• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高陡岩质斜坡复杂结构面分布规律及统计均质区划分

    潘晓娟 张文 孙琦 蓝升 董文川

    潘晓娟, 张文, 孙琦, 蓝升, 董文川, 2024. 高陡岩质斜坡复杂结构面分布规律及统计均质区划分. 地球科学, 49(9): 3334-3346. doi: 10.3799/dqkx.2023.083
    引用本文: 潘晓娟, 张文, 孙琦, 蓝升, 董文川, 2024. 高陡岩质斜坡复杂结构面分布规律及统计均质区划分. 地球科学, 49(9): 3334-3346. doi: 10.3799/dqkx.2023.083
    Pan Xiaojuan, Zhang Wen, Sun Qi, Lan Sheng, Dong Wenchuan, 2024. Complex Structural Plane Distribution of High-Steep Rock Slope and Division of Statistical Homogeneous Zones. Earth Science, 49(9): 3334-3346. doi: 10.3799/dqkx.2023.083
    Citation: Pan Xiaojuan, Zhang Wen, Sun Qi, Lan Sheng, Dong Wenchuan, 2024. Complex Structural Plane Distribution of High-Steep Rock Slope and Division of Statistical Homogeneous Zones. Earth Science, 49(9): 3334-3346. doi: 10.3799/dqkx.2023.083

    高陡岩质斜坡复杂结构面分布规律及统计均质区划分

    doi: 10.3799/dqkx.2023.083
    基金项目: 

    国家重点研发计划青年科学家项目 2022YFC3080200

    国家自然科学基金优秀青年科学基金项目 42022053

    详细信息
      作者简介:

      潘晓娟(2000-),女,硕士研究生,主要从事工程地质方面的科研工作. ORCID:0009-0002-4791-3483. E-mail:2417136118@qq.com

      通讯作者:

      张文, ORCID:0000-0002-6827-4775. E-mail:zhang_wen@jlu.edu.cn

    • 中图分类号: P642

    Complex Structural Plane Distribution of High-Steep Rock Slope and Division of Statistical Homogeneous Zones

    • 摘要: 为根据结构面的空间分布特征合理划分岩体结构均质区,以西藏昌都市洛隆县察达村冻措曲左岸高陡岩质斜坡为研究对象,采用无人机多角度贴近摄影技术获取研究区高精度影像数据,并于室内完成斜坡高清三维实景模型重建与结构面信息解译;在大量结构面调查的基础上,分析研究了斜坡结构面的发育规律与成因机制.基于结构面空间分布特征,引入组内相关系数法,考虑结构面产状与密度,联合38等分施密特投影网进行岩体统计均质区划分,并与Pearson相关系数法进行对比.结果表明斜坡结构受构造应力场、断层以及风化作用控制,表现为结构面产状与密度在空间内差异性分布,斜坡最终被划分为14个不同的均质区.针对结构面产状与密度存在空间分异性的特点,Pearson相关系数法对样本间的一致性判别力较弱,而组内相关系数法评价效果较好,更适用于复杂岩体结构的统计均质区划分,具有一定的应用价值.

       

    • 图  1  研究区地质图及斜坡现场照片:研究区地质图(a),野外照片(b)

      Fig.  1.  Regional geological map and site photos of the slope: regional geological map (a), site photos of the slope (b)

      图  2  多角度无人机贴近摄影测量示意:地形单元多角度贴近摄影(a),结构面多角度贴近摄影(b)

      Fig.  2.  Schematic views of UAV multi-angle nap-of -the-object photogrammetry: multi-angle close to terrain units for photogrammetry (a), multi-angle close to the structural planes for photogrammetry (b)

      图  3  下半球等面积38网格划分

      Fig.  3.  Lower hemispherical surface divided into 38 equal area windows

      图  4  斜坡多角度贴近模型(a)与结构面分组情况(b)

      Fig.  4.  Multi-angle nap-of -the-object model of the slope (a) and groups of dominant structure plane (b)

      图  5  断裂影响带内结构面发育情况

      a.低角度断层伴生结构面;b.高角度断层伴生结构面;c.断裂带结构(高角度断层上盘)

      Fig.  5.  The development of structural planes in the structure of the fault zone

      图  6  结构面密度随断裂距离的变化

      Fig.  6.  Variation of discontinuity density with fault distance

      图  7  随机结构面迹长分布直方图

      Fig.  7.  Histogram of trace length distribution of random discontinuities

      图  8  随机结构面极点玫瑰花图

      a.随机结构面优势组Ⅰ;b.随机结构面优势组Ⅱ;c.随机结构面优势组Ⅲ

      Fig.  8.  Pole rose diagrams of random discontinuities

      图  9  斜坡风化层与致密层

      a.风化层(高程:4 055 m);b.致密层(高程:3 834 m)

      Fig.  9.  Weathered and compacted layer of slope

      图  10  结构面密度随与坡顶距离的变化

      Fig.  10.  Variation of random discontinuities density with distance from slope top

      图  11  斜坡统计均质区划分结果

      a.坡面圆形窗口布设图;b.斜坡分区图

      Fig.  11.  Structural domain boundaries of the slope

      表  1  ICC数据结构

      Table  1.   Data structure of ICC

      受试者 测量者
      1 2 j k
      1 $ {x}_{11} $ $ {x}_{12} $ $ {x}_{1j} $ $ {x}_{1k} $
      2 $ {x}_{21} $ $ {x}_{22} $ $ {x}_{2j} $ $ {x}_{2k} $
      i $ {x}_{i1} $ $ {x}_{i2} $ $ {x}_{ij} $ $ {x}_{ik} $
      下载: 导出CSV

      表  2  不同类型ICC计算公式

      Table  2.   ICC calculation formulas of different types

      McGraw and Wong(1996 Shrout and Fleiss(1979 计算表达式
      模型 类型 定义
      单因素随机效应模型 单个测量者 绝对一致性 ICC(1, 1) $ \frac{M{S}_{\mathrm{R}}-M{S}_{\mathrm{W}}}{M{S}_{\mathrm{R}}+(k+1)M{S}_{\mathrm{W}}} $
      单因素随机效应模型 多个测量者 绝对一致性 ICC(1, k $ \frac{M{S}_{\mathrm{R}}-M{S}_{\mathrm{W}}}{M{S}_{\mathrm{R}}} $
      双因素随机效应模型 单个测量者 一致性 - $ \frac{M{S}_{\mathrm{R}}-M{S}_{\mathrm{E}}}{M{S}_{\mathrm{R}}+(k+1)M{S}_{\mathrm{E}}} $
      双因素随机效应模型 多个测量者 一致性 - $ \frac{M{S}_{\mathrm{R}}-M{S}_{\mathrm{E}}}{M{S}_{\mathrm{R}}} $
      双因素随机效应模型 单个测量者 绝对一致性 ICC(2, 1) $ \frac{M{S}_{\mathrm{R}}-M{S}_{\mathrm{E}}}{M{S}_{\mathrm{R}}+\left(k-1\right)M{S}_{\mathrm{E}}+\frac{k}{n}(M{S}_{\mathrm{C}}-M{S}_{\mathrm{E}})} $
      双因素随机效应模型 多个测量者 绝对一致性 ICC(2, k $ \frac{M{S}_{\mathrm{R}}-M{S}_{\mathrm{E}}}{M{S}_{\mathrm{R}}+\frac{M{S}_{\mathrm{C}}-M{S}_{\mathrm{E}}}{n}} $
      双因素混合效应模型 单个测量者 一致性 ICC(3, 1) $ \frac{M{S}_{\mathrm{R}}-M{S}_{\mathrm{E}}}{M{S}_{\mathrm{R}}+(k-1)M{S}_{\mathrm{E}}} $
      双因素混合效应模型 多个测量者 一致性 ICC(3, k $ \frac{M{S}_{\mathrm{R}}-M{S}_{\mathrm{E}}}{M{S}_{\mathrm{R}}} $
      双因素混合效应模型 单个测量者 绝对一致性 - $ \frac{M{S}_{\mathrm{R}}-M{S}_{\mathrm{E}}}{M{S}_{\mathrm{R}}+\left(k-1\right)M{S}_{\mathrm{E}}+\frac{k}{n}(M{S}_{\mathrm{C}}-M{S}_{\mathrm{E}})} $
      双因素混合效应模型 多个测量者 绝对一致性 - $ \frac{M{S}_{\mathrm{R}}-M{S}_{\mathrm{E}}}{M{S}_{\mathrm{R}}+\frac{M{S}_{\mathrm{C}}-M{S}_{\mathrm{E}}}{n}} $
      注:MSR. 行均方;MSW. 剩余均方;MSE. 误差均方;MSC. 列均方;n. 受试者数目;k. 测量值数目.
      下载: 导出CSV

      表  3  4个采集窗口内随机结构面优势分组结果

      Table  3.   Clustering results of random discontinuities in four acquisition windows

      窗口信息 结构面信息
      序号 面积(m2) 产状 位置 总条数 优势组序 产状
      倾向(°) 倾角(°) X(m) Y(m) Z(m) 倾向(°) 倾角(°)
      1 3 547.5 106 59 3 359 902 17 229 759 3 814.5 342 1 159 77
      2 236 63
      3 133 35
      2 662.3 135 61 3 359 805 17 229 802 3 716.3 94 1 170 65
      2 203 70
      3 97 55
      3 857.9 128 62 3 360 257 17 229 963 3 749.4 47 1 149 72
      2 245 80
      3 66 36
      4 2 347.5 179 75 3 360 403 17 229 727 3 987.3 140 1 158 77
      2 224 76
      3 118 39
      下载: 导出CSV

      表  4  38等面积施密特网格内结构面

      Table  4.   Random discontinuities based on 38 equal area Schmidt grids

      施密特网格编号 窗口编号
      1 2 36
      1 $ {n}_{\mathrm{1,1}} $ $ {n}_{\mathrm{1,2}} $ $ {n}_{\mathrm{1,36}} $
      2 $ {n}_{\mathrm{2,1}} $ $ {n}_{\mathrm{2,2}} $ $ {n}_{\mathrm{2,36}} $
      38 $ {n}_{\mathrm{38,1}} $ $ {n}_{\mathrm{38,2}} $ $ {n}_{\mathrm{38,36}} $
      下载: 导出CSV

      表  5  相邻窗口统计均质区划分结果

      Table  5.   Structural domain boundaries between adjacent windows

      ICC系数法均质区窗口编号 窗口内结构面个数标准差 Pearson相关系数法均质区窗口编号 窗口内结构面个数标准差
      1、2 7 1、2 7
      3、4、7 20.2 3、4、7、8、14 63.1
      8、14 42.5
      5、6 11 5、6 11
      9、10、11 8.5 9、10、11 8.5
      12、13 53.5 12、13 53.5
      15、16 21 15、16 21
      17 - 17 -
      18~20 35.9 18~23、25~29 75.3
      21~23、27~29 35.5
      25、26 1.5
      24、30 24.5 24、30 24.5
      31、32 4.5 31、32 4.5
      33~36 47.4 33~36 47.4
      下载: 导出CSV
    • Chen, W., 2011. Fault Zone Internal Structure in Hydrocarbon-Bearing Basin and Its Relationship with Hydrocarbon Migration and Accumulation (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract).
      Cohen, J., 1977. Statistical Power Analysis for the Behavioral Sciences. Elsevier, New York. https://doi.org/10.1016/C2013-0-10517-X
      Dai, X. R., Zhao, J. J., Lai, Q. Y., et al., 2022. Movement Process and Formation Mechanism of Rock Avalanche in Chada, Tibet Plateau. Earth Science, 47(6): 1932-1944 (in Chinese with English abstract).
      Dong, H. W., Xu, Z. Q., Cao, H., et al., 2018. Comparison of Eastern and Western Boundary Faults of Eastern Himalayan Syntaxis, and Its Tectonic Evolution. Earth Science, 43(4): 933-951 (in Chinese with English abstract).
      Fan, L. M., Huang, R. Q., Ding, X. M., 2003. Analysis on Structural Homogeneity of Rock Mass Based on Discontinuity Density. Chinese Journal of Rock Mechanics and Engineering, 22(7): 1132-1136 (in Chinese with English abstract).
      Fienberg, S. E., Lancaster, H. O., 1971. The Chi-Squared Distribution. Biometrics, 27(1): 238-241. https://doi.org/10.2307/2528950
      Fisher, R. A., 1954. Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh.
      Gao, J., Yang, C. H., Wang, G. B., 2010. Discussion on Zoning Method of Structural Homogeneity of Rock Mass in Beishan of Gansu Province. Rock and Soil Mechanics, 31(2): 588-592, 598 (in Chinese with English abstract).
      Guo, L., Wu, L. Z., Zhang, J. W., et al., 2020. Identification of Homogeneous Region Boundaries of Fractured Rock Masses in Candidate Sites for Chinese HLW Repository. Bulletin of Engineering Geology and the Environment, 79(8): 4221-4243. https://doi.org/10.1007/s10064-020-01837-4
      Han, B., 2022. Structural Plane Acquisition and Geometric Feature Description of High and Steep Slope Based on Non-Contact Photogrammetry-Taking Daxigou Slope in Wenchuan County as an Example (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      He, K. Y., 2021. Rock Mass Surface Information Recognition Method Based on UAV Close Photography (Dissertation). Hunan University, Changsha (in Chinese with English abstract).
      Huang, R. Q., Xu, M., Chen, J. P., et al., 2004. Detailed Description of Complex Rock Mass Structure and Its Engineering Application. Science Press, Beijing (in Chinese).
      Koo, T. K., Li, M. Y., 2016. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15(2): 155-163. https://doi.org/10.1016/j.jcm.2016.02.012
      Kulatilake, P. H. S. W., Fiedler, R., Panda, B. B., 1997. Box Fractal Dimension as a Measure of Statistical Homogeneity of Jointed Rock Masses. Engineering Geology, 48(3-4): 217-229. https://doi.org/10.1016/S0013-7952(97)00045-8
      Li, S. Q., Zhang, H. C., Liu, R. Y., 2017. Semi-Automatically Counting Orientations of Rock Mass Structural Plane Based on Unmanned Aerial Vehicle Photogrammetry. Science Technology and Engineering, 17(26): 18-22 (in Chinese with English abstract).
      Li, Y. L., Liu, J. K., Zhang, J. J., et al., 2021. Characteristics and Potential Hazard of the Chada Collapse in Eastern Tibet. Geoscience, 35(1): 74-82 (in Chinese with English abstract).
      Li, Y. Y., Wang, Q., Chen, J. P., et al., 2015. A Multivariate Technique for Evaluating the Statistical Homogeneity of Jointed Rock Masses. Rock Mechanics and Rock Engineering, 48(5): 1821-1831. https://doi.org/10.1007/s00603-014-0678-6
      Liang, F. B., Lü, S. L., Xue, M. Y., et al., 2010. Applied Statistical Methods. Peking University Press, Beijing (in Chinese).
      Mahtab, M. A., Yegulalp, T. M., 1984. Similarity Test For Grouping Orientation Data in Rock Mechanics. The 25th U. S. Symposium on Rock Mechanics (USRMS), Evanton.
      Martin, M. W., Tannant, D. D., 2004. A Technique for Identifying Structural Domain Boundaries at the EKATI Diamond Mine. Engineering Geology, 74(3-4): 247-264. https://doi.org/10.1016/j.enggeo.2004.04.001
      McGraw, K. O., Wong, S. P., 1996. Forming Inferences about Some Intraclass Correlation Coefficients. Psychological Methods, 1(1): 30-46. https://doi.org/10.1037//1082-989x.1.1.30
      Miller, S. M., 1983. A Statistical Method to Evaluate Homogeneity of Structural Populations. Journal of the International Association for Mathematical Geology, 15(2): 317-328. https://doi.org/10.1007/BF01036073
      Peng, X. F., 2021. Distribution Characteristics and Formation Mechanism of Fractures Related to Reverse Fault: Taking Pengzhou and Yongchuan Fault Structural Zone as an Example (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Ruan, Y. K., Chen, J. P., Cao, C., et al., 2015. Application of K-S Test in Structural Homogeneity Dividing of Fractured Rock Mass. Journal of Northeastern University (Natural Science), 36(10): 1471-1475 (in Chinese with English abstract).
      Shrout, P. E., Fleiss, J. L., 1979. Intraclass Correlations: Uses in Assessing Rater Reliability. Psychological Bulletin, 86(2): 420-428. https://doi.org/10.1037//0033-2909.86.2.420
      Sieberth, T., Wackrow, R., Chandler, J. H., 2014. Motion Blur Disturbs: The Influence of Motion-Blurred Images in Photogrammetry. The Photogrammetric Record, 29(148): 434-453. https://doi.org/10.1111/phor.12082
      Song, S. Y., Sun, F. Y., Zhang, W., et al., 2018. Identification of Structural Domains by Considering Multiple Discontinuity Characteristics: A Case Study of the Songta Dam. Bulletin of Engineering Geology and the Environment, 77(4): 1589-1598. https://doi.org/10.1007/s10064-017-1024-5
      Song, S. Y., Wang, Q., Chen, J. P., et al., 2015. A Method of Identifying Structural Homogeneity of Rock Mass Based on Fracture Spacing. Journal of Northeastern University (Natural Science), 36(8): 1188-1192 (in Chinese with English abstract).
      Wang, J. C., Zheng, J., Lü, Q., et al., 2020. A Multidimensional Clustering Analysis Method for Dividing Rock Mass Homogeneous Regions Based on the Shape Dissimilarity of Trace Maps. Rock Mechanics and Rock Engineering, 53(9): 3937-3952. https://doi.org/10.1007/s00603-020-02145-9
      Wang, L. K., Chen, J. P., Lu, B., 2002. Estimation and Application of Volume Density of Discontinuities in Sampling Window. Coal Geology & Exploration, 30(3): 42-44 (in Chinese with English abstract).
      Wu, H. Y., Xu, X. M., Zheng, F. L., et al., 2018. Gully Morphological Characteristics in the Loess Hilly-Gully Region Based on 3D Laser Scanning Technique. Earth Surface Processes and Landforms, 43(8): 1701-1710. https://doi.org/10.1002/esp.4332
      Yu, H. M., Luo, Y. H., Sa, J., et al., 2011. Intraclass Correlation Coefficient and Software Procedures. Chinese Journal of Health Statistics, 28(5): 497-500 (in Chinese with English abstract).
      Zhang, K. L., Wang, Z. L., Jiang, Y. Q., et al., 2020. Effects of Weathering and Fracturing on the Physical Properties of Different Types of Volcanic Rock: Implications for Oil Reservoirs of the Zhongguai Relief, Junggar Basin, NW China. Journal of Petroleum Science and Engineering, 193: 107351. https://doi.org/10.1016/j.petrol.2020.107351
      Zhang, W., Chen, J. P., Liu, C. H., et al., 2011. Application of Chi-Square Test in Structural Homogeneity Dividing of Fractured Rock Mass. Chinese Journal of Geotechnical Engineering, 33(9): 1440-1446 (in Chinese with English abstract).
      Zhang, Y., Li, X. Z., Xu, W. T., et al., 2021. Application of Improved Miller Method in the Division of Statistical Homogenous Zones of Fractured Rock Mass. Chinese Journal of Rock Mechanics and Engineering, 40(3): 533-544 (in Chinese with English abstract).
      陈伟, 2011. 含油气盆地断裂带内部结构特征及其与油气运聚的关系(博士学位论文). 北京: 中国石油大学.
      代欣然, 赵建军, 赖琪毅, 等, 2022. 青藏高原察达高速远程滑坡运动过程与形成机理. 地球科学, 47(6): 1932-1944. doi: 10.3799/dqkx.2021.205
      董汉文, 许志琴, 曹汇, 等, 2018. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程. 地球科学, 43(4): 933-951. doi: 10.3799/dqkx.2018.701
      范留明, 黄润秋, 丁秀美, 2003. 一种基于结构面密度的岩体结构均质区划分方法. 岩石力学与工程学报, 22(7): 1132-1136.
      高敬, 杨春和, 王贵宾, 2010. 甘肃北山岩体结构均质区划分方法的探讨. 岩土力学, 31(2): 588-592, 598.
      韩博, 2022. 基于非接触式摄影测量的高陡斜坡结构面采集与几何特征描述——以汶川县大溪沟斜坡为例(硕士学位论文). 长春: 吉林大学.
      何旷宇, 2021. 基于无人机贴近摄影高陡边坡岩体表面信息识别方法. 长沙: 湖南大学.
      黄润秋, 许模, 陈剑平, 等, 2004. 复杂岩体结构精细描述及其工程应用. 北京: 科学出版社.
      李水清, 张慧超, 刘乳燕, 2017. 无人机摄影测量半自动统计岩体结构面产状. 科学技术与工程, 17(26): 18-22.
      李元灵, 刘建康, 张佳佳, 等, 2021. 藏东察达高位崩塌发育特征及潜在危险. 现代地质, 35(1): 74-82.
      梁飞豹, 吕书龙, 薛美玉, 等, 2010. 应用统计方法. 北京: 北京大学出版社.
      彭先锋, 2021. 逆断层相关裂缝的分布特征及成因机制: 以彭州与永川地区断层构造带为例(博士学位论文). 成都: 成都理工大学.
      阮云凯, 陈剑平, 曹琛, 等, 2015. K-S检验在裂隙岩体统计均质区划分中的应用. 东北大学学报(自然科学版), 36(10): 1471-1475.
      宋盛渊, 王清, 陈剑平, 等, 2015. 一种基于裂隙间距的岩体结构统计均质区划分方法. 东北大学学报(自然科学版), 36(8): 1188-1192.
      王良奎, 陈剑平, 卢波, 2002. 样本窗口中不连续面体积密度的评价与应用. 煤田地质与勘探, 30(3): 42-44.
      余红梅, 罗艳虹, 萨建, 等, 2011. 组内相关系数及其软件实现. 中国卫生统计, 28(5): 497-500.
      张文, 陈剑平, 刘存合, 等, 2011. 卡方检验在裂隙岩体统计均质区划分中的应用研究. 岩土工程学报, 33(9): 1440-1446.
      张悦, 李晓昭, 许文涛, 等, 2021. 改进Miller法及其在裂隙岩体统计均质区划分的应用. 岩石力学与工程学报, 40(3): 533-544.
    • 加载中
    图(11) / 表(5)
    计量
    • 文章访问数:  354
    • HTML全文浏览量:  96
    • PDF下载量:  26
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-03-22
    • 网络出版日期:  2024-10-16
    • 刊出日期:  2024-09-25

    目录

      /

      返回文章
      返回