• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    柯坪地区中下寒武统走滑断裂带方解石脉期次、古流体演化与油气充注历史

    刘建章 陈诚 蔡忠贤 李杰 吴正洲

    刘建章, 陈诚, 蔡忠贤, 李杰, 吴正洲, 2023. 柯坪地区中下寒武统走滑断裂带方解石脉期次、古流体演化与油气充注历史. 地球科学, 48(6): 2189-2203. doi: 10.3799/dqkx.2023.089
    引用本文: 刘建章, 陈诚, 蔡忠贤, 李杰, 吴正洲, 2023. 柯坪地区中下寒武统走滑断裂带方解石脉期次、古流体演化与油气充注历史. 地球科学, 48(6): 2189-2203. doi: 10.3799/dqkx.2023.089
    Liu Jianzhang, Chen Cheng, Cai Zhongxian, Li Jie, Wu Zhengzhou, 2023. Division of Calcite Veins Stage, Paleo-Fluid Evolution and Hydrocarbon Charging History in the Middle and Lower Cambrin Strike-Slip Fault Zone in Keping Area, Northwest of Tarim Basin. Earth Science, 48(6): 2189-2203. doi: 10.3799/dqkx.2023.089
    Citation: Liu Jianzhang, Chen Cheng, Cai Zhongxian, Li Jie, Wu Zhengzhou, 2023. Division of Calcite Veins Stage, Paleo-Fluid Evolution and Hydrocarbon Charging History in the Middle and Lower Cambrin Strike-Slip Fault Zone in Keping Area, Northwest of Tarim Basin. Earth Science, 48(6): 2189-2203. doi: 10.3799/dqkx.2023.089

    柯坪地区中下寒武统走滑断裂带方解石脉期次、古流体演化与油气充注历史

    doi: 10.3799/dqkx.2023.089
    基金项目: 

    国家重点研发计划课题 2019YFC0605502

    国家自然科学基金 42072179

    详细信息
      作者简介:

      刘建章(1976-),男,博士,副教授,主要从事油气地质综合研究及相关教学工作.ORCID:0009-0006-5736-0666. E-mail:liujzh@126.com

      通讯作者:

      蔡忠贤,教授,主要从事碳酸盐岩储层方面的教学和科研工作.E-mail:zxcai@cug.edu.cn

    • 中图分类号: P618.1

    Division of Calcite Veins Stage, Paleo-Fluid Evolution and Hydrocarbon Charging History in the Middle and Lower Cambrin Strike-Slip Fault Zone in Keping Area, Northwest of Tarim Basin

    • 摘要: 新疆柯坪地区野外露头中下寒武统走滑断裂带充填多期方解石脉和固体沥青,是揭示流体活动和油气成藏过程的重要媒介.在野外露头断裂带中方解石脉、沥青充填特征观察的基础上,利用岩石薄片、阴极发光、微区原位稀土元素、碳氧同位素及流体包裹体等测试技术,厘定方解石脉形成期次、成脉流体性质及来源,揭示成脉古流体演化及其与油气充注的耦合关系.结果表明,柯坪地区中下寒武统走滑断裂中发育4~5期方解石脉(C1、C2、C3、C4、C5);C1成脉流体为地层水,部分混合了上覆阿瓦塔格组地层卤水;C2、C3成脉流体主要为地层水与含烃热液流体的混合,但C3成脉温度稍低;C4成脉流体也主要为地层水,存在大气淡水的混合;C5成脉流体为地层水、含烃流体和大气淡水的混合.5期方解石脉分别形成于加里东中晚期、海西中晚期、印支-燕山中期、燕山晚期和喜马拉雅期,3期油气充注于海西中晚期、印支-燕山中期和喜马拉雅期.海西中晚期、印支-燕山中期可能是柯坪地区中下寒武统原生油气藏的主要形成时期,喜马拉雅期是原生油气藏破坏、调整和再聚集期.喜马拉雅期定型、与走滑断裂相关圈闭也具有优越成藏条件.

       

    • 图  1  塔里木盆地构造纲要(a)、西北部构造单元划分(b)及寒武系岩性柱状简图(c)

      齐英敏等(2012)张子亚等(2013)修改

      Fig.  1.  Tectonic elements and synthesis columnar section of Cambrian of northwestern Tarim basin

      图  2  遥感影像中石灰窑剖面断裂发育位置、地层层系分布及不同层系断裂特征观察点示意

      黄色实线为石灰窑剖面走滑断裂发育位置及走向变化,白色虚线为地层分界线,a、b、c和d浅蓝色线分别为肖尔布拉克组(Є1x)、伍松格尔组(Є1w)、沙依里克组(Є2s)和阿瓦塔格组(Є2a)典型走滑断裂结构及充填特征观察点

      Fig.  2.  Schematic diagram of fault location, stratigraphic distribution and observation points of fault characteristics of different layers in remote sensing images of Shihuiyao profile

      图  3  石灰窑剖面中下寒武统走滑断裂发育特征及方解石脉、沥青充填特征

      a、b、c、d分别为图 2中石灰窑剖面肖尔布拉克组(Є1x)、伍松格尔组(Є1w)、沙依里克组(Є2s)、阿瓦塔格组(Є2a)NW向右旋走滑断裂发育及典型充填特征,其中a位于主断裂边缘,b~d为主断裂邻近的次级断裂.a-1、a-2、a-3分别为a中蓝色虚线方框内方解石脉的局部放大照片,主断裂边缘空腔中充填方解石脉体、断层角砾、渗流粉砂与沥青,方解石脉位于断层角砾、渗流粉砂和沥青两侧呈对称状分布且紧邻白云岩围岩,至少发育5期方解石脉和2期次沥青;a-4为a观测点稍下方断裂充填方解石脉及沥青特征,第1期次沥青位于C2之后,但分布局限且含量较低.b-1为b中蓝色虚线方框内局部放大照片,指示次级断裂中心充填方解石脉、断层角砾和沥青,方解石脉位于断层角砾和沥青两侧呈对称状分布;b-2为b-1中蓝色虚线方框区域方解石脉的局部放大照片,指示至少发育3期方解石.c-1为c中蓝色虚线方框内局部放大照片,c-2为c-1中蓝色虚线方框区域的局部放大照片,指示至少发育4期方解石脉;次级断裂核部充填多期方解石脉、断层角砾、渗流粉砂和沥青,断层角砾+渗流粉砂+沥青两侧方解石脉体呈对称状分布.d-1为d中蓝色虚线方框区域的局部放大照片,次级断裂核部充填方解石脉、断层角砾、渗流粉砂和沥青;d-2是d-1中蓝色虚线方框区域的局部放大照片,指示至少发育3期方解石脉

      Fig.  3.  Structural characteristics and calcite and bitumen filling characteristics in Middle and Lower Cambrian strike-slip fault of Shihuiyao profile

      图  4  肖尔布拉克组走滑断裂带中5期次方解石脉岩石学及阴极光特征

      图 3a-2中各期次方解石脉单偏光和阴极光照片;a、b、c、d为单偏光照片,a-1、b-1、c-1、d-1分别为对应的阴极光照片

      Fig.  4.  Characteristics of petrography and cathodoluminescences of calcite vein and bitumen from strike-slip fault of Xiaoerbulake Formation

      图  5  石灰窑剖面下(a)、中(b)寒武统白云岩围岩及各期次方解石脉δ18OVPDB13CVPDB关系

      Fig.  5.  Scatter plot of δ18OVPDB vs. δ13CVPDB of calcite veins and host-rock in the Middle and Lower Cambrian strike-slip fault, Shihuiyao profile

      图  6  柯坪地区石灰窑剖面下寒武统各期次方解石脉与围岩稀土元素配分样式

      Fig.  6.  Rare earth element distribution patterns of calcite veins and host-rocks in the Lower Cambrian strike-slip fault of Shihuiyao profile

      图  7  石灰窑剖面肖尔布拉克组和沙依里克组方解石脉盐水包裹体均一温度统计直方图(a)及其与盐度关系图(b)

      Fig.  7.  Histogram of homogenization temperatures of aqueous inclusions in calcite veins (a) and relationship between homogenization temperatures and salinity (b), Middle and Lower Cambrian strike-slip fault, Shihuiyao profile

      图  8  石灰窑剖面肖尔布拉克组、沙依里克组各期次方解石脉氧同位素值与流体包裹体均一温度关系

      浅蓝色、红色、绿色、深蓝色方框分别表示肖尔布拉克组C1、C2、C3、C4成岩流体δ18OVSMOW范围;灰色虚线方框表示沙依里克组C2成岩流体δ18OVSMOW范围

      Fig.  8.  Relationship between δ18OVPDB and fluid inclusions homogenization temperature of calcite veins in the Xiaoerbulake Formation and Shayilike Formation of Middle and Lower Cambrian strike-slip fault, Shihuiyao profile

      图  9  石灰窑剖面中下寒武统走滑断裂带方解石脉形成与油气充注耦合关系

      构造-埋藏史图据常健等(2011)修改;地温梯度依据Qiu et al.(2012)

      Fig.  9.  Coupling relationship between calcite veins and hydrocarbon charging for the Lower Cambrian strike-slip fault in Shihuiyao profile

    • Aubert, D., Stille, P., Probst, A., et al. 00., 2002. Characterization and Migration of Atmospheric REE in Soils and Surface Waters. Geochimica et Cosmochimica Acta, 66(19): 3339-3350. https://doi.org/10.1016/s0016-7037(02)00913-4
      Beinlich, A., John, T., Vrijmoed, J. C., et al., 2020. Instantaneous Rock Transformations in the Deep Crust Driven by Reactive Fluid Flow. Nature Geoscience, 13(4): 307-311. https://doi.org/10.1038/s41561-020-0554-9
      Bolhar, R., Kamber, B. S., Moorbath, S., et al., 2004. Characterisation of Early Archaean Chemical Sediments by Trace Element Signatures. Earth and Planetary Science Letters, 222(1): 43-60. https://doi.org/10.1016/j.epsl.2004.02.016
      Cai, C. F., Franks, S. G., Aagaard, P., 2001. Origin and Migration of Brines from Paleozoic Strata in Central Tarim, China: Constraints from 87Sr/86Sr, δD, δ18O and Water Chemistry. Applied Geochemistry, 16(9-10): 1269-1284. https://doi.org/10.1016/s0883-2927(01)00006-3
      Cai, C. F., Li, K. K., Li, B., et al., 2009. Geochemical Characteristics and Origins of Fracture- and Vug-Fillings of the Ordovidan in Tahe Oilfield, Tarim Basin. Acta Petrologica Sinica, 25(10): 2399-2404(in Chinese with English abstract).
      Chang, J., Qiu, N. S., Zuo, Y. H., et al., 2011. The New Evidence on Tectonic Uplift in Kepingtage Area, Tarim, China: Constraints from (U-Th)/He Ages. Chinese Journal of Geophysics, 54(1): 163-172 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.01.017
      Chen, H. H., Wu, Y., Feng, Y., et al., 2014. Timing and Chronology of Hydrocarbon Charging in the Ordovician of Tahe Oilfield, Tarim Basin, NW China. Oil & Gas Geology, 35(6): 806-819(in Chinese with English abstract).
      Emrich, K., Ehhalt, D. H., Vogel, J. C., 1970. Carbon Isotope Fractionation during the Precipitation of Calcium Carbonate. Earth and Planetary Science Letters, 8(5): 363-371. https://doi.org/10.1016/0012-821x(70)90109-3
      Friedman, I., O'Neil, J. R., 1977. Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. In: Michael, F., ed., Data of Geochemistry. U. S. Department of the Interior, Bibliogov, U. S. A. .
      Goldstein, R. H., 2003. Petrographic Analysis of Fluid Inclusions. In: Samson, I., Anderson, A., Marshall, D., eds., Fluid Inclusions: Analysis and Interpretation. Mineralogical Association of Canada, Ottawa, 9-53.
      He, W. Y., Li, J. H., Qian, X. L., et al., 2002. Analysis of Fault Structures in the Kalpin Fault Uplift, Tarim Basin. Chinese Geology, 29(1): 37-43 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2002.01.007
      He, Z. L., Zhang, J. T., Ding, Q., et al., 2017. Factors Controlling the Formation of High-Quality Deep to Ultra-Deep Carbonate Reservoirs. Oil & Gas Geology, 38(4): 633-644, 763 (in Chinese with English abstract).
      Huang, S. J., Qing, H. R., Hu, Z. W., et al., 2008. Cathodoluminescence and Diagenesis of the Carbonate Rocks in Feixianguan Formation of Triassic, Eastern Sichuan Basin of China. Earth Science, 33(1): 26-34 (in Chinese with English abstract).
      Jin, Z. J., Zhu, D. Y., Meng, Q. Q., et al., 2013. Hydrothermal Activites and Influences on Migration of Oil and Gas in Tarim Basin. Acta Petrologica Sinica, 29(3): 1048-1058(in Chinese with English abstract).
      Kawabe, I., Toriumi, T., Ohta, A., et al., 1998. Monoisotopic REE Abundances in Seawater and the Origin of Seawater Tetrad Effect. Geochemical Journal, 32(4): 213-229. https://doi.org/10.2343/geochemj.32.213
      Kim, S. T., Coplen, T. B., Horita, J., 2015. Normalization of Stable Isotope Data for Carbonate Minerals: Implementation of IUPAC Guidelines. Geochimica et Cosmochimica Acta, 158: 276-289. https://doi.org/10.1016/j.gca.2015.02.011
      Liu, B. Z., 2020. Analysis of Main Controlling Factors of Oil and Gas Differential Accumulation in Shunbei Area, Tarim Basin—Taking Shunbei No. 1 and No. 5 Strike Slip Fault Zones as Examples. China Petroleum Exploration, 25(3): 83-95 (in Chinese with English abstract).
      Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
      Lottermoser, B. G., 1992. Rare Earth Elements and Hydrothermal Ore Formation Processes. Ore Geology Reviews, 7(1): 25-41. https://doi.org/10.1016/0169-1368(92)90017-f
      Lu, H. F., Jia, D., Cai, D. S., et al., 1998. On the Kalpin Transpression Tectonics of Northwest Tarim. Geological Journal of China Universities, 4(1): 49-58(in Chinese with English abstract).
      Ma, Y. S., Cai, X. Y., Yun, L., et al., 2022. Practice and Theoretical and Technical Progress in Exploration and Development of Shunbei Ultra-Deep Carbonate Oil and Gas Field, Tarim Basin, NW China. Petroleum Exploration and Development, 49(1): 1-17 (in Chinese with English abstract). doi: 10.1016/S1876-3804(22)60001-6
      Ma, Y. S., Li, M. W., Cai, X. Y., et al., 2020. Mechanisms and Exploitation of Deep Marine Petroleum Accumulations in China: Advances, Technological Bottlenecks and Basic Scientific Problems. Oil & Gas Geology, 41(4): 655-672, 683 (in Chinese with English abstract).
      Qi, L. X., 2016. Oil and Gas Breakthrough in Ultra-Deep Ordovician Carbonate Formations in Shuntuoguole Uplift, Tarim Basin. China Petroleum Exploration, 21(3): 38-51 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2016.03.004
      Qi, Y. M., Li, Y. J., Wang, Y. R., et al., 2012. Fault Analysis on Shajingzi Structural Belt, NW Margin of Tarim Basin, NW China. Chinese Journal of Geology, 47(2): 265-277 (in Chinese with English abstract). doi: 10.3969/j.issn.0563-5020.2012.02.001
      Qiu, N. S., Chang, J. A., Zuo, Y. H., et al., 2012. Thermal Evolution and Maturation of Lower Paleozoic Source Rocks in the Tarim Basin, Northwest China. AAPG Bulletin, 96(5): 789-821. https://doi.org/10.1306/09071111029
      Sorkhabi, R., 2005. Geochemical Signatures of Fluid Flow in Thrust Sheets: Fluid-Inclusion and Stable Isotope Studies of Calcite Veins in Western Wyoming. AAPG, 85: 251-267.
      Veizer, J., Bruckschen, P., Pawellek, F., et al., 1997. Oxygen Isotope Evolution of Phanerozoic Seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1-4): 159-172. https://doi.org/10.1016/s0031-0182(97)00052-7 doi: 10.1016/S0031-0182(97)00052-7
      Wang, B., Yang, Y., Cao, Z. C., et al., 2021. U-Pb Dating of Calcite Veins Developed in the Middle-Lower Ordovician Reservoirs in Tahe Oilfield and Its Petroleum Geologic Significance in Tahe Oilfield. Earth Science, 46(9): 3203-3216 (in Chinese with English abstract).
      Wang, X. P., Yan, J. J., 1995. Structural Framework of Major Faults in Northern Tarim Basin, Xinjiang. Earth Science, 20(3): 237-242 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.1995.03.001
      Wu, G. Y., Li, Y. J., Liu, Y. L., et al., 2013. Paleozoic Sedimento-Tectonic Evolution and Basin Dynamic Settings in Wushi-Kalpin-Bachu Area, Northwest Tarim. Journal of Palaeogeography, 15(2): 203-218 (in Chinese with English Abstract).
      Xi, Q., Yu, H. Z., Gu, Q. Y., et al., 2016. Main Hydrocarbon Source Rocks and Contrasts for Awati Sag in Tarim Basin. Petroleum Geology & Oilfield Development in Daqing, 35(1): 12-18 (in Chinese with English abstract). doi: 10.3969/J.ISSN.1000-3754.2016.01.003
      Xu, H., Guo, X. W., Cao, Z. C., et al., 2021. Application of Minimum Homogenization Temperatures of Aqueous Inclusions in Calcite Veins to Determine Time of Hydrocarbon Accumulation in Ordovician of Tahe Oilfield: Evidence from In-Situ Calcite U-Pb Dating by Laser Ablation. Earth Science, 46(10): 3535-3548 (in Chinese with English abstract).
      Yang, P., Wu, G. H., Nuriel, P., et al., 2021. In Situ LA-ICPMS U-Pb Dating and Geochemical Characterization of Fault-Zone Calcite in the Central Tarim Basin, Northwest China: Implications for Fluid Circulation and Fault Reactivation. Chemical Geology, 568: 120125. https://doi.org/10.1016/j.chemgeo.2021.120125
      Yang, H. J., Chen, Y. Q., Tian, J., et al., 2020. Great Discovery and Its Significance of Ultra-Deep Oil and Gas Exploration in Well Luntan-1 of the Tarim Basin. China Petroleum Exploration, 25(2): 62-72 (in Chinese with English abstract) 7.
      Zhang, C., Zheng, D. M., Li, J. H., 2001. Attribute of Paleozoic Structures and Its Evolution Characteristics in Keping Fault-Uplift. Oil & Gas Geology, 22(4): 314-318 (in Chinese with English abstract).
      Zhang, J. F., Zhang, Y. Y., Gao, Y. J., 2022. Silurian Hydrocarbon Exploration Breakthrough and Its Implications in the Shajingzi Structural Belt of Tarim Basin, NW China. Petroleum Exploration and Development, 49(1): 203-214 (in Chinese with English abstract).
      Zhang, Z. Y., Liu, D. D., Zhu, B., et al., 2013. The Kinematic Features and Regional Geological Significances of the Late Cenozoic Ingan Fault, Northwestern Tarim Basin. Geotectonica et Metallogenia, 37(2): 184-193 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2013.02.002
      Zhu, G. Y., Cao, Y. H., Yan, L., et al., 2018. Petroleum Exploration Potential and Favorable Areas of Ultra-Deep Marine Strata Deeper Than 8 000 Meters in Tarim Basin. Natural Gas Geoscience, 29(6): 755-772 (in Chinese with English abstract).
      Zhu, G. Y., Chen, F. R., Chen, Z. Y., et al., 2016. Discovery and Basic Characteristics of the High-Quality Source Rocks of the Cambrian Yuertusi Formation in Tarim Basin. Natural Gas Geoscience, 27(1): 8-21 (in Chinese with English abstract).
      蔡春芳, 李开开, 李斌, 等, 2009. 塔河地区奥陶系碳酸盐岩缝洞充填物的地球化学特征及其形成流体分析. 岩石学报, 25(10): 2399-2404. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910009.htm
      常健, 邱楠生, 左银辉, 等, 2011. 塔里木柯坪塔格地区构造抬升的新证据: 来自(U-Th)/He年龄的约束. 地球物理学报, 54(1): 163-172. doi: 10.3969/j.issn.0001-5733.2011.01.017
      陈红汉, 吴悠, 丰勇, 等, 2014. 塔河油田奥陶系油气成藏期次及年代学. 石油与天然气地质, 35(6): 806-819. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406010.htm
      何文渊, 李江海, 钱祥麟, 等, 2002. 塔里木盆地柯坪断隆断裂构造分析. 中国地质, 29(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200201006.htm
      何治亮, 张军涛, 丁茜, 等, 2017. 深层-超深层优质碳酸盐岩储层形成控制因素. 石油与天然气地质, 38(4): 633-644, 763. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704001.htm
      黄思静, 卿海若, 胡作维, 等, 2008. 川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用. 地球科学, 33(1): 26-34. doi: 10.3321/j.issn:1000-2383.2008.01.004
      金之钧, 朱东亚, 孟庆强, 等, 2013. 塔里木盆地热液流体活动及其对油气运移的影响. 岩石学报, 29(3): 1048-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303026.htm
      刘宝增, 2020. 塔里木盆地顺北地区油气差异聚集主控因素分析: 以顺北1号、顺北5号走滑断裂带为例. 中国石油勘探, 25(3): 83-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003008.htm
      卢华复, 贾东, 蔡东升, 等, 1998. 塔西北柯坪剪切挤压构造. 高校地质学报, 4(1)49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX801.005.htm
      马永生, 蔡勋育, 云露, 等, 2022. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展. 石油勘探与开发, 49(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201001.htm
      马永生, 黎茂稳, 蔡勋育, 等, 2020. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题. 石油与天然气地质, 41(4): 655-672, 683. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004002.htm
      漆立新, 2016. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义. 中国石油勘探, 21(3): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603004.htm
      齐英敏, 李曰俊, 王月然, 等, 2012. 塔里木盆地西北缘沙井子构造带断裂构造分析. 地质科学, 47(2): 265-277. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201202002.htm
      王斌, 杨毅, 曹自成, 等, 2021. 塔河油田中下奥陶统储层裂缝方解石脉U-Pb同位素年龄及油气地质意义. 地球科学, 46(9): 3203-3216. doi: 10.3799/dqkx.2020.352
      王燮培, 严俊君, 1995. 塔里木盆地北部断裂格架分析. 地球科学, 20(3): 237-242. http://www.earth-science.net/article/id/328
      吴根耀, 李曰俊, 刘亚雷, 等, 2013. 塔里木西北部乌什-柯坪-巴楚地区古生代沉积-构造演化及成盆动力学背景. 古地理学报, 15(2): 203-218. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201302007.htm
      席勤, 余和中, 顾乔元, 等, 2016. 塔里木盆地阿瓦提凹陷主力烃源岩探讨及油源对比. 大庆石油地质与开发, 35(1): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201601003.htm
      徐豪, 郭小文, 曹自成, 等, 2021. 运用方解石中流体包裹体最小均一温度确定塔河油田奥陶系油气成藏时间: 来自激光原位方解石U-Pb年龄的证据. 地球科学, 46(10): 3535-3548. doi: 10.3799/dqkx.2020.376
      杨海军, 陈永权, 田军, 等, 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002007.htm
      张臣, 郑多明, 李江海, 2001. 柯坪断隆古生代的构造属性及其演化特征. 石油与天然气地质, 22(4): 314–318. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200104005.htm
      张君峰, 张远银, 高永进, 2022. 塔里木盆地沙井子构造带志留系油气勘探突破及启示. 石油勘探与开发, 49(1): 203-214. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201019.htm
      张子亚, 刘冬冬, 朱贝, 等, 2013. 塔里木盆地西北缘晚新生代印干断层的运动学特征及其区域构造意义. 大地构造与成矿学, 37(2): 184-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201302003.htm
      朱光有, 曹颖辉, 闫磊, 等, 2018. 塔里木盆地8 000 m以深超深层海相油气勘探潜力与方向. 天然气地球科学, 29(6): 755-772. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202306002.htm
      朱光有, 陈斐然, 陈志勇, 等, 2016. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征. 天然气地球科学, 27(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601003.htm
    • 加载中
    图(9)
    计量
    • 文章访问数:  685
    • HTML全文浏览量:  789
    • PDF下载量:  161
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-10-26
    • 刊出日期:  2023-06-25

    目录

      /

      返回文章
      返回