The Characteristics of Giant Ooids from the Poduan Formation during the Early Middle Triassic and Its Environmental Significance at Poduan Section, Ceheng, Guizhou Province
-
摘要: 二叠纪末期生物大灭绝之后的早三叠世,巨鲕作为一种异常碳酸盐沉积物,在全球范围内广泛发育,代表了不利于后生动物生存的极端温室气候条件,在中三叠世早期环境稳定后,异常碳酸盐沉积物变得十分罕见. 然而,贵州册亨坡短剖面中三叠世初巨鲕的发现,是否意味着该时期古海洋环境条件仍然没有恢复正常呢?对册亨坡短剖面坡段组底部碳酸盐岩进行了沉积微相和沉积组构分析,从鲕粒特征、鲕粒含量、生屑含量、沉积微相等角度综合分析鲕粒富集层位的沉积环境. 册亨坡短地区坡段组共发现了4种不同的鲕粒,包括普通同心鲕粒、巨型同心鲕粒、多晶鲕粒和泥晶鲕粒,可认为有两个鲕粒富集时期. 根据岩石结构和碳酸盐颗粒特征等识别出4种微相类型,包括鲕粒颗粒灰岩、泥晶灰岩、生物碎屑颗粒灰岩和双壳类砾状灰岩微相. 沉积微相分析表明册亨坡短地区在中三叠世早期为台地边缘的台缘鲕粒滩与生物碎屑滩交互沉积.这一地区坡段组所发育的巨鲕可能指示海水碳酸盐饱和度仍然十分高,表明该地区中三叠世初仍处于异常海洋环境,暗示着中三叠世全球海洋环境存在明显的区域性差异,这可能是中三叠世生物复苏辐射模式复杂的重要原因.Abstract: Giant ooids have been considered as abnormal sediment and distributed globally in the aftermath of the end-Permian mass extinction, and represent a marine carbonate supersaturated state which is unfavourable to the survival of metazoans. The marine environment returned to normal in the early Middle Triassic when abnormal sediments became rare. However, the discovery of giant ooids in the early Middle Triassic at the Poduan section, Ceheng, Guizhou Province, could give us more insights into the marine environmental conditions during that time. In this study, the sedimentary microfacies and fabrics of the carbonate rocks at the bottom of the Poduan section were analyzed. The sedimentary environments of the giant ooid-bearing beds were comprehensively studied based on the oolitic characteristics, oolitic content, bioclastic content and sedimentary microfacies. It can be considered that there are two oolitic enrichment periods. Four kinds of oolitic grains have been found at the Poduan section, including common concentric oolitic grains, giant concentric oolitic grains, polycrystalline oolitic grains and mud crystal oolitic grains. Four sedimentary microfacies were identified based on rock structure and carbonate particle characteristics and could represent the interbedded deposition of platform margin oolitic shoal and bioclastic shoal. The development of giant ooids in this area indicated that the marine carbonate saturation is still very high and the abnormal marine environment occurred in this area during the early Middle Triassic. It suggests that there were obvious regional differences in the global marine environment during the Middle Triassic, which is an important reason for the complexity of the model of biotic recovery and radiation.
-
图 1 贵州坡短剖面古地理位置与交通位置图
a. 华南板块中三叠世古地理图;b. 南盘江盆地中三叠世古地理图(据Lehrmann et al.,2005和Payne et al.,2005修改);c.坡短剖面交通位置图
Fig. 1. Location of Poduan Section, Ceheng, Guizhou Province
图 6 坡短剖面鲕粒的镜下照片
a. 普通同心鲕粒;b. 普通同心鲕粒,生长指数 > 1;c. 以内碎屑为核心的同心鲕粒;d. 以海百合茎为核心的同心鲕粒,纹层重结晶;e,f. 核心溶蚀结晶的同心鲕粒;g. 以鲕粒碎片为核心的同心鲕粒;h,i. 巨鲕;j. 巨鲕,生长指数 > 1;k. 核心溶蚀的巨型同心鲕,靠近核心的纹层发生溶断;l,m. 多晶鲕;n. 以多晶鲕为主的鲕粒灰岩;o. 泥晶鲕粒,仍可识别的核心;p. 图o中的泥晶鲕粒的局部特征,仅能识别核心与纹层的分界线,已经无发识别同心纹层特征;q.以多晶鲕粒和正常同心鲕粒为主的鲕粒灰岩
Fig. 6. Microscopic photos of ooids from the Poduan Formation at the Poduan Section
表 1 坡段组鲕粒特征
Table 1. Ooidal cortical fabric and microscopic parameters from the Poduan Formation
粒径(mm) 含量(%) 鲕粒数量 鲕粒类型 主要特征 最小值 最大值 平均值 d/t 最小值 最大值 平均值 含量 同心鲕粒 普通鲕粒 纹层清晰, 结晶程度低, 鲕粒粒径 < 2 mm 0.12 1.56 0.64 0.8~5.1 1.19 27.09 10.30 38~42 579 巨鲕 纹层致密清晰, 鲕粒粒径 > 2 mm 2.03 9.39 4.03 0.1~15.7 0.00 25.84 6.28 45~53 118 重结晶鲕粒 多晶鲕粒 球形外壳, 方解石结晶颗粒填充 0.14 1.94 0.58 - 0.00 28.63 0.24 8~10 242 泥晶鲕粒 鲕粒泥晶化, 同心状纹层不清晰 0.29 6.62 1.11 - 0.00 1.84 0.12 0.1~2.0 7 注:d/t. 生长指数,即鲕粒核心直径(d)与纹层厚度(t)的比值 表 2 三叠纪不同地区的鲕粒主要类型及粒径大小
Table 2. The main types and sizes of ooids in different regions during the Triassic
地区 地层 鲕粒主要类型 鲕粒粒径(mm) 时期 文献来源 关刀 罗楼组 同心鲕粒, 巨鲕 0.6~2.2 Griesbachian Tian et al.(2015) 利川 大冶组 同心鲕粒, 巨鲕 1~5 Dienerian Mei(2008) 关刀 罗楼组(2) 同心鲕粒, 巨鲕 0.4~6.4 Dienerian Tian et al.(2015); Li et al.(2013) 希腊 Agios Nikolaos组 同心放射鲕粒 0.1~2.0 Anisian Varkouhi and Ribeiro(2020) 保加利亚 Svidol组 同心放射鲕粒 < 2 Anisian Chatalov(2005a, 2005b) 坡短 坡段组 普通同心鲕粒, 巨鲕 0.12~9.32 Anisian 此次研究 四川盆地 雷口坡组 同心鲕粒 0.2~0.8 Anisian 谭秀成等(2014) 扒子场 垄头组 同心鲕粒 0.5~2.0 Ladinian 谭睿昶等(2018) 观音崖 马鞍塘组 同心放射鲕粒, 同心鲕粒 0.18~2.00 Carnian 姬国锋等(2016) -
Algeo, T. J., Kuwahara, K., Sano, H., et al., 2011. Spatial Variation in Sediment fluxes, Redox Conditions, and Productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 65-83. https://doi.org/10.1016/j.palaeo.2010.07.007 Benton, M. J., 2018. Hyperthermal-Driven Mass Extinctions: Killing Models during the Permian-Triassic Mass Extinction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2130): 20170076. https://doi.org/10.1098/rsta.2017.0076 Bo, J. F., Yao J. X., Xiao, J. F., et al., 2017. Scleractinian Coral and Conodont Biostratigraphy of the Middle-Upper Part of the Poduan Formation in Ceheng, Guizhou Province, South China. Acta Geologic Sinica, 91(2): 487-497 (in Chinese with English abstract). Bottjer, D. J., Clapham, M. E., Fraiser, M. L., et al., 2008. Understanding Mechanisms for the End-Permian Mass Extinction and the Protracted Early Triassic Aftermath and Recovery. GSA Today, 18(9): 4. https://doi.org/10.1130/gsatg8a.1 Bustos-Serrano, H., Morse, J. W., Millero, F. J., 2009. The Formation of Whitings on the Little Bahama Bank. Marine Chemistry, 113(1/2): 1-8. https://doi.org/10.1016/j.marchem.2008.10.006 Chatalov, A., 2005a. Aragonitic-Calcitic Ooids from Lower to Middle Triassic Peritidal Sediments in the Western Balkanides, Bulgaria. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 237(1): 87-110. https://doi.org/10.1127/njgpa/237/2005/87 Chatalov, A., 2005b. Monomineralic Carbonate Ooid Types in the Triassic Sediments from Northwestern Bulgaria. Geologica Balcanica, 35(1/2): 63-91. https://doi.org/10.52321/geolbalc.35.1-2.63 Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction. Nature Geoscience, 5(6): 375-383. https://doi.org/10.1038/ngeo1475 Chen, Z. Q., Huang, Y. G., 2022. How to Evaluate Quantitatively Collapse and Recovery Processes of Ecosystems During and After Mass Extinctions? Earth Science, 47(10): 3827-3829 (in Chinese with English abstract). Clarkson, M. O., Kasemann, S. A., Wood, R. A., et al., 2015. Ocean Acidification and the Permo-Triassic Mass Extinction. Science, 348(6231): 229-232. https://doi.org/10.1126/science.aaa0193 Dal Corso, J., Song, H. J., Callegaro, S., et al., 2022. Environmental Crises at the Permian-Triassic Mass Extinction. Nature Reviews Earth & Environment, 3(3): 197-214. https://doi.org/10.1038/s43017-021-00259-4 Erwin, D. H., 1994. The Permo-Triassic Extinction. Nature, 367(6460): 231-236. https://doi.org/10.1038/367231a0 Fan, J. S., Wu, Y. S., 2002. Sedimentary Characteristics and Environments of the Poduan Formation of Middle Triassic in Guanling of Guizhou Province. Journal of Palaeogeography, 4(1): 67-74+101-104 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1505.2002.01.008 Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High-Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272-277. https://doi.org/10.1126/science.aax4953 Feng, Z. Z., Bao, Z. D., Li, S. W., 1997. Lithofacies Palaeogeography of Middle and Lower Triassic of South China. Petroleum Industry Press, Beijing, 222 (in Chinese). Flügel, E., 2004. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application Ⅱ. Springer-Verlag, Berlin, 976. Gao, D., Hu, M. Y., Li, A. P., et al., 2021. High-Frequency Sequence and Microfacies and Their Impacts on Favorable Reservoir of Longwangmiao Formation in Central Sichuan Basin. Earth Science, 46(10): 3520-3534 (in Chinese with English abstract). Groves, J. R., Altiner, D., Rettori, R., 2005. Extinction, Survival, and Recovery of Lagenide Foraminifers in the Permian-Triassic Boundary Interval, Central Taurides, Turkey. Journal of Paleontology, 79(sp62): 1-38. https://doi.org/10.1666/0022-3360(2005)79[1:ESAROL]2.0.CO;2. Hu, S. X., Zhang, Q. Y., Chen, Z. Q., et al., 2010. The Luoping Biota: Exceptional Preservation, and New Evidence on the Triassic Recovery from End-Permian Mass Extinction. Proceedings of the Royal Society B: Biological Sciences, 278(1716): 2274-2282. https://doi.org/10.1098/rspb.2010.2235 Huang, Y. G., Chen, Z. Q., Wignall, P. B., et al., 2016. Latest Permian to Middle Triassic Redox Condition Variations in Ramp Settings, South China: Pyrite Framboid Evidence. Geological Society of America Bulletin, 129(1/2): 229-243. https://doi.org/10.1130/b31458.1 Huang, Y. G., Chen, Z. Q., Wu, S. Q., et al., 2022. Anisian (Middle Triassic) Stromatolites from Southwest China: Biogeological Features and Implications for Variations of Filament Size and Diversity of Triassic Cyanobacteria. Palaeogeography, Palaeoclimatology, Palaeoecology, 601: 111150. https://doi.org/10.1016/j.palaeo.2022.111150 Hinojosa, J. L., Brown, S. T., Chen, J., et al., 2012. Evidence for End-Permian Ocean Acidification from Calcium Isotopes in Biogenic Apatite. Geology, 40(8): 743-746. https://doi.org/10.1130/g33048.1 Ji, G. F., Fang, H., Shi, Z. Q., et al., 2016. Characteristics and Geological Significance ofthe Late Triassic Carnian oolitic Limestone in Hanwang area, Northwest Sichuan Basin, China. Journal of Chengdu University ofTechnology (Science & TechnologyEdition), 43(1): 68-76(in Chinese with English abstract). Jiang, L. Q., Feely, R. A., Carter, B. R., et al., 2015. Climatological Distribution of Aragonite Saturation State in the Global Oceans. Global Biogeochemical Cycles, 29(10): 1656-1673. https://doi.org/10.1002/2015gb005198 Jin, Z. K., Shi, L., Gao, B. S., et al., 2013. Carbonate Facies and Facies Models. Acta Sedimentologica Sinica, 31(6): 965-979 (in Chinese with English abstract). Kump, L. R., Pavlov, A., Arthur, M. A., 2005. Massive Release of Hydrogen Sulfide to the Surface Ocean and Atmosphere during Intervals of Oceanic Anoxia. Geology, 33(5): 397-400. https://doi.org/10.1130/G21295.1 Lau, K. V., Maher, K., Altiner, D., et al., 2016. Marine Anoxia and Delayed Earth System Recovery after the End-Permian Extinction. Proceedings of the National Academy of Sciences, 113(9): 2360-2365. https://doi.org/10.1073/pnas.1515080113 Lehrmann, D. J., Enos, P., Payne, J. L., et al., 2005. Permian and Triassic Depositional History of the Yangtze Platform and Great Bank of Guizhou in the Nanpanjiang Basin of Guizhou and Guangxi, South China. Albertiana, 33(1): 149-168. Lehrmann, D. J., Payne, J. L., Pei, D. H., et al., 2007. Record of the End-Permian Extinction and Triassic Biotic Recovery in the Chongzuo-Pingguo Platform, Southern Nanpanjiang Basin, Guangxi, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1/2): 200-217. https://doi.org/10.1016/j.palaeo.2006.11.044 Lehrmann, D. J., Minzoni, M., Li, X. W., et al., 2012. Lower Triassic Oolites of the Nanpanjiang Basin, South China: facies Architecture, Giant ooids, and Diagenesis-Implications for Hydrocarbon Reservoirs Geologic Note. American Association of Petroleum Geologists Bulletin, 96(8): 1389-1414. https://doi.org/10.1306 /01231211148 doi: 10.1306/01231211148 Li, F., Wang, X., Xue, W. Q., et al., 2010. Origin and Enviromental Significance of Giant Ooids in the Early Triassic, a new kind of Anachronistic Facies. Acta Sedimentologica Sinica, 28(3): 585-595(in Chinese with English abstract). Li, F., Yan, J. X., Algeo, T., et al., 2013. Paleoceanographic Conditions Following the End-Permian Mass Extinction Recorded by Giant Ooids (Moyang, South China). Global and Planetary Change, 105(3-4): 102-120. https://doi.org/10.1016/j.gloplacha.2011.09.009 Li, F., Yan, J. X., Chen, Z. Q., et al., 2015. Global Oolite Deposits Across the Permian-Triassic Boundary: A Synthesis and Implications for Palaeoceanography Immediately after the End-Permian Biocrisis. Earth-Science Reviews, 149: 163-180. https://doi.org/10.1016/j.earscirev.2014.12.006 Li, F., Yi, C. H., Li, H., et al., 2022. Recent Advances in Ooid Microbial Origin: A Review. Acta Sedimentologica Sinica, 40(2): 319-334 (in Chinese with English abstract). Li, X. W., Trower, E. J., Lehrmann, D. J., et al., 2021. Implications of Giant Ooids for the Carbonate Chemistry of Early Triassic Seawater. Geology, 49(2): 156-161. https://doi.org/10.1130/g47655.1 Liu, Z. L., Tong, J. L., 2001. The Middle Triassic Stratigraphy and Sedimentary Paleogeography of South China. Acta Sedimentologica Sinica, 19(3): 327-332+356 (in Chinese with English abstract). Liu, J., Sander, P. M., 2019. The Vossenveld Formation and Biotic Recovery from the Permo-Triassic Extinction. Grondboor & Hamer, 16(73): 147-152. Luo, M., Chen, Z. Q., Zhao, L. S., et al., 2014. Early Middle Triassic Stromatolites from the Luoping Area, Yunnan Province, Southwest China: Geobiologic Features and Environmental Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 412(Special Issue): 124-140. https://doi.org/10.1016/j.palaeo.2014.07.028 Mary, M., Woods, A. D., 2008. Stromatolites of the Lower Triassic Union Wash Formation, CA: Evidence for Continued Post-Extinction Environmental Stress in Western North America through the Spathian. Palaeogeography, Palaeoclimatology, Palaeoecology, 261(1/2): 78-86. https://doi.org/10.1016/j.palaeo.2008.01.008 Mei, M. X., 2008. Implication for the Unusual Giant Oolites of the Phanerozoic and Their Morphological Diversity: A Case Study from the Triassic Daye Fomation at the Lichuan Section in Hubei Province South China. Geoscience, 22(5): 683-698 (in Chinese with English abstract). Mei, M. X., 2012. Brief Introduction on New Advances on the Origin of Ooids. Acta Sedimentologica Sinica, 30(1): 20-32 (in Chinese with English abstract). Payne, J. L., Lehrmann, D. J., Wei, J., et al., 2004. Large Perturbations of the Carbon Cycle during Recovery from the End-Permian Extinction. Science, 305(5683): 506-509. https://doi.org/10.1126/science.1097023 Payne, J. L., 2005. Evolutionary Dynamics of Gastropod Size Across the End-Permian Extinction and through the Triassic Recovery Interval. Paleobiology, 31(2): 269-290. https://doi.org/10.1666/0094-8373(2005)031[0269:edogsa]2.0.co;2 Payne, J. L., Lehrmann, D. J., Wei, J., et al., 2006. The Pattern and Timing of Biotic Recovery from the End-Permian Extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios, 21(1): 63-85. https://doi.org/10.2110/palo.2005.p05-12p Pei, Y., Duda, J. P., Schönig, J., et al., 2021. Late Anisian Microbe-Metazoan Build-Ups in the Germanic Basin: Aftermath of the Permian-Triassic Crisis. Lethaia, 54: 823-844. https://doi.org/10.1111/let.12442 Sedlacek, A., 2013. Srontium Isotope Stratigraphy and Carbonate Sedimentology of the latest Permian to Early Triassic in the Western United States, Northern Iran and Southern China(Dissertation), Ohio State University, Ohio, 159. Shen, S. Z., Zhang, H., 2017. What Caused the Five Mass Extinctions? China Science Bulletin, 62(11): 1119-1135(in Chinese). doi: 10.1360/N972017-00013 Shi, Z. Q., An, H. Y., Yi, H. S., et al., 2011. Classification and Characters of the Early Triassic Anomalous Carbonate Rocks in Upper Yangtze Area. Journal of Palaeogeography, 13(1): 1-10(in Chinese with English abstract). Simone, L., 1981. Ooids: a Review. Earth-Science Reviews, 16: 319-355. https://doi.org/10.1016/0012-8252(80)90053-7 Song, H. J., Wignall, P. B., Chu, D. L., et al., 2014. Anoxia/high Temperature Double Whammy during the Permian-Triassic Marine Crisis and its Aftermath. Scientific Reports, 4(1): 1-7. https://doi.org/10.1038/srep04132 Song, H. J., Tong, J. N., Xiong, Y. L., et al., 2012. The Large Increase of δ 13C Carb-Depth Gradient and the End-Permian Mass Extinction. Science China Earth Sciences, 55(7): 1101-1109. https://doi.org/10.1007/s11430-012-4416-1 Song, H. J., Tong, J. N., 2016. Mass Extinction and Survival during the Permian-Triassic Crisis. Earth Sciences, 41(6): 901-918(in Chinese with English abstract). Song, H., Wignall, P. B., Dunhill, A. M., 2018. Decoupled Taxonomic and Ecological Recoveries from the Permo-Triassic Extinction. Science Advances, 4(10): eaat5091. https://doi.org/10.1126/sciadv.aat5091 Song, H. J., Huang, S., Jia, E. H., et al., 2020. Flat Latitudinal Diversity Gradient Caused by the Permian-Triassic Mass Extinction. Proceedings of the National Academy of Sciences, 117(30): 17578-17583. https://doi.org/10.1073/pnas.1918953117 Song, H. J., Song, H. Y., Tong, J. N., et al., 2021. Conodont Calcium Isotopic Evidence for Multiple Shelf Acidification Events during the Early Triassic. Chemical Geology, 562(1): 120038. https://doi.org/10.1016/j.chemgeo.2020.120038 Summer, D. A., Grotzinger, J. P., 1993. Numerical Modeling of Ooid Size and the Problem of Neoproterozoic Giant Ooids. Joumal of Sedimentary Petrology, 63: 974-982. https://doi.org/10.1306/d4267c5d-2b26-11d7-8648000102c1865d Richter, D. K., 1983. Calcareous Ooids: a Synopsis. In: Peryt, T. M., ed., Coated Grains. Springer-Verlag, Berlin, 71-99. Tan, X. C., Li, L., Liu, H., et al., 2013. Mega-Shoaling in Carbonate Platform of the Middle Triassic Leikoupo Formation, Sichuan Basin, Southwest China. Science China Earth Sciences, 57(3): 465-479. https://doi.org/10.1007/s11430-013-4667-5 Tang, R. C., Li, R., Wang, Y., 2018. Sedimentary Characteristics of the Middle Triassic Longtou Formation in Guizhou Province, South China: Implications for Sea-Level Change. Journal of Palaeogeography, 20(3): 389-408(in Chinese with English abstract). Tian, L., Tong, J. N., Sun, D. Y., et al., 2014. The Microfacies and Sedimentary Responses to the Mass Extinction during the Permian-Triassic Transition at Yangou Section, Jiangxi Province, South China. Science China Earth Sciences, 57(9): 2195-2207. https://doi.org/10.1007/s11430-014-4869-5 Tian, L., Bottjer, D. J., Tong, J., et al., 2015. Distribution and Size Variation of Ooids in the Aftermath of the Permian-Triassic Mass Extinction. Palaios, 30(9): 714-727. https://doi.org/10.2110/palo.2014.110 Tong, J. N., Yin, H. F., 2002. The Lower Triassic of South China. Journal of Asian Earth Sciences, 20(7): 803-815. https://doi.org/10.1016/s1367-9120(1)00058-x Tong, J. N., Yin, H. F., 2009. Advance in the Study of Early Triassic Life and Environment. Acta Palaeontologica Sinica, 48(3): 497-508(in Chinese with English abstract). doi: 10.3969/j.issn.0001-6616.2009.03.020 Trotter, J. A., Williams, I. S., Nicora, A., et al., 2015. Long-Term Cycles of Triassic Climate Change: A New Δ18O Record from Conodont Apatite. Earth and Planetary Science Letters, 415(2): 165-174. https://doi.org/10.1016/j.epsl.2015.01.038 Trower, E. J., Lamb, M. P., Fischer, W. W., 2017. Experimental Evidence that Ooid Size Reflects a Dynamic Equilibrium between Rapid Precipitation and Abrasion Rates. Earth and Planetary Science Letters, 468(1): 112-118. https://doi.org/10.1016/j.epsl.2017.04.004 Trower, E. J., Lamb, M. P., Cantine, M. D., et al., 2018. Active Ooid Growth Driven by Sediment Transport in a HighLamb, M. P., Energy Shoal, Little Ambergris Cay, Turks and Caicos Islands. Journal of Sedimentary Research, 88(9): 1132-1151. https://doi.org/10.2110/jsr.2018.59 Trower, E. J., Smith, B. P., Koeshidayatullah, A. I., et al., 2022. Marine Ooid Sizes Record Phanerozoic Seawater Carbonate Chemistry. Geophysical Research Letters, 49(22): e2022GL100800. https://doi.org/10.1029/2022gl100800 Tucker, M. E., Wright, V. P., 1990. Carbonate Sedimentology. Blackwell Sciences, Oxford, 482. Varkouhi, S., Jaques Ribeiro, L. M., 2020. Bimineralic Middle Triassic Ooids from Hydra Island: Diagenetic Pathways and Implications for Ancient Seawater Geochemistry. The Depositional Record, 7(2): 344-369. https://doi.org/10.1002/dep2.117 Wang, L. T., 1999. Discussion on Mid-Triassic Ecological Differentiation in Guizhou. Guizhou Geology, 16(1): 17-21 (in Chinese with English abstract). Wilson, J. L., 1975. Carbonate Facies in Geologic History. Springer-Verlag, Berlin, 471. Woods, A. D., 2013. Microbial Ooids and Cortoids from the Lower Triassic (Spathian) Virgin Limestone, Nevada, USA: Evidence for an Early Triassic Microbial Bloom in Shallow Depositional Environments. Global and Planetary Change, 105(4-5): 91-101. https://doi.org/10.1016/j.gloplacha.2012.07.011 Xiong, X. Q., Huang, Y. F., Tong, J. N., 2010. Triassic Bivalve Biostratigraphic Sequence in Zunyi, ‚Guizhou Province. Geological Science and Technology Information, 29(6): 7-14 (in Chinese with English abstract). Xu, G. R., 1992. Middle Triassic Dasycladaceae from Bazichang of Guanling, Guizhou Province. Earth Science, 17(5): 503-511 (in Chinese with English abstract). Zhao, X. M., Tong, J. N., Yao, H. Z., et al., 2008. Anachronistic Facies in the Lower Triassic of South China and their Implications to the Ecosystems during the Recovery Time. Science in China Series D: Earth Sciences, 51(11): 1646-1657. https://doi.org/10.1007/s11430-008-0128-y 薄婧方, 姚建新, 肖加飞, 等, 2017. 贵州册亨中三叠统坡段组中上部石珊瑚及牙形石生物地层. 地质学报, 91(2): 487-497. doi: 10.3969/j.issn.0001-5717.2017.02.014 陈中强, 黄元耕. 2022. 如何定量评价大灭绝时期生态系统的坍塌与重建过程? 地球科学, 47(10): 3827-3829. doi: 10.3799/dqkx.2022.827 范嘉松, 吴亚生, 2002. 贵州关岭中三叠统坡段组沉积特征及其形成环境. 古地理学报, 4(1), 67-74+101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200201010.htm 冯增昭, 鲍志东, 李尚武, 1997. 中国南方早中三叠世岩相古地理. 石油工业出版社, 北京, 222页. https://cdmd.cnki.com.cn/Article/CDMD-10424-1012277311.htm 高达, 胡明毅, 李安鹏, 等, 2021. 川中地区龙王庙组高频层序与沉积微相及其对有利储层的控制. 地球科学, 46(10): 3520-3524. doi: 10.3799/dqkx.2020.382 姬国锋, 范鸿, 时志强, 等, 2016. 川西北汉旺地区卡尼期鲕粒灰岩特征及地质意义. 成都理工大学学报(自然科学版), 43(1): 68-76. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201601007.htm 金振奎, 石良, 高白水, 等, 2013. 碳酸盐岩沉积相及相模式. 沉积学报, 31(6): 965-979. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201306003.htm 李飞, 王夏, 薛武强, 等, 2010. 一种新的错时相沉积物-巨鲕及其环境意义. 沉积学报, 28(3): 585-595. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201003024.htm 李飞, 易楚恒, 李红, 等, 2022. 微生物成因鲕粒研究进展. 沉积学报, 40(2): 319-334. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202202003.htm 刘志丽, 童金南. 2001. 中国南方中三叠世地层及沉积古地理分异. 沉积学报, 19(3): 327-332+356. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200103001.htm 梅冥相, 2008. 显生宙罕见的巨鲕及其鲕粒形态多样性的意义: 以湖北利川下三叠统大冶组为例. 现代地质, 22(5): 683-698. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200805001.htm 梅冥相, 2012. 鲕粒成因研究的新进展. 沉积学报, 30(1): 20-32. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201201003.htm 时志强, 安红艳, 伊海生, 等, 2011. 上扬子地区早三叠世异常碳酸盐岩的分类与特征. 古地理学报, 13(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201101003.htm 沈树忠, 张华, 2017. 什么引起五次生物大灭绝?科学通报, 62(11): 1119-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201711007.htm 宋海军, 童金南, 2016. 二叠纪-三叠纪之交生物大灭绝与残存. 地球科学, 41(6): 901-918. doi: 10.3799/dqkx.2016.077 谭睿昶, 李荣, 王垚, 2018. 贵州地区中三叠统垄头组沉积特征及其海平面变化意义. 古地理学报, 20(3): 389-408. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201803004.htm 谭秀成, 李凌, 刘宏, 等. 2014. 四川盆地中三叠统雷口坡组碳酸盐台地巨型浅滩化研究. 中国科学: 地球科学, 44: 457-471. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201403007.htm 童金南, 殷鸿福, 2009. 早三叠世生物与环境研究进展. 古生物学报, 48(3): 497-508. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX200903019.htm 王立亭, 1999. 贵州中三叠世生物生态分异初探. 贵州地质, 16(1): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ199901002.htm 熊鑫琪, 黄云飞, 童金南, 2010. 贵州遵义地区早-中三叠世双壳类生物地层研究. 地质科技情报, 29(6): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201006002.htm 徐桂荣, 1992. 贵州关岭扒子场中三叠世绒枝藻植物群的发现. 地球科学, 17(5): 503-511. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199205003.htm 赵小明, 童金南, 姚华舟, 等, 2008. 华南早三叠世错时相沉积及其对复苏期生态系的启示. 中国科学: 地球科学, 38(12): 1564-1574. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200812010.htm