• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    (U⁃Th)/He定年及影响因素研究进展

    杨莉 杨静 田鹏 施炜 李肖

    杨莉, 杨静, 田鹏, 施炜, 李肖, 2024. (U⁃Th)/He定年及影响因素研究进展. 地球科学, 49(9): 3155-3181. doi: 10.3799/dqkx.2023.079
    引用本文: 杨莉, 杨静, 田鹏, 施炜, 李肖, 2024. (U⁃Th)/He定年及影响因素研究进展. 地球科学, 49(9): 3155-3181. doi: 10.3799/dqkx.2023.079
    Yang Li, Yang Jing, Tian Peng, Shi Wei, Li Xiao, 2024. The Research Advances of (U-Th)/He Dating and Influencing Factors. Earth Science, 49(9): 3155-3181. doi: 10.3799/dqkx.2023.079
    Citation: Yang Li, Yang Jing, Tian Peng, Shi Wei, Li Xiao, 2024. The Research Advances of (U-Th)/He Dating and Influencing Factors. Earth Science, 49(9): 3155-3181. doi: 10.3799/dqkx.2023.079

    (U⁃Th)/He定年及影响因素研究进展

    doi: 10.3799/dqkx.2023.079
    基金项目: 

    国家自然科学基金项目 41873063

    国家自然科学基金项目 92062217

    国家自然科学基金项目 42241161

    中国地质调查局地质调查项目 DD20221644

    2021年度中国地质大学(北京)研究生创新资助项目 YB2021YC021

    详细信息
      作者简介:

      杨莉(1987-),女,博士,主要从事低温热年代学方法及应用研究. ORCID:0000-0001-5168-3591. E-mail:Yangli0211luck@126.com

      通讯作者:

      杨静,ORCID: 0000-0002-7828-1055. E-mail: yangjing_822822@163.com

    • 中图分类号: P597

    The Research Advances of (U-Th)/He Dating and Influencing Factors

    • 摘要: (U-Th)/He同位素定年以其低温敏感性(70 ℃)为造山带隆升‒剥蚀速率的时空格架构建、油气成藏时间约束、沉积盆地埋藏历史恢复、矿床剥蚀保存研究及古地形地貌重塑等提供了精确的时间‒温度演变模型,应用前景广阔.理解矿物封闭温度、内部结构、4He扩散机制、铀‒钍分带效应等是(U-Th)/He数据解释的核心所在.本文详尽论述了(U-Th)/He技术研究,包括测年适宜对象及在不同地质领域的应用、测试方法的发展及标准矿物结果、着重归纳了造成年龄偏差的因素,并简述了主要矿物的辐射损伤机制.研究表明,我国(U-Th)/He定年技术从非稀释剂法测定发展至单颗粒激光熔融技术,再延续到准分子激光剥蚀系统RESOlution下的原位微区双定年技术,FCT锆石、Durango磷灰石及蓬莱锆石的测定结果与国际标定年龄在误差范围内一致,并自主开发了MK-1磷灰石标样,目前该技术已相对成熟.能有效保存4He的多数铀‒钍副矿物均可成为适宜定年对象,本文总结了有效规避矿物包裹体、矿物粒径、α粒子射出及植入效应、成分环带等影响因素的策略,可为国内学者在(U-Th)/He数据解释中提供帮助和参考.

       

    • 图  1  蓬莱锆石(a)、MK-1磷灰石(b)、FCT锆石(c)及Limberg t3凝灰岩(d)(U-Th)/He年龄与232Th/238U比值的关系

      Fig.  1.  (U-Th)/He age versus 232Th/238U ratio of PengLai zircons (a), MK-1 apatite (b), FCT zircons (c) and Limberg t3 tuff (d)

      CAGS. Chinese Academy of Geological Sciences;CEA. China Earthquake Administration;IGGCAS. Institute of Geology and Geophysics,Chinese Academy of Sciences;CU. Curtin University

      图  2  Durango磷灰石(U-Th)/He年龄与 232Th/238U比值的关系

      Fig.  2.  (U-Th)/He age versus 232Th/238U ratio of Durango apatite

      图  3  磷灰石包裹体粒径变化对矿物中4He贡献趋势(根据Vermeesch et al., 2007 修改)

      Fig.  3.  Apatite inclusions effect on the contribution of 4He trendgram (after Vermeesch et al., 2007)

      图  4  FT校正系数与磷灰石宽度变化关系(修自Farley, 2002Ehlers and Farley, 2003)

      Fig.  4.  Correspondence between α-particle correction factor and width of apatite crystal (after Farley, 2000; Ehlers and Farley, 2003)

      图  5  α粒子射出和植入效应示意

      图a以磷灰石晶体紧邻锆石晶体为例,磷灰石颗粒边缘为高U、Th成分区,Z-Z’标记为横断面;图b表示横断面Z-Z’处磷灰石内4He的分布;图c表示在α粒子射出效应及周围锆石4He植入作用下的磷灰石晶体内4He重新分布情况;据Chew and Spikings(2015)修改

      Fig.  5.  Schematic diagram of α-particle ejection and implantation

      图  6  磷灰石(U-Th)/He年龄和等效U浓度关系

      图b为磨蚀掉磷灰石最外层20 μm厚包壳,据Spiegel et al.(2009)修改

      Fig.  6.  Apatite (U-Th)/He date-eU correlations for single-grain analyses

      图  7  四方晶系模型的环带宽度变化与4He保留性相关关系简化图(据Hourigan et al., 2005)

      Fig.  7.  Zoning-dependent bulk retentivity plots for tetragonal model crystals with rims (concentration step functions) of variable width and degree of enrichment or depletion (after Hourigan et al., 2005)

      图  8  不同粒径矿物边缘富集/亏损U、Th的球形晶体对(U-Th)/He年龄准确度的影响关系(据Hourigan et al., 2005 修改)

      Fig.  8.  He age bias plots for spherical model crystals with rims (concentration step functions) of variable thickness and degree of enrichment or depletion (after Hourigan et al., 2005)

      图  9  辐射损伤对4He扩散动力学的影响示意(据Shuster et al., 2006)

      r为穿过半径为a的球面距离,r/a=1对应于晶体表面位置,Hef表示未损伤晶体内射出的He原子,Het为损伤位置上被俘获的He原子,Ea为通过晶体内完全没有辐射损伤区域的体扩散活化能,Et是氦原子克服晶格缺陷阻力逃离未损伤区域所需能量

      Fig.  9.  Schematic model of the influence of radiation-damage traps on 4He diffusion (after Shuster et al., 2006)

      图  10  不同等效铀浓度对应的Durango磷灰石的封闭温度及(U-Th)/He年龄变化(据Shuster et al., 2006 修改)

      Fig.  10.  Closure temperature (Tc) for Durango apatite and grains with varying eU concentrations (after Shuster et al., 2006)

      图  11  人工辐照磷灰石和天然磷灰石扩散参数对比(据Shuster and Farley, 2009)

      Fig.  11.  Kinetic parameters of natural and artificially irradiated samples (after Shuster and Farley, 2009)

      图  12  常见热历史路径及对应的年龄‒等效U浓度预测关系(据Guenthner et al., 2013)

      Fig.  12.  Model predictions of date-eU correlations for various thermal histories (after Guenthner et al., 2013)

      图  13  榍石、锆石封闭温度随a损伤剂量变化趋势图(a);榍石、锆石的损伤积累时间(Ma)、a剂量以及eU变化关系图(b)(Baughman et al., 2017

      Fig.  13.  Tc (℃) versus estimated alpha dose (a×1016/g) for titanites and zircon (a); accumulation time (Ma) versus alpha dose (a×1016/g) for titanite and zircon of variable eU (b) (modified from Baughman et al., 2017)

      表  1  不同矿物(U⁃Th)/He封闭温度总结

      Table  1.   Compilation of different minerals (U-Th)/He closure temperatures

      矿物 封闭温度(℃) 参考文献
      磷灰石 75(冷却速率为10 ℃ /Ma) Wolf et al., 1996
      80~90 Crowley et al., 2002
      88±5 Chang et al., 2012
      72 van Soest et al., 2011
      62(粒径60 μm) Flowers et al., 2009
      69 Farley, 2000
      氯磷灰石 18(冷却速率0.3℃/Ma) Min et al., 2013
      锆石 175~195(冷却速率10 ℃/Ma) Reiners et al., 2002 ; Tagami et al., 2003
      > 200 蔡长娥等,2020b
      144~216(冷却速率为10℃/Ma) 喻顺等,2019
      独居石 206±24、230±4、286±13 Boyce and Hodges, 2005
      224 Farley and Stockli, 2002
      262~291 Peterman et al., 2014
      磷钇矿 35~75 Anderson et al., 2019
      115 Farley and Stockli, 2002
      190 Farley, 2007
      榍石 220~190 Reiners and Farley, 1999
      100~180 Stockli and Farley, 2004
      金红石 220~235 Stockli et al., 2007
      180~200 Crowhurst et al., 2002
      155~159 Robinson et al., 2019
      石榴石 200~300 Seman et al., 2014
      590~630 Dunai and Roselieb, 1996
      萤石 60±5 Evans et al., 2005
      200 Pi et al., 2005
      169~46 Wolff et al., 2016
      磁铁矿 ~250±50 Blackburn et al., 2007
      赤铁矿 140~240 Evenson et al., 2014
      178~218 Lippolt et al., 1993
      方解石 60~80 Copeland et al., 2007
      牙形石 60~70(冷却速率为10 ℃/Ma) Peppe and Reiners, 2007
      50~90 Bidgoli et al., 2018
      60~67 蔡长娥等,2020a
      陨磷钙钠石 94~112(冷却速率为0.3~2.6 ℃/Ma) Min et al., 2013
      尖晶石 200~300 Cooperdock and Stockli, 2018
      斜锆石 450~500 Metcalf and Flowers, 2013
      钙钛矿 > 300 Stanley and Flowers, 2016
      橄榄石 697 Hart, 1984
      648 Trull and Kurz, 1993
      单斜辉石 456 Trull and Kurz, 1993
      白云母 41 Lippolt and Weigel, 1988
      透长石 52
      角闪石 79~106
      普通辉石 94
      霞石 152
      无水钾镁矾 87
      绿帘石 63 Nicolescu and Reiners, 2005
      下载: 导出CSV

      表  2  蓬莱锆石同位素年龄统计

      Table  2.   Isotopic age of Penglai zircon reference materials

      年龄(Ma) 研究方法 资料来源
      4.393±0.041 TIMS U-Pb Li et al., 2010
      4.36±0.12 SIMS U-Pb
      4.2±0.12 LA-ICP-MS U-Pb Chew et al., 2014
      4.3±0.2 Crowley et al., 2014
      4.1±0.2 Yu et al., 2010
      4.2±0.1 2 Petrus and Kamber, 2012
      PL1: 4.29±0.03
      PL2: 3.95±0.05
      LA-MC-ICP-MS U-Pb Yu et al., 2020
      PL1: 4.12±0.10
      PL2 : 3.07±0.25
      (U-Th)/He
      4.06±0.35 Li et al., 2017
      下载: 导出CSV

      表  3  (U⁃Th)/He测年主要矿物中各放射性元素产生α粒子的停止距离

      Table  3.   Mean stopping distances of α particles produced from the U、Th and Sm decay chains in several minerals used for (U-Th)/He dating

      矿物 密度
      (g/cm3)
      平均停止距离(μm) 参考文献
      238U 235U 232Th 147Sm
      磷灰石 3.20 18.81 21.80 22.25 5.93 Ketcham et al., 2011
      锆石 4.65 15.55 18.05 18.43 4.76
      榍石 3.53 17.46 20.25 20.68 5.47
      独居石 5.26 16.18 18.74 19.11 4.98
      磷钇矿 4.75 15.20 17.63 17.99 4.68
      金红石 4.25 15.30 17.76 18.14 4.77
      磁铁矿 5.18 13.97 16.16 16.49 4.51
      赤铁矿 5.26 13.59 15.72 16.04 4.39
      针铁矿 4.28 15.54 18.00 18.38 4.95
      重晶石 4.50 18.14 21.05 21.50 5.54
      磷灰石 -- 19.68 22.63 22.46 -- Farley et al., 1996
      锆石 -- 16.97 19.64 19.32 --
      榍石 -- 18.12 21.01 20.68 --
      下载: 导出CSV

      表  4  矿物晶体不同几何形态a1、a2适用参数

      Table  4.   Factors a1 and a2 for calculating fraction of He retained in crystals from the 238U and 232Th decay series for different assumed crystal geometries

      矿物 锆石(四棱柱) 磷灰石(六棱柱) 锆石(四棱柱)
      a1 a2 a1 a2 a1 a2
      238U ‒4.31 4.92 ‒5.13 6.78 ‒4.28 4.37
      232Th ‒5.00 6.80 ‒5.9 8.99 ‒4.87 5.61
      下载: 导出CSV
    • Aciego, S. M., Jourdan, F., DePaolo, D. J., et al., 2010. Combined U⁃Th/He and 40Ar/39Ar Geochronology of Post⁃Shield Lavas from the Mauna Kea and Kohala Volcanoes, Hawaii. Geochimica et Cosmochimica Acta, 74(5): 1620-1635. https://doi.org/10.1016/j.gca.2009.11.020
      Aciego, S., Kennedy, B. M., DePaolo, D. J., et al., 2003. U⁃Th/He Age of Phenocrystic Garnet from the 79 AD Eruption of Mt. Vesuvius. Earth and Planetary Science Letters, 216(1-2): 209-219. https://doi.org/10.1016/s0012⁃821x(03)00478⁃3
      Adams, B., Dietsch, C., Owen, L. A., et al., 2009. Exhumation and Incision History of the Lahul Himalaya, Northern India, Based on (U⁃Th)/He Thermochronometry and Terrestrial Cosmogenic Nuclide Methods. Geomorphology, 107(3-4): 285-299. https://doi.org/10.1016/j.geomorph.2008.12.017
      Anderson, A. J., Hanchar, J. M., Hodges, K. V., et al., 2020. Mapping Radiation Damage Zoning in Zircon Using Raman Spectroscopy: Implications for Zircon Chronology. Chemical Geology, 538: 119494. https://doi.org/10.1016/j.chemgeo.2020.119494
      Anderson, A. J., Hodges, K. V., van Soest, M. C., 2017. Empirical Constraints on the Effects of Radiation Damage on Helium Diffusion in Zircon. Geochimica et Cosmochimica Acta, 218: 308-322. https://doi.org/10.1016/j.gca.2017.09.006
      Anderson, A. J., Hodges, K. V., van Soest, M. C., et al., 2019. Helium Diffusion in Natural Xenotime. Geochemistry, Geophysics, Geosystems, 20(1): 417-433. https://doi.org/10.1029/2018gc007849
      Ault, A. K., Flowers, R. M., 2012. Is Apatite U⁃Th Zonation Information Necessary for Accurate Interpretation of Apatite (U⁃Th)/He Thermochronometry Data? Geochimica et Cosmochimica Acta, 79: 60-78. https://doi.org/10.1016/j.gca.2011.11.037
      Ault, A. K., Reiners, P. W., Evans, J. P., et al., 2015. Linking Hematite (U⁃Th)/He Dating with the Microtextural Record of Seismicity in the Wasatch Fault Damage Zone, Utah, USA. Geology, 43(9): 771-774. https://doi.org/10.1130/g36897.1
      Bargnesi, E. A., Stockli, D. F., Hourigan, J. K., et al., 2016. Improved Accuracy of Zircon (U⁃Th)/He Ages by Rectifying Parent Nuclide Zonation with Practical Methods. Chemical Geology, 426: 158-169. https://doi.org/10.1016/j.chemgeo.2016.01.017
      Baughman, J. S., Flowers, R. M., Metcalf, J. R., et al., 2017. Influence of Radiation Damage on Titanite He Diffusion Kinetics. Geochimica et Cosmochimica Acta, 205: 50-64. https://doi.org/10.1016/j.gca.2017.01.049
      Bidgoli, T. S., Tyrrell, J. P., Möller, A., et al., 2018. Conodont Thermochronology of Exhumed Footwalls of Low⁃Angle Normal Faults: A Pilot Study in the Mormon Mountains, Tule Springs Hills, and Beaver Dam Mountains, Southeastern Nevada and Southwestern Utah. Chemical Geology, 495: 1-17. https://doi.org/10.1016/j.chemgeo.2018.06.026
      Blackburn, T. J., Stockli, D. F., Carlson, R. W., et al., 2008. (U⁃Th)/He Dating of Kimberlites: A Case Study from North⁃Eastern Kansas. Earth and Planetary Science Letters, 275(1-2): 111-120. https://doi.org/10.1016/j.epsl.2008.08.006
      Blackburn, T. J., Stockli, D. F., Walker, J. D., 2007. Magnetite (U⁃Th)/He Dating and Its Application to the Geochronology of Intermediate to Mafic Volcanic Rocks. Earth and Planetary Science Letters, 259(3-4): 360-371. https://doi.org/10.1016/j.epsl.2007.04.044
      Boyce, J. W., Hodges, K. V., 2005. U and Th Zoning in Cerro de Mercado (Durango, Mexico) Fluorapatite: Insights Regarding the Impact of Recoil Redistribution of Radiogenic 4He on (U⁃Th)/He Thermochronology. Chemical Geology, 219(1-4): 261-274. https://doi.org/10.1016/j.chemgeo.2005.02.007
      Boyce, J. W., Hodges, K. V., Olszewski, W. J., et al., 2006. Laser Microprobe (U⁃Th)/He Geochronology. Geochimica et Cosmochimica Acta, 70(12): 3031-3039. https://doi.org/10.1016/j.gca.2006.03.019
      Cai, C. E., Chen, H., Shang, W. L., et al., 2020a. Research Progress of Conodont (U⁃Th)/He Thermochronology. Advances in Earth Science, 35(9): 924-932 (in Chinese with English abstract).
      Cai, C. E., Qiu, N., Li, H. L., et al., 2020b. Study of the Closure Temperature of (U⁃Th)/He in Detrital Zircon Obtained from Natural Evolution Samples. Science in China (Series D), 50(1): 66-78 (in Chinese).
      Calzolari, G., Ault, A. K., Hirth, G., et al., 2020. Hematite (U⁃Th)/He Thermochronometry Detects Asperity Flash Heating during Laboratory Earthquakes. Geology, 48(5): 514-518. https://doi.org/10.1130/g46965.1
      Calzolari, G., Rossetti, F., Ault, A. K., et al., 2018. Hematite (U⁃Th)/He Thermochronometry Constrains Intraplate Strike⁃Slip Faulting on the Kuh⁃E⁃Faghan Fault, Central Iran. Tectonophysics, 728-729: 41-54. https://doi.org/10.1016/j.tecto.2018.01.023
      Chang, J., Qiu, N. S., Li, J. W., 2012. Tectono⁃Thermal Evolution of the Northwestern Edge of the Tarim Basin in China: Constraints from Apatite (U⁃Th)/He Thermochronology. Journal of Asian Earth Sciences, 61: 187-198. https://doi.org/10.1016/j.jseaes.2012.09.020
      Cherniak, D. J., Watson, E. B., 2011. Helium Diffusion in Rutile and Titanite, and Consideration of the Origin and Implications of Diffusional Anisotropy. Chemical Geology, 288(3-4): 149-161. https://doi.org/10.1016/j.chemgeo.2011.07.015
      Chew, D. M., Petrus, J. A., Kamber, B. S., 2014. U⁃Pb LA⁃ICPMS Dating Using Accessory Mineral Standards with Variable Common Pb. Chemical Geology, 363: 185-199. https://doi.org/10.1016/j.chemgeo.2013.11.006
      Chew, D. M., Spikings, R. A., 2015. Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface. Elements, 11(3): 189-194. https://doi.org/10.2113/gselements.11.3.189
      Cooperdock, E. H. G., Stockli, D. F., 2016. Unraveling Alteration Histories in Serpentinites and Associated Ultramafic Rocks with Magnetite (U⁃Th)/He Geochronology. Geology, 44(11): 967-970. https://doi.org/10.1130/g38587.1
      Cooperdock, E. H. G., Stockli, D. F., 2018. Dating Exhumed Peridotite with Spinel (U⁃Th)/He Chronometry. Earth and Planetary Science Letters, 489: 219-227. https://doi.org/10.1016/j.epsl.2018.02.041
      Copeland, P., Watson, E. B., Urizar, S. C., et al., 2007. Alpha Thermochronology of Carbonates. Geochimica et Cosmochimica Acta, 71(18): 4488-4511. https://doi.org/10.1016/j.gca.2007.07.004
      Cros, A., Gautheron, C., Pagel, M., et al., 2014. 4He Behavior in Calcite Filling Viewed by (U⁃Th)/He Dating, 4He Diffusion and Crystallographic Studies. Geochimica et Cosmochimica Acta, 125: 414-432. https://doi.org/10.1016/j.gca.2013.09.038
      Crowhurst, P. V., Green, P. F., Kamp, P. J. J., 2002. Appraisal of (U⁃Th)/He Apatite Thermochronology as a Thermal History Tool for Hydrocarbon Exploration: An Example from the Taranaki Basin, New Zealand. AAPG Bulletin, 86(10): 1801-1819. https://doi.org/10.1306/61eedd82⁃173e⁃11d7⁃8645000102c1865d
      Crowley, P. D., Reiners, P. W., Reuter, J. M., et al., 2002. Laramide Exhumation of the Bighorn Mountains, Wyoming: An Apatite (U⁃Th)/He Thermochronology Study. Geology, 30(1): 27-30. https://doi.org/10.1130/0091⁃7613(2002)0300027:leotbm>2.0.co;2 doi: 10.1130/0091⁃7613(2002)0300027:leotbm>2.0.co;2
      Crowley, Q. G., Heron, K., Riggs, N., et al., 2014. Chemical Abrasion Applied to LA⁃ICP⁃MS U⁃Pb Zircon Geochronology. Minerals, 4(2): 503-518. https://doi.org/10.3390/min4020503
      Djimbi, D. M., Gautheron, C., Roques, J., et al., 2015. Impact of Apatite Chemical Composition on (U⁃Th)/He Thermochronometry: An Atomistic Point of View. Geochimica et Cosmochimica Acta, 167: 162-176. https://doi.org/10.1016/j.gca.2015.06.017
      Dunai, T. J., Roselieb, K., 1996. Sorption and Diffusion of Helium in Garnet: Implications for Volatile Tracing and Dating. Earth and Planetary Science Letters, 139(3-4): 411-421. https://doi.org/10.1016/0012⁃821x(96)00029⁃5
      Ehlers, T. A., Farley, K. A., 2003. Apatite (U⁃Th)/He Thermochronometry: Methods and Applications to Problems in Tectonic and Surface Processes. Earth and Planetary Science Letters, 206(1-2): 1-14. https://doi.org/10.1016/s0012⁃821x(02)01069⁃5
      Evans, N. J., Byrne, J. P., Keegan, J. T., et al., 2005. Determination of Uranium and Thorium in Zircon, Apatite, and Fluorite: Application to Laser (U⁃Th)/He Thermochronology. Journal of Analytical Chemistry, 60(12): 1159-1165. https://doi.org/10.1007/s10809⁃005⁃0260⁃1
      Evenson, N. S., Reiners, P. W., Spencer, J. E., et al., 2014. Hematite and Mn Oxide (U⁃Th)/He Dates from the Buckskin⁃Rawhide Detachment System, Western Arizona: Gaining Insights into Hematite (U⁃Th)/He Systematics. American Journal of Science, 314(10): 1373-1435. https://doi.org/10.2475/10.2014.01
      Ewing, R. C., Meldrum, A., Wang, L., et al., 2000. Radiation⁃Induced Amorphization. Reviews in Mineralogy and Geochemistry, 39(1): 319-361. https://doi.org/10.2138/rmg.2000.39.12
      Ewing, R. C., Meldrum, A., Wang, L., et al., 2003. Radiation Effects in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 387-425. https://doi.org/10.2113/0530387
      Fanale, F. P., Kulp, J. L., 1962. The Helium Method and the Age of the Cornwall, Pennsylvania Magnetite Ore. Economic Geology, 57(5): 735-746. https://doi.org/10.2113/gsecongeo.57.5.735
      Farley, K. A., 2000. Helium Diffusion from Apatite: General Behavior as Illustrated by Durango Fluorapatite. Journal of Geophysical Research: Solid Earth, 105(B2): 2903-2914. https://doi.org/10.1029/1999jb900348
      Farley, K. A., 2002. (U⁃Th)/He Dating: Techniques, Calibrations, and Applications. Reviews in Mineralogy and Geochemistry, 47(1): 819-844. https://doi.org/10.2138/rmg.2002.47.18
      Farley, K. A., 2007. He Diffusion Systematics in Minerals: Evidence from Synthetic Monazite and Zircon Structure Phosphates. Geochimica et Cosmochimica Acta, 71(16): 4015-4024. https://doi.org/10.1016/j.gca.2007.05.022
      Farley, K. A., Shuster, D. L., Ketcham, R. A., 2011. U and Th Zonation in Apatite Observed by Laser Ablation ICPMS, and Implications for the (U⁃Th)/He System. Geochimica et Cosmochimica Acta, 75(16): 4515-4530. https://doi.org/10.1016/j.gca.2011.05.020
      Farley, K. A., Stockli, D. F., 2002. (U⁃Th)/He Dating of Phosphates: Apatite, Monazite, and Xenotime. Reviews in Mineralogy and Geochemistry, 48(1): 559-577. https://doi.org/10.2138/rmg.2002.48.15
      Farley, K. A., Wolf, R. A., Silver, L. T., 1996. The Effects of Long Alpha⁃Stopping Distances on (U⁃Th)/He Ages. Geochimica et Cosmochimica Acta, 60(21): 4223-4229. https://doi.org/10.1016/s0016⁃7037(96)00193⁃7
      Feng, Q. Q., Qiu, N. S., Chang, J., et al., 2018. Tectonothermal Evolution of Fangshan Pluton: Constraints from (U⁃Th)/He Ages. Earth Science, 43(6): 1972-1982 (in Chinese with English abstract).
      Fitzgerald, P. G., Baldwin, S. L., Webb, L. E., et al., 2006. Interpretation of (U⁃Th)/He Single Grain Ages from Slowly Cooled Crustal Terranes: A Case Study from the Transantarctic Mountains of Southern Victoria Land. Chemical Geology, 225(1-2): 91-120. https://doi.org/10.1016/j.chemgeo.2005.09.001
      Flowers, R. M., Ketcham, R. A., Enkelmann, E., et al., 2023b. (U⁃Th)/He Chronology: Part 2. Considerations for Evaluating, Integrating, and Interpreting Conventional Individual Aliquot Data. GSA Bulletin, 135(1-2): 137-161. https://doi.org/10.1130/b36268.1
      Flowers, R. M., Ketcham, R. A., Shuster, D. L., et al., 2009. Apatite (U⁃Th)/He Thermochronometry Using a Radiation Damage Accumulation and Annealing Model. Geochimica et Cosmochimica Acta, 73(8): 2347-2365. https://doi.org/10.1016/j.gca.2009.01.015
      Flowers, R. M., Shuster, D. L., Wernicke, B. P., et al., 2007. Radiation Damage Control on Apatite (U⁃Th)/He Dates from the Grand Canyon Region, Colorado Plateau. Geology, 35(5): 447-450. https://doi.org/10.1130/g23471a.1
      Flowers, R. M., Wernicke, B. P., Farley, K. A., 2008. Unroofing, Incision, and Uplift History of the Southwestern Colorado Plateau from Apatite (U⁃Th)/He Thermochronometry. Geological Society of America Bulletin, 120(5-6): 571-587. https://doi.org/10.1130/b26231.1
      Flowers, R. M., Zeitler, P. K., Danišík, M., et al., 2023a. (U⁃Th)/He Chronology: Part 1. Data, Uncertainty, and Reporting. GSA Bulletin, 135(1-2): 104-136. https://doi.org/10.1130/b36266.1
      Foeken, J. P. T., Stuart, F. M., Dobson, K. J., et al., 2006. A Diode Laser System for Heating Minerals for (U⁃Th)/He Chronometry. Geochemistry, Geophysics, Geosystems, 7(4): 1-9. https://doi.org/10.1029/2005gc001190
      Gautheron, C., Barbarand, J., Ketcham, R. A., et al., 2013. Chemical Influence on α⁃Recoil Damage Annealing in Apatite: Implications for (U⁃Th)/He Dating. Chemical Geology, 351: 257-267. https://doi.org/10.1016/j.chemgeo.2013.05.027
      Gautheron, C., Tassan⁃Got, L., Ketcham, R. A., et al., 2012. Accounting for Long Alpha⁃Particle Stopping Distances in (U⁃Th⁃Sm)/He Geochronology: 3D Modeling of Diffusion, Zoning, Implantation, and Abrasion. Geochimica et Cosmochimica Acta, 96: 44-56. https://doi.org/10.1016/j.gca.2012.08.016
      Gibbons, J. F., 1972. Ion Implantation in Semiconductors: Part II: Damage Production and Annealing. Proceedings of the IEEE, 60(9): 1062-1096. https://doi.org/10.1109/proc.1972.8854
      Ginster, U., Reiners, P. W., Nasdala, L., et al., 2019. Annealing Kinetics of Radiation Damage in Zircon. Geochimica et Cosmochimica Acta, 249: 225-246. https://doi.org/10.1016/j.gca.2019.01.033
      Gleadow, A., Harrison, M., Kohn, B., et al., 2015. The Fish Canyon Tuff: A New Look at an Old Low⁃Temperature Thermochronology Standard. Earth and Planetary Science Letters, 424: 95-108. https://doi.org/10.1016/j.epsl.2015.05.003
      Groênlie, A., Harder, V., Roberts, D., 1990. Preliminary Fission⁃Track Ages of Fluorite Mineralisation along Fracture Zones, Inner Trondheimsfjord, Central Norway. Norsk Geologisk Tidsskrift, 70(3): 173-178.
      Guenthner, W. R., Reiners, P. W., Ketcham, R. A., et al., 2013. Helium Diffusion in Natural Zircon: Radiation Damage, Anisotropy, and the Interpretation of Zircon (U⁃Th)/He Thermochronology. American Journal of Science, 313(3): 145-198. https://doi.org/10.2475/03.2013.01
      Guo, C., Zhang, Z. Y., Wu, L., et al., 2022. Mesozoic⁃Cenozoic Coupling Process of Tianshan Denudation and Sedimentation in the Northern Margin of the Tarim Basin: Evidence from Low⁃Temperature Thermochronology (Kuqa River Section, Xinjiang). Earth Science, 47(9): 3417-3430 (in Chinese with English abstract).
      Hart, S. R., 1984. He Diffusion in Olivine. Earth and Planetary Science Letters, 70(2): 297-302. https://doi.org/10.1016/0012⁃821x(84)90014⁃1
      Heim, J. A., Vasconcelos, P. M., Shuster, D. L., et al., 2006. Dating Paleochannel Iron Ore by (U⁃Th)/He Analysis of Supergene Goethite, Hamersley Province, Australia. Geology, 34(3): 173-176. https://doi.org/10.1130/G22003.1
      Hofmann, F., Treffkorn, J., Farley, K. A., 2020. U⁃Loss Associated with Laser⁃Heating of Hematite and Goethite in Vacuum during (U⁃Th)/He Dating and Prevention Using High O2 Partial Pressure. Chemical Geology, 532: 119350. https://doi.org/10.1016/j.chemgeo.2019.119350
      Hourigan, J. K., Reiners, P. W., Brandon, M. T., 2005. U⁃Th Zonation⁃Dependent Alpha⁃Ejection in (U⁃Th)/He Chronometry. Geochimica et Cosmochimica Acta, 69(13): 3349-3365. https://doi.org/10.1016/j.gca.2005.01.024
      House, M. A., Farley, K. A., Stockli, D. F., 2000. Helium Chronometry of Apatite and Titanite Using Nd⁃YAG Laser Heating. Earth and Planetary Science Letters, 183(3-4): 365-368. https://doi.org/10.1016/s0012⁃821x(00)00286⁃7
      House, M. A., Wernicke, B. P., Farley, K. A., et al., 1997. Cenozoic Thermal Evolution of the Central Sierra Nevada, California, from (U⁃Th)/He Thermochronometry. Earth and Planetary Science Letters, 151(3-4): 167-179. https://doi.org/10.1016/s0012⁃821x(97)81846⁃8
      Howie, R. A., Zussman, J., Deer, W. 1992. An Introduction to the Rock⁃Forming Minerals (Second Edition). Longman Scientific and Technical Press, London.
      Idleman, B. D., Zeitler, P. K., McDannell, K. T., 2018. Characterization of Helium Release from Apatite by Continuous Ramped Heating. Chemical Geology, 476: 223-232. https://doi.org/10.1016/j.chemgeo.2017.11.019
      Jellinek, A. M., Kerr, R. C., 1999. Mixing and Compositional Stratification Produced by Natural Convection: 2. Applications to the Differentiation of Basaltic and Silicic Magma Chambers and Komatiite Lava Flows. Journal of Geophysical Research: Solid Earth, 104(B4): 7203-7218. https://doi.org/10.1029/1998jb900117
      Johnson, J. E., Flowers, R. M., Baird, G. B., et al., 2017. "Inverted" Zircon and Apatite (U⁃Th)/He Dates from the Front Range, Colorado: High⁃Damage Zircon as a Low⁃Temperature (< 50  ℃) Thermochronometer. Earth and Planetary Science Letters, 466: 80-90. https://doi.org/10.1016/j.epsl.2017.03.002
      Jolivet, M., Dempster, T., Cox, R., 2003. Distribution of U and Th in Apatites: Implications for U⁃Th/He Thermochronology. Comptes Rendus⁃Academie des Sciences. Geoscience, 335(12): 899-906. https://doi.org/10.1016/j.crte.2003.08.010
      Jonckheere, R., 2003. On the Densities of Etchable Fission Tracks in a Mineral and Co⁃Irradiated External Detector with Reference to Fission⁃Track Dating of Minerals. Chemical Geology, 200(1-2): 41-58. https://doi.org/10.1016/s0009⁃2541(03)00116⁃5
      Jourdan, F., Eroglu, E., 2017. 40Ar/39Ar and (U⁃Th)/He Model Age Signatures of Elusive Mercurian and Venusian Meteorites. Meteoritics & Planetary Science, 52(5): 884-905. https://doi.org/10.1111/maps.12838
      Ketcham, R. A., Gautheron, C., Tassan⁃Got, L., 2011. Accounting for Long Alpha⁃Particle Stopping Distances in (U⁃Th⁃Sm)/He Geochronology: Refinement of the Baseline Case. Geochimica et Cosmochimica Acta, 75(24): 7779-7791. https://doi.org/10.1016/j.gca.2011.10.011
      Ketcham, R. A., Guenthner, W. R., Reiners, P. W., 2013. Geometric Analysis of Radiation Damage Connectivity in Zircon, and Its Implications for Helium Diffusion. American Mineralogist, 98(2-3): 350-360. https://doi.org/10.2138/am.2013.4249
      Kraml, M., Pik, R., Rahn, M., et al., 2006. A New Multi⁃Mineral Age Reference Material for 40Ar/39Ar, (U‐Th)/He and Fission Track Dating Methods: The Limberg t3 Tuff. Geostandards and Geoanalytical Research, 30(2): 73-86. https://doi.org/10.1111/j.1751⁃908X.2006.tb00914.x
      Li, C. P., Zheng, D. W., Zhou, R. J., et al., 2021. Late Oligocene Tectonic Uplift of the East Kunlun Shan: Expansion of the Northeastern Tibetan Plateau. Geophysical Research Letters, 48(3): e91281. https://doi.org/10.1029/2020gl091281
      Li, X. H., Long, W. G., Li, Q. L., et al., 2010. Penglai Zircon Megacrysts: A Potential New Working Reference Material for Microbeam Determination of Hf⁃O Isotopes and U⁃Pb Age. Geostandards and Geoanalytical Research, 34(2): 117-134. https://doi.org/10.1111/j.1751⁃908x.2010.00036.x
      Li, Y. J., Zheng, D. W., Wu, Y., et al., 2017. A Potential (U⁃Th)/He Zircon Reference Material from Penglai Zircon Megacrysts. Geostandards and Geoanalytical Research, 41(3): 359-365. https://doi.org/10.1111/ggr.12168
      Lin, X, Wu, L., Jolivet, M., et al., 2022. Apatite (U⁃Th)/He Thermochronology Evidence for Two Cenozoic Denudation Events in Eastern Part of Sulu Orogenic Belt. Earth Science, 47(4): 1162-1176 (in Chinese with English abstract).
      Lippolt, H. J., Leitz, M., Wernicke, R. S., et al., 1994. (Uranium+Thorium)/Helium Dating of Apatite: Experience with Samples from Different Geochemical Environments. Chemical Geology, 112(1-2): 179-191. https://doi.org/10.1016/0009⁃2541(94)90113⁃9
      Lippolt, H. J., Weigel, E., 1988. 4He Diffusion in 40Ar⁃Retentive Minerals. Geochimica et Cosmochimica Acta, 52(6): 1449-1458. https://doi.org/10.1016/0016⁃7037(88)90215⁃3
      Lippolt, H. J., Wernicke, R. S., Boschmann, W., 1993. 4He Diffusion in Specular Hematite. Physics and Chemistry of Minerals, 20(6): 415-418-418. https://doi.org/10.1007/BF00203111
      Liu, J., Zhang, J. Y., McPhillips, D., et al., 2018. Multiple Episodes of Fast Exhumation since Cretaceous in Southeast Tibet, Revealed by Low⁃Temperature Thermochronology. Earth and Planetary Science Letters, 490: 62-76. https://doi.org/10.1016/j.epsl.2018.03.011
      McDannell, K. T., Zeitler, P. K., Janes, D. G., et al., 2018a. Screening Apatites for (U⁃Th)/He Thermochronometry via Continuous Ramped Heating: He Age Components and Implications for Age Dispersion. Geochimica et Cosmochimica Acta, 223: 90-106. https://doi.org/10.1016/j.gca.2017.11.031
      McDannell, K. T., Zeitler, P. K., Schneider, D. A., 2018b. Instability of the Southern Canadian Shield during the Late Proterozoic. Earth and Planetary Science Letters, 490: 100-109. https://doi.org/10.1016/j.epsl.2018.03.012
      McDowell, F. W., McIntosh, W. C., Farley, K. A., 2005. A Precise 40Ar⁃39Ar Reference Age for the Durango Apatite (U⁃Th)/He and Fission⁃Track Dating Standard. Chemical Geology, 214(3/4): 249-263. https://doi.org/10.1016/j.chemgeo.2004.10.002
      McInnes, B. I. A., Evans, N. J., Fu, F. Q., et al., 2005. Application of Thermochronology to Hydrothermal Ore Deposits. Reviews in Mineralogy and Geochemistry, 58(1): 467-498. https://doi.org/10.2138/rmg.2005.58.18
      McInnes, B. I. A., Evans, N. J., McDonald, B. J., et al., 2009. Zircon U⁃Th⁃Pb⁃He Bouble Dating of the Merlin Kimberlite Field, Northern Territory, Australia. Lithos, 112(S1): 592-599. https://doi.org/10.1016/j.lith⁃s.2009.05.006
      Meesters, A. G. C. A., Dunai, T. J., 2002. Solving the Production⁃Diffusion Equation for Finite Diffusion Domains of Various Shapes. Chemical Geology, 186(1-2): 57-73. https://doi.org/10.1016/s0009⁃2541(01)00423⁃5
      Metcalf, J. R., Flowers, R. M. 2013. Initial Development of Baddeleyite (U⁃Th)/He Thermochronology. The 125th Anniversary Annual Meeting of the Geological Society of America, Denver.
      Min, K., Farley, K. A., Renne, P. R., et al., 2003. Single Grain (U⁃Th)/He Ages from Phosphates in Acapulco Meteorite and Implications for Thermal History. Earth and Planetary Science Letters, 209(3-4): 323-336. https://doi.org/10.1016/s0012⁃821x(03)00080⁃3
      Min, K., Reiners, P. W., Nicolescu, S., et al., 2004. Age and Temperature of Shock Metamorphism of Martian Meteorite Los Angeles from (U⁃Th)/He Thermochronometry. Geology, 32(8): 677-680. https://doi.org/10.1130/g20510.1
      Min, K., Reiners, P. W., Shuster, D. L., 2013. (U⁃Th)/He Ages of Phosphates from St. Séverin LL6 Chondrite. Geochimica et Cosmochimica Acta, 100: 282-296. https://doi.org/10.1016/j.gca.2012.09.042
      Min, K., Reiners, P. W., Wolff, J. A., et al., 2006. (U⁃Th)/He Dating of Volcanic Phenocrysts with High⁃U⁃Th Inclusions, Jemez Volcanic Field, New Mexico. Chemical Geology, 227(3-4): 223-235. https://doi.org/10.1016/j.chemgeo.2005.10.006
      Monteiro, H. S., Vasconcelos, P. M., Farley, K. A., et al., 2014. (U⁃Th)/He Geochronology of Goethite and the Origin and Evolution of Cangas. Geochimica et Cosmochimica Acta, 131: 267-289. https://doi.org/10.1016/j.gca.2014.01.036
      Moreira, M., Blusztajn, J., Curtice, J., et al., 2003. He and Ne Isotopes in Oceanic Crust: Implications for Noble Gas Recycling in the Mantle. Earth and Planetary Science Letters, 216(4): 635-643. https://doi.org/10.1016/s0012⁃821x(03)00554⁃5
      Moser, A. C., Evans, J. P., Ault, A. K., et al., 2017. (U⁃Th)/He Thermochronometry Reveals Pleistocene Punctuated Deformation and Synkinematic Hematite Mineralization in the Mecca Hills, Southernmost San Andreas Fault Zone. Earth and Planetary Science Letters, 476: 87-99. https://doi.org/10.1016/j.epsl.2017.07.039
      Naeser, C. W., Fleischer, R. L., 1975. Age of the Apatite at Cerro de Mercado, Mexico: A Problem for Fission⁃Track Annealing Corrections. Geophysical Research Letters, 2(2): 67-70. https://doi.org/10.1029/gl002i002p00067
      Nasdala, L., Reiners, P. W., Garver, J. I., et al., 2004. Incomplete Retention of Radiation Damage in Zircon from Sri Lanka. American Mineralogist, 89(1): 219-231. https://doi.org/10.2138/am⁃2004⁃0126
      Nicolescu, S., Reiners, P. W., 2005. (U⁃Th)/He Dating of Epidote and Andradite Garnet. The 15th Annual V. M. Goldschmidt Conference, Moscow.
      Orme, D. A., Guenthner, W. R., Laskowski, A. K., et al., 2016. Long⁃Term Tectonothermal History of Laramide Basement from Zircon⁃He Age⁃eU Correlations. Earth and Planetary Science Letters, 453: 119-130. https://doi.org/10.1016/j.epsl.2016.07.046
      Pang, J. Z., Yu, J. X., Zheng, D. W., et al., 2019. Neogene Expansion of the Qilian Shan, North Tibet: Implications for the Dynamic Evolution of the Tibetan Plateau. Tectonics, 38(3): 1018-1032. https://doi.org/10.1029/2018tc005258
      Parrish, R. R., 1990. U⁃Pb Dating of Monazite and Its Application to Geological Problems. Canadian Journal of Earth Sciences, 27(11): 1431-1450. https://doi.org/10.1139/e90⁃152
      Peeters, F., Beyerle, U., Aeschbach⁃Hertig, W., et al., 2003. Improving Noble Gas Based Paleoclimate Reconstruction and Groundwater Dating Using 20Ne/22Ne Ratios. Geochimica et Cosmochimica Acta, 67(4): 587-600. https://doi.org/10.1016/s0016⁃7037(02)00969⁃9
      Peppe, D. J., Reiners, P. W., 2007. Conodont (U⁃Th)/He Thermochronology: Initial Results, Potential, and Problems. Earth and Planetary Science Letters, 258(3-4): 569-580. https://doi.org/10.1016/j.epsl.2007.04.022
      Peterman, E. M., Hourigan, J. K., Grove, M., 2014. Experimental and Geologic Evaluation of Monazite (U⁃Th)/He Thermochronometry: Catnip Sill, Catalina Core Complex, Tucson, AZ. Earth and Planetary Science Letters, 403: 48-55. https://doi.org/10.1016/j.epsl.2014.06.020
      Petrus, J. A., Kamber, B. S., 2012. VizualAge: A Novel Approach to Laser Ablation ICP⁃MS U⁃Pb Geochronology Data Reduction. Geostandards and Geoanalytical Research, 36(3): 247-270. https://doi.org/10.1111/j.1751⁃908x.2012.00158.x
      Phillips, D., Kohn, B. P., Gleadow, A. J., et al., 2007. 4He Implantation in Natural Diamond: Implications for Apatite (U⁃Th)/He Thermochronometry. AGU Fall Meeting, San Francisco.
      Pi, T., Solé, J., Taran, Y., 2005. (U⁃Th)/He Dating of Fluorite: Application to the La Azul Fluorspar Deposit in the Taxco Mining District, Mexico. Mineralium Deposita, 39(8): 976-982. https://doi.org/10.1007/s00126⁃004⁃0443⁃y
      Pickering, J., Matthews, W., Enkelmann, E., et al., 2020. Laser Ablation (U⁃Th⁃Sm)/He Dating of Detrital Apatite. Chemical Geology, 548: 119683. https://doi.org/10.1016/j.chemgeo.2020.119683
      Porcelli, D., Turekian, K. K., 2003. The History of Planetary Degassing as Recorded by Noble Gases. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b0⁃08⁃043751⁃6/04181⁃5
      Powell, J. W., Schneider, D. A., Issler, D. R., 2018. Application of Multi⁃Kinetic Apatite Fission Track and (U⁃Th)/He Thermochronology to Source Rock Thermal History: A Case Study from the Mackenzie Plain, NWT, Canada. Basin Research, 30(S1): 497-512. https://doi.org/10.1111/bre.12233
      Powell, J., Schneider, D., Stockli, D. F., et al., 2016. Zircon (U⁃Th)/He Thermochronology of Neoproterozoic Strata from the Mackenzie Mountains, Canada: Implications for the Phanerozoic Exhumation and Deformation History of the Northern Canadian Cordillera. Tectonics, 35(3): 663-689. https://doi.org/10.1002/2015tc003989
      Reiners, P. W., Farley, K. A., 1999. Helium Diffusion and (U⁃Th)/He Thermochronometry of Titanite. Geochimica et Cosmochimica Acta, 63(22): 3845-3859. https://doi.org/10.1016/s0016⁃7037(99)00170⁃2
      Reiners, P. W., Farley, K. A., 2001. Influence of Crystal Size on Apatite (U⁃Th)/He Thermochronology: An Example from the Bighorn Mountains, Wyoming. Earth and Planetary Science Letters, 188(3-4): 413-420. https://doi.org/10.1016/s0012⁃821x(01)00341⁃7
      Reiners, P. W., Farley, K. A., Hickes, H. J., 2002. He Diffusion and (U⁃Th)/He Thermochronometry of Zircon: Initial Results from Fish Canyon Tuff and Gold Butte. Tectonophysics, 349(1-4): 297-308. https://doi.org/10.1016/s0040⁃1951(02)00058⁃6
      Reiners, P. W., Spell, T. L., Nicolescu, S., et al., 2004. Zircon (U⁃Th)/He Thermochronometry: He Diffusion and Comparisons with 40Ar/39Ar Dating. Geochimica et Cosmochimica Acta, 68(8): 1857-1887. https://doi.org/10.1016/j.gca.2003.10.021
      Robinson, K. H., Flowers, R. M., Metcalf, J. R., 2019. Rutile (U⁃Th)/He Thermochronology: Temperature Sensitivity and Radiation Damage Effects. Geochemistry, Geophysics, Geosystems, 20(11): 4737-4755. https://doi.org/10.1029/2019gc008484
      Schmitt, A. K., Danišík, M., Aydar, E., et al., 2014. Identifying the Volcanic Eruption Depicted in a Neolithic Painting at Çatalhöyük, Central Anatolia, Turkey. PLoS One, 9(1): e84711. https://doi.org/10.1371/journal.pone.0084711
      Schmitt, A. K., Martin, A., Stockli, D. F., et al., 2013. (U⁃Th)/He Zircon and Archaeological Ages for a Late Prehistoric Eruption in the Salton Trough (California, USA). Geology, 41(1): 7-10. https://doi.org/10.1130/g33634.1
      Schwartz, S., Gautheron, C., Ketcham, R. A., et al., 2020. Unraveling the Exhumation History of High⁃Pressure Ophiolites Using Magnetite (U⁃Th⁃Sm)/He Thermochronometry. Earth and Planetary Science Letters, 543: 116359. https://doi.org/10.1016/j.epsl.2020.116359
      Seman, S., Stockli, D. F., Smye, A. J., et al., 2014. Garnet (U⁃Th)/He Thermochronometry and Its Application to Exhumed High⁃pressure Low⁃temperature Metamorphic Rocks. 14th International Conference on Thermochronology, Chamonix.
      Shuster, D. L., Farley, K. A., 2009. The Influence of Artificial Radiation Damage and Thermal Annealing on Helium Diffusion Kinetics in Apatite. Geochimica et Cosmochimica Acta, 73(1): 183-196. https://doi.org/10.1016/j.gca.2008.10.013
      Shuster, D. L., Flowers, R. M., Farley, K. A., 2006. The Influence of Natural Radiation Damage on Helium Diffusion Kinetics in Apatite. Earth and Planetary Science Letters, 249(3-4): 148-161. https://doi.org/10.1016/j.epsl.2006.07.028
      Spiegel, C., Kohn, B., Belton, D., et al., 2009. Apatite (U⁃Th⁃Sm)/He Thermochronology of Rapidly Cooled Samples: The Effect of He Implantation. Earth and Planetary Science Letters, 285(1-2): 105-114. https://doi.org/10.1016/j.epsl.2009.05.045
      Stanley, J. R., Flowers, R. M., 2016. Dating Kimberlite Emplacement with Zircon and Perovskite (U⁃Th)/He Geochronology. Geochemistry, Geophysics, Geosystems, 17(11): 4517-4533. https://doi.org/10.1002/2016gc006519
      Stockli, D. F., Farley, K. A., 2004. Empirical Constraints on the Titanite (U⁃Th)/He Partial Retention Zone from the KTB Drill Hole. Chemical Geology, 207(3-4): 223-236. https://doi.org/10.1016/j.chemgeo.2004.03.002
      Stockli, D. F., Wolfe, M. R., Blackburn, T. J., et al., 2007. He Diffusion and (U⁃Th)/He Thermochronometry of Rutile. AGU Fall Meeting, San Francisco.
      Sun, J. B., Chen, W., Yu, S., et al., 2017. Study on Zircon (U⁃Th)/He Dating Technique. Acta Petrologica Sinica, 33(6): 1947-1956 (in Chinese with English abstract).
      Tagami, T., Farley, K. A., Stockli, D. F., 2003. (U⁃Th)/He Geochronology of Single Zircon Grains of Known Tertiary Eruption Age. Earth and Planetary Science Letters, 207(1-4): 57-67. https://doi.org/10.1016/ s0012⁃821x(02)01144⁃5 doi: 10.1016/s0012⁃821x(02)01144⁃5
      Tao, N., Li, Z. X., Danišík, M., et al., 2019. Post⁃250 Ma Thermal Evolution of the Central Cathaysia Block (SE China) in Response to Flat⁃Slab Subduction at the Proto⁃Western Pacific Margin. Gondwana Research, 75: 1-15. https://doi.org/10.1016/j.gr.2019.03.019
      Tian, Y. T., Qiu, N. S., Kohn, B. P., et al., 2012. Detrital Zircon (U⁃Th)/He Thermochronometry of the Mesozoic Daba Shan Foreland Basin, Central China: Evidence for Timing of Post⁃Orogenic Denudation. Tectonophysics, 570-571: 65-77. https://doi.org/10.1016/j.tecto.2012.08.010
      Tian, Y. T., Vermeesch, P., Danišík, M., et al., 2017. LGC⁃1: A Zircon Reference Material for In⁃Situ (U⁃Th)/He Dating. Chemical Geology, 454: 80-92. https://doi.org/10.1016/j.chemgeo.2017.02.026
      Tripathy⁃Lang, A., Hodges, K. V., Monteleone, B. D., et al., 2013. Laser (U⁃Th)/He Thermochronology of Detrital Zircons as a Tool for Studying Surface Processes in Modern Catchments. Journal of Geophysical Research: Earth Surface, 118(3): 1333-1341. https://doi.org/10.1002/jgrf.20091
      Trull, T. W., Kurz, M. D., 1993. Experimental Measurements of 3He and 4He Mobility in Olivine and Clinopyroxene at Magmatic Temperatures. Geochimica et Cosmochimica Acta, 57(6): 1313-1324. https://doi.org/10.1016/0016⁃7037(93)90068⁃8
      Tyrrell, J. P., Bidgoli, T. S., Möller, A., et al., 2016. Challenges Associated with the Conodont (U⁃Th)/He Method: A Case Study from the Mormon Mountains, Tule Spring Hills, and Beaver Dam Mountains, Southeastern Nevada and Southwestern Utah. GSA Annual Meeting, Denver. https://doi.org/10.1130/abs/2016am-286505
      van Soest, M. C., Hodges, K. V., Wartho, J. A., et al., 2011. (U⁃Th)/He Dating of Terrestrial Impact Structures: The Manicouagan Example. Geochemistry, Geophysics, Geosystems, 12(5): Q0AA16. https://doi.org/10.1029/2010gc003465
      van Soest, M. C., Monteleone, B. D., Boyce, J. W., et al., 2008. Advances in Laser Microprobe (U⁃Th)/He Geochronology. AGU Fall Meeting, San Francisco.
      Vasconcelos, P. M., Heim, J. A., Farley, K. A., et al., 2013. 40Ar/39Ar and (U⁃Th)/He⁃4He/3He Geochronology of Landscape Evolution and Channel Iron Deposit Genesis at Lynn Peak, Western Australia. Geochimica et Cosmochimica Acta, 117: 283-312. https://doi.org/10.1016/j.gca.2013.03.037
      Vermeesch, P., Seward, D., Latkoczy, C., et al., 2007. Α⁃Emitting Mineral Inclusions in Apatite, Their Effect on (U⁃Th)/He Ages, and How to Reduce It. Geochimica et Cosmochimica Acta, 71(7): 1737-1746. https://doi.org/10.1016/j.gca.2006.09.020
      Wang, F., Feng, H. L., Shi, W. B., et al., 2016. Relief History and Denudation Evolution of the Northern Tibet Margin: Constraints from 40Ar/39Ar and (U⁃Th)/He Dating and Implications for Far⁃Field Effect of Rising Plateau. Tectonophysics, 675: 196-208. https://doi.org/10.1016/j.tecto.2016.03.001
      Wang, W. T., Zheng, D. W., Li, C. P., et al., 2020. Cenozoic Exhumation of the Qilian Shan in the Northeastern Tibetan Plateau: Evidence from Low⁃Temperature Thermochronology. Tectonics, 39(4): e2019TC005705. https://doi.org/10.1029/2019tc005705
      Wang, Y. Z., Li, C. P., Hao, Y. Q., et al., 2022. Multi⁃Stage Growth in the North Margin of the Qinling Orogen, Central China, Revealed by both Low⁃Temperature Thermochronology and River Profile Inversion. Tectonics, 41(4): e2021TC007029. https://doi.org/10.1029/2021TC007029
      Wang, Y., Zheng, D. W., Li, Y. J., et al., 2019. (U⁃Th)/He Dating of International Standard Fish Canyon Tuff Zircon. Seismology and Geology, 41(5): 1302-1315 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2019.05.016
      Wang, Y., Zheng, D. W., Wu, Y., et al., 2017. Measurement Procedure of Single⁃Grain Apatite (U⁃Th)/He Dating and Its Validation by Durango Apatite Standard. Seismology and Geology, 39(6): 1143-1157 (in Chinese with English abstract).
      Willett, C. D., Fox, M., Shuster, D. L., 2017. A Helium⁃Based Model for the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite. Earth and Planetary Science Letters, 477: 195-204. https://doi.org/10.1016/j.epsl.2017.07.047
      Wolf, R. A., Farley, K. A., Kass, D. M., 1998. Modeling of the Temperature Sensitivity of the Apatite (U⁃Th)/He Thermochronometer. Chemical Geology, 148(1-2): 105-114. https://doi.org/10.1016/s0009⁃2541(98)00024⁃2
      Wolf, R. A., Farley, K. A., Silver, L. T., 1996. Helium Diffusion and Low⁃Temperature Thermochronometry of Apatite. Geochimica et Cosmochimica Acta, 60(21): 4231-4240. https://doi.org/10.1016/s0016⁃7037(96)00192⁃5
      Wolff, R., Dunkl, I., Kempe, U., et al., 2016. Variable Helium Diffusion Characteristics in Fluorite. Geochimica et Cosmochimica Acta, 188: 21-34. https://doi.org/10.1016/j.gca.2016.05.029
      Wu, L. Q., Jiao, Y. Q., Wang, G. R., et al., 2022. Response of Uranium Mineralization in Kuqa Depression Driven by Basin⁃Mountain Coupling Mechanism. Earth Science, 47(9): 3174-3191 (in Chinese with English abstract).
      Wu, L., Shi, G. H., Danišík, M., et al., 2019. MK⁃1 Apatite: A New Potential Reference Material for (U⁃Th)/He Dating. Geostandards and Geoanalytical Research, 43(2): 301-315. https://doi.org/10.1111/ggr.12258
      Yang, J., Zheng, D. W., Chen, W., et al., 2014. Apatite 4He/3He Thermoehronometry: A New Method of Low Temperature Thermochronometry. Seismology and Geology, 36(4): 1009-1019 (in Chinese with English abstract).
      Yang, L., Yuan, W. M., Wang, K., 2018. Research Advances of Thermochronology in Mineral Deposits. Earth Science, 43(6): 1887-1902 (in Chinese with English abstract).
      Yang, L., Yuan, W. M., Zhu, C. B., et al., 2021. Mesozoic Uplift Exhumation History of East Kunlun. Acta Petrologica Sinica, 37(12): 3781-3796 (in Chinese with English abstract).
      Yu, J. X., Zheng, D. W., Pang, J. Z., et al., 2019. Miocene Range Growth along the Altyn Tagh Fault: Insights from Apatite Fission Track and (U⁃Th)/He Thermochronometry in the Western Danghenan Shan, China. Journal of Geophysical Research: Solid Earth, 124(8): 9433-9453. https://doi.org/10.1029/2019jb017570
      Yu, J. X., Zheng, D. W., Zhang, H. P., et al., 2022. Initial Cenozoic Exhumation of the Northern Chinese Tian Shan Deduced from Apatite (U⁃Th)/He Thermochronological Data. Lithosphere, 2022(1): 8099539. https://doi.org/10.2113/2022/8099539
      Yu, S., Chen, W., Sun, J. B., 2019. Diffusion of Helium in FCT Zircon. Science in China (Series D), 49(4): 656-670 (in Chinese with English abstract).
      Yu, S., Sun, J. B., Evans, N. J., et al., 2020. Further Evaluation of Penglai Zircon Megacrysts as a Reference Material for (U⁃Th)/He Dating. Geostandards and Geoanalytical Research, 44(4): 763-783. https://doi.org/10.1111/ggr.12331
      Yu, S., Tian, Y. T., 2023. Helium Diffusion and (U⁃Th)/He Thermochronology on Fish Canyon Tuff Titanite. Acta Geologica Sinica, 97(1): 278-290 (in Chinese with English abstract).
      Yu, Y., Xu, X. S., Chen, X. M., 2010. Genesis of Zircon Megacrysts in Cenozoic Alkali Basalts and the Heterogeneity of Subcontinental Lithospheric Mantle, Eastern China. Mineralogy and Petrology, 100(1-2): 75-94. https://doi.org/10.1007/s00710⁃010⁃0120⁃z
      Yuan, W. M., 2016. Thermochronological Method of Revealing Conservation and Changes of Mineral Deposits. Acta Petrologica Sinica, 32(8): 2571-2578 (in Chinese with English abstract).
      Zeitler, P. K., Herczeg, A. L., McDougall, I., et al., 1987. U⁃Th⁃He Dating of Apatite: A Potential Thermochronometer. Geochimica et Cosmochimica Acta, 51(10): 2865-2868. https://doi.org/10.1016/0016⁃7037(87)90164⁃5
      Zhang, B., Chen, W., Liu, J. Q., et al., 2020. Thermochronological Insights into the Intracontinental Orogeny of the Chinese Western Tianshan Orogen. Journal of Asian Earth Sciences, 194: 103927. https://doi.org/10.1016/j.jseaes.2019.103927
      Zheng, D. W., Wu, Y., Pang, J. Z., et al., 2016. Fundamentals, Dating and Application of U⁃Th/He Thermochronology. Quaternary Sciences, 36(5): 1027-1036 (in Chinese with English abstract).
      Zheng, D. W., Zhang, P. Z., Wan, J. L., et al., 2006. Rapid Exhumation at ~8 Ma on the Liupan Shan Thrust Fault from Apatite Fission⁃Track Thermochronology: Implications for Growth of the Northeastern Tibetan Plateau Margin. Earth and Planetary Science Letters, 248(1-2): 198-208. https://doi.org/10.1016/j.epsl.2006.05.023
      蔡长娥, 陈鸿, 尚文亮, 等, 2020a. 牙形石(U⁃Th)/He热定年技术的研究进展. 地球科学进展, 35(9): 924-932.
      蔡长娥, 邱楠生, 李慧莉, 等, 2020b. 自然演化碎屑锆石(U⁃Th)/He封闭温度的研究. 中国科学(D辑), 50(1): 66-78.
      冯乾乾, 邱楠生, 常健, 等, 2018. 房山岩体构造‒热演化: 来自(U⁃Th)/He年龄的约束. 地球科学, 43(6): 1972-1982. doi: 10.3799/dqkx.2018.562
      郭超, 张志勇, 吴林, 等, 2022. 中新生代天山剥蚀与塔里木盆地北缘沉积耦合过程: 新疆库车河剖面的低温热年代学证据. 地球科学, 47(9): 3417-3430. doi: 10.3799/dqkx.2022.152
      林旭, 吴林, Jolivet, M., 等, 2022. 苏鲁造山带东段新生代两阶段剥露事件的磷灰石(U⁃Th)/He热年代学证据. 地球科学, 47(4): 1162-1176. doi: 10.3799/dqkx.2021.083
      孙敬博, 陈文, 喻顺, 等, 2017. 锆石(U⁃Th)/He定年技术研究. 岩石学报, 33(6): 1947-1956.
      王英, 郑德文, 李又娟, 等, 2019. 国际标样Fish Canyon Tuff锆石的(U⁃Th)/He年龄测定. 地震地质, 41(5): 1302-1315.
      王英, 郑德文, 武颖, 等, 2017. 磷灰石单颗粒(U⁃Th)/He测年实验流程的建立及验证. 地震地质, 39(6): 1143-1157.
      吴立群, 焦养泉, 王国荣, 等, 2022. 盆山耦合机制驱动下的库车坳陷铀成矿作用响应. 地球科学, 47(9): 3174-3191. doi: 10.3799/dqkx.2022.100
      杨静, 郑德文, 陈文, 等, 2014. 磷灰石4He/3He热年代学: 一种低温热年代学研究的新技术. 地震地质, 36(4): 1009-1019.
      杨莉, 袁万明, 王珂, 2018. 热年代学方法、技术手段及其在矿床地质中的研究进展. 地球科学, 43(6): 1887-1902. doi: 10.3799/dqkx.2018.606
      杨莉, 袁万明, 朱传宝, 等, 2021. 东昆仑中生代隆升剥露历史. 岩石学报, 37(12): 3781-3796.
      喻顺, 陈文, 孙敬博, 等, 2019. 锆石He扩散行为: FCT锆石扩散实验的制约. 中国科学(D辑), 49(4): 656-670.
      喻顺, 田云涛, 2023. Fish Canyon Tuff榍石He扩散及(U⁃Th)/He年代学研究. 地质学报, 97(1): 278-290.
      袁万明, 2016. 矿床保存变化研究的热年代学技术方法. 岩石学报, 32(8): 2571-2578.
      郑德文, 武颖, 庞建章, 等, 2016. U⁃Th/He热年代学原理、测试及应用. 第四纪研究, 36(5): 1027-1036.
    • 加载中
    图(13) / 表(4)
    计量
    • 文章访问数:  497
    • HTML全文浏览量:  239
    • PDF下载量:  120
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-02-28
    • 网络出版日期:  2024-10-16
    • 刊出日期:  2024-09-25

    目录

      /

      返回文章
      返回