• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    帕米尔高原东北缘中高温地热流体水文地球化学特征及成因机制

    赵钵渊 王帅 陈锋 贺根义 黄学莲 王思佳 祁士华

    赵钵渊, 王帅, 陈锋, 贺根义, 黄学莲, 王思佳, 祁士华, 2024. 帕米尔高原东北缘中高温地热流体水文地球化学特征及成因机制. 地球科学, 49(10): 3736-3748. doi: 10.3799/dqkx.2023.081
    引用本文: 赵钵渊, 王帅, 陈锋, 贺根义, 黄学莲, 王思佳, 祁士华, 2024. 帕米尔高原东北缘中高温地热流体水文地球化学特征及成因机制. 地球科学, 49(10): 3736-3748. doi: 10.3799/dqkx.2023.081
    Zhao Boyuan, Wang Shuai, Chen Feng, He Genyi, Huang Xuelian, Wang Sijia, Qi Shihua, 2024. Hydrogeochemical Characteristics and Genesis of Medium-High Temperature Geothermal System in Northeast Margin of Pamir Plateau. Earth Science, 49(10): 3736-3748. doi: 10.3799/dqkx.2023.081
    Citation: Zhao Boyuan, Wang Shuai, Chen Feng, He Genyi, Huang Xuelian, Wang Sijia, Qi Shihua, 2024. Hydrogeochemical Characteristics and Genesis of Medium-High Temperature Geothermal System in Northeast Margin of Pamir Plateau. Earth Science, 49(10): 3736-3748. doi: 10.3799/dqkx.2023.081

    帕米尔高原东北缘中高温地热流体水文地球化学特征及成因机制

    doi: 10.3799/dqkx.2023.081
    基金项目: 

    国家自然科学基金项目 42202334

    详细信息
      作者简介:

      赵钵渊(1999-),男,硕士研究生,主要从事地热流体研究,ORCID:0009-0003-6046-9417.E-mail:byzhao@cug.edu.cn

      通讯作者:

      祁士华(1963-),ORCID:0000-0003-3620-7647,E-mail:shihuaqi@cug.edu.cn

    • 中图分类号: P641.3

    Hydrogeochemical Characteristics and Genesis of Medium-High Temperature Geothermal System in Northeast Margin of Pamir Plateau

    • 摘要: 帕米尔构造结东北缘中高温地热资源丰富,前人的研究多限于研究单个地热田,缺乏区域的系统性研究.基于帕米尔高原东北缘的地热地质特征,以地热流体地球化学研究作为认识地热资源的有效手段,根据研究区8个温泉水、1个冷泉水、11个热井水以及6个地表水的理化数据,进行了水化学成因、特征及同位素分析,揭示帕米尔北东侧区域性地热流体的热储温度特征及冷却机制的演化模式,为帕米尔北东侧地热资源勘探提供一定的地球化学依据.研究结果表明,地热水中主量离子主要受钠/钾长石、阳离子交换作用以及岩浆水的影响,热水样品B/Cl、B/Li、B/Cs、Li/Cs、Na/Cl、K/Cl的高相关性特征显示热水可能有共同的母质地热储层.氢氧同位素特征表明地热水受大气降水、雪融水及深部岩浆水补给.多种溶质温度计、硅-焓模型以及氯-焓模型重建了热水的热储温度、冷却过程及演化模式,推断出研究区下方可能存在多个热储层,其中最深部的母质热储的温度约为358~418 ℃,Cl含量约为300~400 mg/L.结合区域地质及地热地质条件分析,认为帕米尔高原东北缘地热异常为地壳中的熔融岩浆及高产热花岗岩共同作用的结果.

       

    • 图  1  帕米尔高原区域构造纲要图(a);研究区地质简图(b)

      图a据Bloch et al.(2021)Bershaw et al.(2012)修订;图b据Bershaw et al.(2012)修订

      Fig.  1.  Simplified tectonic map of Pamir Plateau(a); simplified geological map of the study area (b)

      图  2  研究区样品水化学Piper三线图

      Fig.  2.  Piper diagram of water samples in the study area

      图  3  研究区样品主成分离子比值关系

      Fig.  3.  Relationships for the water samples in the study area

      a. Cl- vs. Na+; b. Cl- vs. K+; c. (HCO3-+SO42-) vs. (Ca2+ + Mg2+); d. (K++Na+-Cl-) vs. [(Ca2++Mg2+)-(HCO3-+SO42-)]

      图  4  研究区热水样品与铝硅酸盐矿物平衡图解

      Fig.  4.  Equilibrium of the water samples with aluminosilicate minerals a.K2O-Al2O3-SiO2-H2O; b.Na2O-Al2O3-SiO2-H2O

      图  5  研究区地热水B-Cl、B-Cs、B-Li、Li-Cs离子关系图

      Fig.  5.  Relationships between B vs. Cl, B vs. Cs, B vs. Li, Li vs. Cs for the geothermal water samples in the study area

      图  6  研究区样品氘氧关系

      岩浆水范围据Giggenbach and Glover(1992

      Fig.  6.  Relationships between δ18O vs. δD for the water samples in the study area

      图  7  研究区样品Na-K-Mg三线图

      Fig.  7.  Na-K-Mg ternary plot for the water samples in the study area

      图  8  研究区样品硅-焓图解

      Fig.  8.  Silica-enthalpy model for the water samples in the study area

      图  9  研究区样品氯-焓图解

      Fig.  9.  The chloride-enthalpy diagram for water samples in the study area

      图  10  帕米尔东北侧中高温地热流体成因模式

      Fig.  10.  Geothermal genesis model of northeast Pamir

      表  1  研究区样品水化学及同位素组成

      Table  1.   Hydrochemistry and isotopic compositions of samples in the study area

      样品编号 样品类型 pH 温度 TDS Na+ K+ Ca2+ Mg2+ Cl- SO42- HCO3- SiO2 B- F- Cs
      (ug/L)
      Li
      (ug/L)
      δD
      (‰)
      δ18O
      (‰)
      (℃) (mg/L)
      TH1* 地表水 - - 222.00 17.30 2.70 41.60 11.50 12.80 52.40 142.80 - - - - - -85.70 -13.00
      TH3* 地表水 - - 455.10 32.70 6.40 81.60 23.90 43.60 161.90 186.70 - - - - - -61.70 -10.20
      TH7* 地表水 - - 148.30 4.80 1.10 32.40 11.80 3.20 39.40 105.60 - - - - - -99.30 -14.90
      TH8* 地表水 - - 196.70 8.60 1.80 41.40 11.80 6.40 40.80 152.60 - - - - - -90.90 -13.60
      TH16# 地表水 8.00 15.50 206.00 9.60 2.20 46.70 9.60 6.70 38.10 160.00 7.00 - - - - -89.90 -12.80
      XG5# 地表水 7.90 9.00 153.00 0 1.20 37.90 8.60 2.80 32.30 118.00 4.80 - - - - -102.00 -13.90
      PT8 冷泉水 8.55 13.30 140.00 5.47 1.40 32.81 11.21 4.03 78.04 106.79 48.81 0 0.38 0.057 1.491 -80.58 -12.80
      PT1 热泉水 8.98 63.30 345.00 117.07 3.37 9.64 0.03 37.60 201.62 121.46 98.07 0.08 17.55 22.086 103.528 -90.29 -13.05
      PT2 热泉水 9.10 37.00 328.00 102.89 2.51 14.00 0.08 65.66 217.59 26.49 70.09 0.32 8.07 0.386 25.446 -71.84 -10.84
      PT3 热泉水 7.44 63.10 1 762.00 420.02 42.99 230.45 12.23 186.96 1 791.96 362.76 161.85 0.46 4.27 58.152 212.347 -73.12 -11.26
      PT4 热泉水 9.70 30.30 549.00 178.66 4.75 19.94 1.11 107.85 415.58 3.67 81.42 0.12 1.04 0.164 0 -67.32 -10.60
      PT5 热泉水 9.92 71.90 223.00 76.69 1.69 2.42 0.02 35.16 75.73 7.13 118.32 0.08 18.97 12.280 63.906 -63.62 -10.55
      PT6 热泉水 8.77 70.00 291.00 88.38 4.51 8.28 0.47 52.04 131.62 87.63 116.76 0.19 4.51 15.582 67.047 -74.10 -11.19
      PT7 热泉水 7.58 62.00 1 402.00 438.91 50.58 56.41 10.00 230.91 403.73 1 010.83 146.85 1.91 7.82 214.366 966.946 -73.49 -10.61
      PT9 热泉水 6.86 38.90 556.00 98.11 11.57 91.66 15.50 48.52 170.89 528.04 88.07 2.75 3.27 54.950 297.887 -77.89 -11.94
      K1# 热井水 7.20 27.00 564.00 96.00 10.90 61.50 15.20 62.80 100.00 314.00 56.20 - - - - -93.90 -13.00
      K2# 热井水 8.40 91.00 2 676.00 852.00 117.00 13.10 14.40 425.00 632.00 781.00 92.10 - - - - -80.80 -10.80
      K3# 热井水 8.60 103.00 2 664.00 895.00 114.00 6.90 13.00 410.00 616.00 904.00 88.90 - - - - - -
      K4# 热井水 6.40 155.00 3 664.00 10 021.00 136.00 4.10 2.20 624.00 805.00 214.00 273.00 - - - - - -
      KH6** 热井水 6.85 141.00 2 995.12 10 007.34 141.48 12.06 3.66 639.58 809.76 744.59 - 8.90 8.33 - - -74.53 -8.72
      KH10** 热井水 6. 81 100.00 2 382.87 778.70 103.07 24.12 4.39 494.06 600.19 743.37 - 5.20 6.44 - - -79.98 -9.90
      ZK7** 热井水 6.35 144.00 3 313.77 1 021.02 135.82 4.07 2.22 623.49 805.34 213.57 - 13.10 11.41 - - -73.10 -8.30
      ZK2** 热井水 - - - - - - - 398.42 - - - 5.50 - - - - -
      ZK9** 热井水 - - - - - - - 174.66 - - - 2.60 - - - - -
      KH8** 热井水 - - - - - - - 354.93 - - - 4.90 - - - - -
      ZK22** 热井水 - - - - - - - 588.12 - - - 7.39 - - - - -
      注:*据仝晓霞等(2017);#据Li et al.(2017);**据史杰等(20182022).
      下载: 导出CSV

      表  2  根据不同溶质温度计计算的热储温度(℃)

      Table  2.   Thermal reservoir temperature evaluation with different solute thermometers in the study area (℃)

      编号 Na-K
      (Giggenbach, 1988)
      Na-K-Ca
      (Fournier and Truesdell, 1973)
      编号 Na-K
      (Giggenbach, 1988)
      Na-K-Ca
      (Fournier and Truesdell, 1973)
      PT1 149.16 98.02 K1# 242.65 153.99
      PT2 140.12 91.87 K2# 258.96 165.82
      PT3 234.16 150.41 K3# 252.39 162.08
      PT4 144.86 95.25 K4# 256.28 164.35
      PT5 134.99 88.84 KH6** 260.96 167.00
      PT6 183.79 119.97 KH10** 255.72 203.78
      PT7 243.88 156.68 ZK7** 256.16 204.13
      PT9 245.81 155.34
      下载: 导出CSV
    • Arnórsson, S., 1985. The Use of Mixing Models and Chemical Geothermometers for Estimating Underground Temperatures in Geothermal Systems. Journal of Volcanology and Geothermal Research, 23(3-4): 299-335. http://doi.org/10.1016/0377-0273(85)90039-3
      Bershaw, J., Garzione, C. N., Schoenbohm, L., et al., 2012. Cenozoic Evolution of the Pamir Plateau Based on Stratigraphy, Zircon Provenance, and Stable Isotopes of Foreland Basin Sediments at Oytag (Wuyitake) in the Tarim Basin (West China). Journal of Asian Earth Sciences, 44: 136-148. https://doi.org/10.1016/j.jseaes.2011.04.020
      Bloch, W., Schurr, B., Yuan, X. H., et al., 2021. Structure and Stress Field of the Lithosphere between Pamir and Tarim. Geophysical Research Letters, 48(22): e95413. https://doi.org/10.1029/2021gl095413
      Brown, L., Zhao, W., Nelson, K., et al., 1996. Bright Spots, Structure, and Magmatism in Southern Tibet from INDEPTH Seismic Reflection Profiling. Science, 274(5293): 1688-1690. https://doi.org/10.1126/science.274.5293.1688
      Chen, J., Li, T., Li, W. Q., et al., 2011. Late Cenozoic and Present Tectonic Deformation in the Pamir Salient, Northwestern China. Seismology and Geology, 33(2): 241-259(in Chinese with English abstract).
      Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702
      Fan, Y., Pang, Z., Liao, D., et al., 2019. Hydrogeochemical Characteristics and Genesis of Geothermal Water from the Ganzi Geothermal Field, Eastern Tibetan Plateau. Water, 11(8): 1631. https://doi.org/10.3390/w11081631
      Feng, F., Li, Z. Q., Jin, S., et al., 2013. Characteristics of δ18O and δD in Precipitation and Its Water Vapor Sources in the Upper Urumqi River Basin, Eastern Tianshan. Advances in Water Science, 24(5): 634-641(in Chinese with English abstract).
      Fournier, R. O., 1977. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 5(1-4): 41-50. https://doi.org/10.1016/0375-6505(77)90007-4
      Fournier, R. O., Truesdell, A. H., 1973. An Empirical Na-K-Ca Geothermometer for Natural Waters. Geochimica et Cosmochimica Acta, 37(5): 1255-1275. https://doi.org/10.1016/0016-7037(73)90060-4
      Garrels, R., Christ, C. L., 1965. Solutions, Minerals and Equilibria. Harper and Row, New York. Journal of the Mineralogical Society, 35(275): 1024-1025.
      Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3
      Giggenbach, W. F., Glover, R. B., 1992. Tectonic Regime and Major Processes Governing the Chemistry of Water and Gas Discharges from the Rotorua Geothermal Field, New Zealand. Geothermics, 21(1-2): 121-140. https://doi.org/10.1016/0375-6505(92)90073-i
      Guo, Q. H., Wang, Y. X., 2012. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215/216: 61-73. https://doi.org/10.1016/j.jvolgeores.2011.12.003
      Hacker, B., Luffi, P., Lutkov, V., et al., 2005. Near-Ultrahigh Pressure Processing of Continental Crust: Miocene Crustal Xenoliths from the Pamir. Journal of Petrology, 46(8): 1661-1687. https://doi.org/10.1093/petrology/egi030
      Henley, R. W., Ellis, A. J., 1983. Geothermal Systems Ancient and Modern: A Geochemical Review. Earth-Science Reviews, 19(1): 0012825283900752. https://doi.org/10.1016/0012-8252(83)90075-2
      Jiang, Y. H., Yang, W. Z., 2000. Geochemical Characteristics and Rock Series of Himalayan Granitoids in Western Qinghai-Xizang Plateau. Acta Petrrologica et Mineralogica, 19(4): 289-296(in Chinese with English abstract).
      Ke, S., Mo, X. X., Luo, Z. H., et al., 2006. Petrogenesis and Geochemistry of Cenozoic Taxkorgan Alkalic Complex and Its Geological Significance. Acta Petrologica Sinica, 22(4): 905-915(in Chinese with English abstract).
      Li, J. X., Yang, G., Sagoe, G., et al., 2018. Major Hydrogeochemical Processes Controlling the Composition of Geothermal Waters in the Kangding Geothermal Field, Western Sichuan Province. Geothermics, 75: 154-163. https://doi.org/10.1016/j.geothermics.2018.04.008
      Li, X., Qi, J. H., Yi, L., et al., 2021. Hydrochemical Characteristics and Evolution of Geothermal Waters in the Eastern Himalayan Syntaxis Geothermal Field, Southern Tibet. Geothermics, 97: 102233. https://doi.org/10.1016/j.geothermics.2021.102233
      Li, Y. M., Pang, Z. H., Yang, F. T., et al., 2017. Hydrogeochemical Characteristics and Genesis of the High-Temperature Geothermal System in the Tashkorgan Basin of the Pamir Syntax, Western China. Journal of Asian Earth Sciences, 149: 134-144. https://doi.org/10.1016/j.jseaes.2017.06.007
      Liu, M. L., Zheng, A. T., Shang, J. B., et al., 2023. Progress in Study of Boron Geochemistry in High Temperature Geothermal Fluids. Earth Science, (3): 878-893(in Chinese with English abstract).
      Nitschke, F., Held, S., Neumann, T., et al., 2018. Geochemical Characterization of the Villarrica Geothermal System, Southern Chile, Part Ⅱ: Site-Specific Re-Evaluation of SiO2 and Na-K Solute Geothermometers. Geothermics, 74: 217-225. https://doi.org/10.1016/j.geothermics.2018.03.006
      Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
      Pang, Z. H., Hu, S. B., Wang, J. Y., 2012. A Roadmap to Geothermal Energy Development in China. Science & Technology Review, 30(32): 18-24(in Chinese with English abstract).
      Rybach, L., 1976. Radioactive Heat Production in Rocks and Its Relation to Other Petrophysical Parameters. Pure and Applied Geophysics, 114(2): 309-317. https://doi.org/10.1007/BF00878955
      Sass, P., Ritter, O., Ratschbacher, L., et al., 2014. Resistivity Structure underneath the Pamir and Southern Tian Shan. Geophysical Journal International, 198(1): 564-579. https://doi.org/10.1093/gji/ggu146
      Shi, J., Nai, W. H., Li, M., et al., 2018. Hydrogeochemical Characteristics of High Temperature Geothermal Field of the Quman Geothermal Field in Xinjiang. Hydrogeology & Engineering Geology, 45(3): 165-172(in Chinese with English abstract).
      Shi, J., Wang, M. H., Ma, X. J., et al., 2022. Isotope and Hydrogeochemical Characteristics of the Quman High Temperature Geothermal Field in Taxkorgan, Xinjiang. Acta Geoscientica Sinica, 43(5): 645-653(in Chinese with English abstract).
      Tong, X. X., Ma, W. M., Sun, X. L., 2017. Characteristic and Environmental Significance of Strontium Isotope in Glacial Meltwater of the Tashkurgan Area in Pamirs, Xinjiang. Environmental Chemistry, 36(4): 830-838(in Chinese with English abstract).
      Truesdell, A., Fournier, R., 1977. Procedure for Estimating the Temperature of a Hot-Water Component in a Mixed Water by Using a Plot of Dissolved Silica versus Enthalpy. Journal of Research of the US Geological Survey, 5(1): 49-52.
      Wang, X. S., Zhang, G. Q., Choi, C. Y., 2018. Evaluation of a Precision Air-Supply System in Naturally Ventilated Freestall Dairy Barns. Biosystems Engineering, 175: 1-15. https://doi.org/10.1016/j.biosystemseng.2018.08.005
      Yi, L., Qi, J. H., Li, X., et al., 2021. Geochemical Characteristics and Genesis of the High-Temperature Geothermal Systems in the North Section of the Sanjiang Orogenic Belt in Southeast Tibetan Plateau. Journal of Volcanology and Geothermal Research, 414: 107244. https://doi.org/10.1016/j.jvolgeores.2021.107244
      Zhang, Y. H., Xu, M., Li, X., et al., 2018. Hydrochemical Characteristics and Multivariate Statistical Analysis of Natural Water System: A Case Study in Kangding County, Southwestern China. Water, 10(1): 80. https://doi.org/10.3390/w10010080
      Zhou, R., Zhou, X. C., Li, Y., et al., 2022. Hydrogeochemical and Isotopic Characteristics of the Hot Springs in the Litang Fault Zone, Southeast Qinghai-Tibet Plateau. Water, 14(9): 1496. https://doi.org/10.3390/w14091496
      陈杰, 李涛, 李文巧, 等, 2011. 帕米尔构造结及邻区的晚新生代构造与现今变形. 地震地质, 33(2): 241-259.
      冯芳, 李忠勤, 金爽, 等, 2013. 天山乌鲁木齐河流域山区降水δ18O和δD特征及水汽来源分析. 水科学进展, 24(5): 634-641.
      姜耀辉, 杨万志, 2000. 青藏高原西部喜马拉雅期花岗岩类特征及岩石系列. 岩石矿物学杂志, 19(4): 289-296.
      柯珊, 莫宣学, 罗照华, 等, 2006. 塔什库尔干新生代碱性杂岩的地球化学特征及岩石成因. 岩石学报, 22(4): 905-915.
      刘明亮, 正安婷, 尚建波, 等, 2023. 高温地热流体中硼的地球化学研究进展. 地球科学, 48(3): 878-893. doi: 10.3799/dqkx.2022.235
      庞忠和, 胡圣标, 汪集旸, 2012. 中国地热能发展路线图. 科技导报, 30(32): 18-24.
      史杰, 乃尉华, 李明, 等, 2018. 新疆曲曼高温地热田水文地球化学特征研究. 水文地质工程地质, 45(3): 165-172.
      史杰, 汪美华, 马小军, 等, 2022. 新疆塔什库尔干县曲曼地热田地下热水同位素研究. 地球学报, 43(5): 645-653.
      仝晓霞, 马武明, 孙兴乐, 2017. 新疆帕米尔高原塔什库尔干地区冰川融水锶同位素特征及其环境意义. 环境化学, 36(4): 830-838.
    • 加载中
    图(10) / 表(2)
    计量
    • 文章访问数:  310
    • HTML全文浏览量:  116
    • PDF下载量:  51
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-03-24
    • 网络出版日期:  2024-11-08
    • 刊出日期:  2024-10-25

    目录

      /

      返回文章
      返回