图据Moyen(2011);c. Y-Sr/Y,底图据Moyen and Martin(2012);d. Sr/Y-Eu/Eu*. PM.部分熔融;AllFC.同化混染;Cpx.单斜辉石;Hbl.角闪石;Pl.斜长石;Grt.石榴子石. 图例同图 4一致
Fig. 8. Discriminant map of TTG gneiss structure in Dengfeng area (the legends are the same to figure 4)
图 9 登封地区TTG片麻岩岩石成因判别图
a. Rb-Rb/Sr;b. Nb/Ta-Zr/Sm;c. 3CaO-Al2O3/(FeOT+MgO)-5K2O/Na2O,底图据Laurent et al.(2014);d. SiO2-Mg#. 图例同图 4一致
Fig. 9. Genetic discriminant map of TTG gneiss in Dengfeng area
图 11 洋壳不同部位大洋板块地层序列与华北克拉通中部造山带南段新太古代大地构造模型(据黄波,2020;Huang et al., 2022)
Fig. 11. Neo-Archean geotectonic model of the southern part of the central orogenic belt of the North China Craton (after Huang, 2020; Huang et al., 2022)
-
Barker, F., Arth, J. G., 1976. Generation of Trondhjemitic-Tonalitic Liquids and Archean Bimodal Trondhjemite-Basalt Suites. Geology, 4(10): 371-374. https://doi.org/10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2 doi: 10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2 Barth, M. G., Foley, S. F., Horn, I., 2002. Partial Melting in Archean Subduction Zones: Constraints from Experimentally Determined Trace Element Partition Coefficients between Eclogitic Minerals and Tonalitic Melts under Upper Mantle Conditions. Precambrian Research, 113(3-4): 323-340. https://doi.org/10.1016/S0301-9268(01)00216-9 Bédard, J. H., 2006. A Catalytic Delamination-Driven Model for Coupled Genesis of Archaean Crust and Sub-Continental Lithospheric Mantle. Geochimica et Cosmochimica Acta, 70(5): 1188-1214. https://doi.org/10.1016/j.gca.2005.11.008 Bindeman, I. N., Eiler, J. M., Yogodzinski, G. M., et al., 2005. Oxygen Isotope Evidence for Slab Melting in Modern and Ancient Subduction Zones. Earth and Planetary Science Letters, 235(3-4): 480-496. https://doi.org/10.1016/j.epsl.2005.04.014 Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2013. The Continental Record and the Generation of Continental Crust. Geological Society of America Bulletin, 125(1-2): 14-32. https://doi.org/10.1130/b30722.1 Condie, K. C., 2000. Episodic Continental Growth Models: Afterthoughts and Extensions. Tectonophysics, 322(1-2): 153-162. https://doi.org/10.1016/S0040-1951(00)00061-5 Condie, K. C., 2005. TTGS and Adakites: Are they both Slab Melts? Lithos, 80(1-4): 33-44. https://doi.org/10.1016/j.lithos.2003.11.001 Condie, K. C., 1981. Chapter 1 Archean Granite-Greenstone Terranes. Developments in Precambrian Geology, 3: 1-44. https://doi.org/10.1016/S0166-2635(08)70074-4 Deng, H., Jia, N., Kusky, T., et al., 2022. From Subduction Initiation to Hot Subduction: Life of a Neoarchean Subduction Zone from the Dengfeng Greenstone Belt, North China Craton. GSA Bulletin, 134(5-6): 1277-1300. https://doi.org/10.1130/b35994.1 Deng, H., Kusky, T., Polat, A., et al., 2016. A 2.5 Ga Fore-Arc Subduction-Accretion Complex in the Dengfeng Granite-Greenstone Belt, Southern North China Craton. Precambrian Research, 275: 241-264. https://doi.org/10.1016/j.precamres.2016.01.024 Diwu, C. R., Sun, Y., Guo, A. L., et al., 2011. Crustal Growth in the North China Craton at ~2.5 Ga: Evidence from in Situ Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the Dengfeng Complex. Gondwana Research, 20(1): 149-170. https://doi.org/10.1016/j.gr.2011.01.011 Drummond, M. S., Defant, M. J., 1990. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting: Archean to Modern Comparisons. Journal of Geophysical Research: Solid Earth, 95(B13): 21503-21521. https://doi.org/10.1029/JB095iB13p21503 Foley, S. F., 2008. Rejuvenation and Erosion of the Cratonic Lithosphere. Nature Geoscience, 1(8): 503-510. https://doi.org/10.1038/ngeo261 Foley, S. F., Tiepolo, M., Vannucci, R., 2002. Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 417(6891): 837-840. https://doi.org/10.1038/nature00799 Gutscher, M. A., Maury, R., Eissen, J. P., et al., 2000. Can Slab Melting be Caused by Flat Subduction? Geology, 28(6): 535. https://doi.org/10.1130/0091-7613(2000)28535:csmbcb>2.0.co;2 doi: 10.1130/0091-7613(2000)28535:csmbcb>2.0.co;2 Hastie, A. R., Fitton, J. G., Bromiley, G. D., et al., 2016. The Origin of Earth's First Continents and the Onset of Plate Tectonics. Geology, 44(10): 855-858. https://doi.org/10.1130/g38226.1 Hastie, A. R., Mitchell, S. F., Kerr, A. C., et al., 2011. Geochemistry of Rare High-Nb Basalt Lavas: Are they Derived from a Mantle Wedge Metasomatised by Slab Melts? Geochimica et Cosmochimica Acta, 75(17): 5049-5072. https://doi.org/10.1016/j.gca.2011.06.018 Hoffmann, J. E., Münker, C., Næraa, T., et al., 2011. Mechanisms of Archean Crust Formation Inferred from High-Precision HFSE Systematics in TTGS. Geochimica et Cosmochimica Acta, 75(15): 4157-4178. https://doi.org/10.1016/j.gca.2011.04.027 Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.10.025 Huang, B., 2020. Neoarchean Accretionary-to-Collisional Orogenesis in the Southern North China Craton and Its Geodynamic Implications (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). Huang, B., Johnson, T. E., Wilde, S. A., et al., 2022. Coexisting Divergent and Convergent Plate Boundary Assemblages Indicate Plate Tectonics in the Neoarchean. Nature Communications, 13(1): 6450. https://doi.org/10.1038/s41467-022-34214-8 Huang, B., Kusky, T. M., Johnson, T. E., et al., 2020. Paired Metamorphism in the Neoarchean: A Record of Accretionary-to-Collisional Orogenesis in the North China Craton. Earth and Planetary Science Letters, 543: 116355. https://doi.org/10.1016/j.epsl.2020.116355 Huang, B., Kusky, T., Wang, L., et al., 2019. Structural Relationships and Kinematics of the Neoarchean Dengfeng Forearc and Accretionary Complexes, Southern North China Craton. GSA Bulletin, 131(5-6): 966-996. https://doi.org/10.1130/b31938.1 Huang, X. L., Wilde, S. A., Zhong, J. W., 2013. Episodic Crustal Growth in the Southern Segment of the Trans-North China Orogen across the Archean-Proterozoic Boundary. Precambrian Research, 233: 337-357. https://doi.org/10.1016/j.precamres.2013.05.016 Ishizuka, O., Taylor, R. N., Umino, S., et al., 2020. Geochemical Evolution of Arc and Slab Following Subduction Initiation: A Record from the Bonin Islands, Japan. Journal of Petrology, 61(5): egaa050. https://doi.org/10.1093/petrology/egaa050 Johnson, T. E., Brown, M., Gardiner, N. J., et al., 2017. Earth's First Stable Continents Did not Form by Subduction. Nature, 543(7644): 239-242. https://doi.org/10.1038/nature21383 Johnson, T. E., Kirkland, C. L., Lu, Y. J., et al., 2022. Giant Impacts and the Origin and Evolution of Continents. Nature, 608(7922): 330-335. https://doi.org/10.1038/s41586-022-04956-y Kröner, A., Compston, W., Zhang, G. W., et al., 1988. Age and Tectonic Setting of Late Archean Greenstone-Gneiss Terrain in Henan Province, China, as Revealed by Single-Grain Zircon Dating. Geology, 16(3): 211. https://doi.org/10.1130/0091-7613(1988)0160211: aatsol>2.3.co;2 doi: 10.1130/0091-7613(1988)0160211:aatsol>2.3.co;2 Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 162: 387-432. https://doi.org/10.1016/j.earscirev.2016.09.002 Lao, Z. Q., Wang, S. Y., 1999. New Advances in the Study of the Dengfeng Complex in the Songshan Region, Henan Province. Regional Geology of China, 18(1): 9-16 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.1999.01.002 Laurent, O., Martin, H., Moyen, J. F., et al., 2014. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of "Modern-Style" Plate Tectonics between 3.0 and 2.5 Ga. Lithos, 205: 208-235. https://doi.org/10.1016/j.lithos.2014.06.012 Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1012.3.CO;2 Martin, H., 1994. Chapter 6 the Archean Grey Gneisses and the Genesis of Continental Crust. Developments in Precambrian Geology, 11: 205-259. https://doi.org/10.1016/S0166-2635(08)70224-X Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/S0024-4937(98)00076-0 Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite- Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.048 Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 Moyen, J. F., 2009. High Sr/Y and La/Yb Ratios: The Meaning of the "Adakitic Signature". Lithos, 112(3-4): 556-574. https://doi.org/10.1016/j.lithos.2009.04.001 Moyen, J. F., 2011. The Composite Archaean Grey Gneisses: Petrological Significance, and Evidence for a Non-Unique Tectonic Setting for Archaean Crustal Growth. Lithos, 123(1-4): 21-36. https://doi.org/10.1016/j.lithos.2010.09.015 Moyen, J. F., Martin, H., 2012. Forty Years of TTG Research. Lithos, 148: 312-336. https://doi.org/ 10.1016/j.lithos.2012.06.010 Palin, R. M., White, R. W., Green, E. C. R., 2016. Partial Melting of Metabasic Rocks and the Generation of Tonalitic-Trondhjemitic-Granodioritic (TTG) Crust in the Archaean: Constraints from Phase Equilibrium Modelling. Precambrian Research, 287: 73-90. https://doi.org/10.1016/j.precamres.2016.11.001 Polat, A., 2012. Growth of Archean Continental Crust in Oceanic Island Arcs. Geology, 40(4): 383-384. https://doi.org/10.1130/focus042012.1 Rapp, R. P., Shimizu, N., Norman, M. D., 2003. Growth of Early Continental Crust by Partial Melting of Eclogite. Nature, 425(6958): 605-609. https://doi.org/10.1038/nature02031 Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/S0009-2541(99)00106-0 Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891 Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams, Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5 Shaw, D. M., 1970. Trace Element Fractionation during Anatexis. Geochimica et Cosmochimica Acta, 34(2): 237-243. https://doi.org/10.1016/0016-7037(70)90009-8 Shervais, J. W., Reagan, M. K., Godard, M., et al., 2021. Magmatic Response to Subduction Initiation, Part Ⅱ: Boninites and Related Rocks of the Izu-Bonin Arc from IODP Expedition 352. Geochemistry, Geophysics, Geosystems, 22(1): e2020GC009093. https://doi.org/10.1029/2020GC009093 Smithies, R. H., 2000. The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 182(1): 115-125. https://doi.org/10.1016/S0012-821X(00)00236-3 Smithies, R. H., Champion, D. C., 2000. The Archaean High-Mg Diorite Suite: Links to Tonalite-Trondhjemite-Granodiorite Magmatism and Implications for Early Archaean Crustal Growth. Journal of Petrology, 41(12): 1653-1671. https://doi.org/10.1093/petrology/41.12.1653 Smithies, R. H., Lu, Y. J., Johnson, T. E., et al., 2019. No Evidence for High-Pressure Melting of Earth's Crust in the Archean. Nature Communications, 10: 5559. https://doi.org/10.1038/s41467-019-13547-x Sun, G. Z., Liu, S. W., Cawood, P. A., et al., 2021. Thermal State and Evolving Geodynamic Regimes of the Meso- to Neoarchean North China Craton. Nature Communications, 12: 3888. https://doi.org/10.1038/s41467-021-24139-z Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Wan, Y. S., 2022. How Did the Oldest Continental Crust Form? Earth Science, 47(10): 3776-3778 (in Chinese with English abstract). Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2022. Huge Growth of the Late Mesoarchean-Early Neoarchean(2.6-3.0 Ga) Continental Crust in the North China Craton: A Review. Journal of Geomechanics, 28(5): 866-906 (in Chinese with English abstract). Wan, Y. S., Liu, D. Y., Wang, S. Y., et al., 2009. Early Precambrian Crustal Evolution in the Dengfeng Area, Henan Province (Eastern China): Constraints from Geochemistry and SHRIMP U-Pb Zircon Dating. Acta Geologica Sinica, 83(7): 982-999 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2009.07.007 Wan, Y. S., Xie, H. Q., Dong, C. Y., et al., 2020. Timing of Tectonothermal Events in Archean Basement of the North China Craton. Earth Science, 45(9): 3119-3160 (in Chinese with English abstract). Wan, Y., Liu, D., Wang, S., et al., 2010. Juvenile Magmatism and Crustal Recycling at the End of the Neoarchean in Western Shandong Province, North China Craton: Evidence from SHRIMP Zircon Dating. American Journal of Science, 310(10): 1503-1552. https://doi.org/10.2475/10.2010.11 Wang, Q., Hao, L. L., Zhang, X. Z., et al., 2020. Adakitic Rocks at Convergent Plate Boundaries: Compositions and Petrogenesis. Science in China (Series D), 50(12): 1845-1873 (in Chinese). Wang, W., Cawood, P. A., Liu, S. W., et al., 2017a. Cyclic Formation and Stabilization of Archean Lithosphere by Accretionary Orogenesis: Constraints from TTG and Potassic Granitoids, North China Craton. Tectonics, 36(9): 1724-1742. https://doi.org/10.1002/2017TC004600 Wang, X., Huang, X. L., Yang, F., et al., 2017b. Late Neoarchean Magmatism and Tectonic Evolution Recorded in the Dengfeng Complex in the Southern Segment of the Trans-North China Orogen. Precambrian Research, 302: 180-197. https://doi.org/10.1016/j.precamres.2017.10.005 Wang, Z. J., Shen, Q. H., Wan, Y. S., 2004. SHRIMP U-Pb Zircon Geochronology of the Shipaihe "Metadiorite Mass" from Dengfeng County, Henan Province. Acta Geosicientia Sinica, 25(3): 295-298 (in Chinese with English abstract). Willbold, M., Hegner, E., Stracke, A., et al., 2009. Continental Geochemical Signatures in Dacites from Iceland and Implications for Models of Early Archaean Crust Formation. Earth and Planetary Science Letters, 279(1-2): 44-52. https://doi.org/10.1016/j.epsl.2008.12.029 Xiong, X. L., 2006. Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite. Geology, 34(11): 945. https://doi.org/10.1130/g22711a.1 Xiong, X. L., Adam, J., Green, T. H., 2005. Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt: Implications for TTG Genesis. Chemical Geology, 218(3-4): 339-359. https://doi.org/10.1016/j.chemgeo.2005.01.014 Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005 Zhang, G. W., Bai, Y. B., Sun, Y., et al., 1985. Composition and Evolution of the Archaean Crust in Central Henan, China. Precambrian Research, 27(1-3): 7-35. https://doi.org/10.1016/0301-9268(85)90004-X Zhao, G. C., Cawood, P. A., Li, S. Z., et al., 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222-223: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016 Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres.2004.10.002 Zhao, G. C., Zhang, G. W., 2021. Origin of Continents. Acta Geologica Sinica, 95(1): 1-19 (in Chinese with English abstract). doi: 10.1111/1755-6724.14621 Zheng, Y. F., 2022. Does the Mantle Contribute to Granite Petrogenesis? Earth Science, 47(10): 3765 (in Chinese with English abstract). Zheng, Y. F., Chen, Y. X., 2019. Crust-Mantle Interaction in Continental Subduction Zones. Earth Science, 44(12): 3961-3983 (in Chinese with English abstract). Zhou, Y. Y., Zhao, T. P., Xue, L. W., et al., 2009. Geochemistry and Origin of Neoarchean Amphibolites in Songshan, Hennan Province. Acta Petrologica Sinica, 25(11): 3043-3056 (in Chinese with English abstract). Zhou, Y. Y., Zhao, T. P., Zhai, M. G., et al., 2014. Petrogenesis of the Archean Tonalite-Trondhjemite-Granodiorite (TTG) and Granites in the Lushan Area, Southern Margin of the North China Craton: Implications for Crustal Accretion and Transformation. Precambrian Research, 255: 514-537. https://doi.org/10.1016/j.precamres.2014.06.023 侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 黄波, 2020. 华北克拉通南缘新太古代增生碰撞造山作用及其地球动力学启示(博士学位论文). 武汉: 中国地质大学. 劳子强, 王世炎, 1999. 河南省嵩山地区登封群研究的新进展. 中国区域地质, 18(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD901.001.htm 万渝生, 2022. 最古老陆壳是如何形成的?地球科学, 47(10): 3776-3778. doi: 10.3799/dqkx.2022.804 万渝生, 董春艳, 颉颃强, 等, 2022. 华北克拉通新太古代早期-中太古代晚期(2.6~3.0 Ga)巨量陆壳增生: 综述. 地质力学学报, 28(5): 866-906. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202205010.htm 万渝生, 刘敦一, 王世炎, 等, 2009. 登封地区早前寒武纪地壳演化——地球化学和锆石SHRIMP U-Pb年代学制约. 地质学报, 83(7): 982-999. doi: 10.3321/j.issn:0001-5717.2009.07.007 万渝生, 颉颃强, 董春艳, 等, 2020. 华北克拉通太古宙构造热事件时代及演化. 地球科学, 45(9): 3119-3160. doi: 10.3799/dqkx.2020.121 王强, 郝露露, 张修政, 等, 2020. 汇聚板块边缘的埃达克质岩: 成分和成因. 中国科学(D辑), 50(12): 1845-1873. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202307014.htm 王泽九, 沈其韩, 万渝生, 2004. 河南登封石牌河"变闪长岩体"的锆石SHRIMP年代学研究. 地球学报, 25(3): 295-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200403003.htm 赵国春, 张国伟, 2021. 大陆的起源. 地质学报, 95(1): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202210008.htm 郑永飞, 2022. 地幔是否对花岗岩的形成有贡献? 地球科学, 47(10): 3765. doi: 10.3799/dqkx.2022.800 郑永飞, 陈伊翔, 2019. 大陆俯冲带壳幔相互作用. 地球科学, 44(12): 3961-3983. doi: 10.3799/dqkx.2019.982 周艳艳, 赵太平, 薛良伟, 等, 2009. 河南嵩山地区新太古代斜长角闪岩的地球化学特征与成因. 岩石学报, 25(11): 3043-3056. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911034.htm -
dqkxzx-48-9-3342-附表.xlsx