• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    我国大型克拉通叠合盆地的走滑构造与油气聚集研究进展

    陈红汉

    陈红汉, 2023. 我国大型克拉通叠合盆地的走滑构造与油气聚集研究进展. 地球科学, 48(6): 2039-2066. doi: 10.3799/dqkx.2023.094
    引用本文: 陈红汉, 2023. 我国大型克拉通叠合盆地的走滑构造与油气聚集研究进展. 地球科学, 48(6): 2039-2066. doi: 10.3799/dqkx.2023.094
    Chen Honghan, 2023. Advances on Relationship between Strike-Slip Structures and Hydrocarbon Accumulations in Large Superimposed Craton Basins, China. Earth Science, 48(6): 2039-2066. doi: 10.3799/dqkx.2023.094
    Citation: Chen Honghan, 2023. Advances on Relationship between Strike-Slip Structures and Hydrocarbon Accumulations in Large Superimposed Craton Basins, China. Earth Science, 48(6): 2039-2066. doi: 10.3799/dqkx.2023.094

    我国大型克拉通叠合盆地的走滑构造与油气聚集研究进展

    doi: 10.3799/dqkx.2023.094
    基金项目: 

    国家科技部“973”课题 2012CB214800

    国家自然科学基金重点项目 41730421

    面上项目 42072176

    面上项目 42272169

    国家科技重大专项 2016ZX05004-001

    详细信息
      作者简介:

      陈红汉(1962-),教授,博士生导师,主要从事油气成藏动力学和流体包裹体系统分析的研究和教学工作.ORCID:0000-0001-6968-412X.E-mail:hhchen@cug.edu.cn

    • 中图分类号: P618

    Advances on Relationship between Strike-Slip Structures and Hydrocarbon Accumulations in Large Superimposed Craton Basins, China

    • 摘要: 在系统回顾走滑断裂研究历史、形成机制和基本构造特征的基础上,重点讨论了我国大型克拉通叠合盆地走滑构造与油气聚集方面的最新研究进展.概括起来包括:(1)走滑断裂应力和生长机制决定了走滑断裂体系和构造样式具有“平面分区、走向分段、侧向分带、垂向分层、层内分异”特征;(2)板内走滑断裂与油气富集关系表明走滑断裂带具有“控源、控输、控储、控圈、控藏和控富”作用;(3)这种断控孔缝洞型储集体的表征可以从露头测量→测井资料刻画→三维地震雕刻3个方面进行,其核心是裂缝密度的分布与预测;(4)板内走滑断裂带断控油气藏通源性、充注过程和年代学研究为克拉通盆地深层-超深油气勘探提供了新的工具.另外,对本专辑发表的论文进行了评述.以期对推动我国克拉通盆地深层-超深层油气勘探起到抛砖引玉之功效.

       

    • 图  1  走滑断裂及其与油气聚集相关研究发表的论文统计直方图

      统计时间为1982年1月1日至2022年10月30日;中文文献来自于中国知网CNKI;英文文献来自于Web of Science

      Fig.  1.  Statistical histograms of globally published articles with the topics of strike-slip fault and its related hydrocarbon accumulation

      图  2  走滑断层基本几何属性图(据Aydin and Berryman, 2010)

      a.沿走滑断层分段以及各段的长度(l1l2l3)、高度(h1h2)、阶步数(s1s2s3).阶步长度(o)和阶步宽度(或断层离距w);b.走滑断层的内部构型包括断岩、断面和由损伤带所围的断核

      Fig.  2.  The basic geometric attribution of strike-slip fault (after Aydin and Berryman, 2010)

      图  3  走滑断层宽度与位移关系

      Aydin and Nur(1982);斜率显示长/宽比为l/w=3.2

      Fig.  3.  Plot of width of strike-slip fault vs. displacement

      图  4  走滑断层厚度(T)与位移(D)关系(据Fossen,2010)

      Fig.  4.  Plot of thickness of strike-slip fault vs. displacement (Fossen, 2010)

      图  5  运用应变椭圆图示右行力偶产生的各种走滑构造

      Harding(1974);PDZ为主位移带;P为同向剪切断层;T为张断层;R和R’分别为同向剪切和反向断层;ϕ为内摩擦角

      Fig.  5.  Using strain ellipse produced by dextral couple schematically to exhibit composite structures in strike-slip fault belt

      图  6  沿着走滑断层系统弯曲带或断阶带发育的双重伸展(张扭)和双重挤压(压扭)示意(据Fossen,2010)

      Fig.  6.  Schematic diagram showing contractional extensional strike-slip duplexes (transtensional deformation) and strike-slip duplexes (transpressional deformation) at bends or stepover along strike-slip fault system (Fossen, 2010)

      图  7  走滑断裂带中不同尺度下雁列方解石脉显示的剪切构造照片

      a.塔里木盆地跃进3-3井奥陶系一间房组(7 187.35 m)走滑断裂带内垂直雁列方解石脉岩心照片;b.塔里木盆地富满油田满深5井奥陶系(7 608.12 m)走滑断裂带内亮晶砂屑灰岩中雁列状微裂缝(蓝色铸体薄片所示)显微照片(张秋艳提供)

      Fig.  7.  Photos of the en echelon calcite veins showing shearing structures in the strike-slip fault belts

      图  8  塔里木盆地顺托果勒地区F17号走滑断裂带复式花状构造(引自能源,2021,内部材料

      Fig.  8.  3D seismic profile showing composite flower structures in No. F17 strike-slip fault in Shuntuoguole area, Tarim basin (after Neng, 2021)

      图  9  塔里木盆地台盆区加里东中期Ⅲ幕应力场与走滑断裂带体系划分叠合(据李国会等,2021修改)

      Fig.  9.  Map showing the strike-slip fault system division in the cratonic Tarim basin (modified from Li et al., 2021)

      图  10  走滑断层损伤带立体概念模型图(a)和确定断层损伤带及断核宽度示意(b)(据Choi et al., 2016修改)

      Fig.  10.  Conceptual block diagram of strike-slip fault damage zone (a) and schematic diagram of determining the fault damage zone width (b) (after Choi et al., 2016)

      图  11  走滑断层不同生长阶段损伤带演化概念模型(de Joussineau and Aydin, 2007)

      Fig.  11.  Conceptual model of damage zone of strike-slip fault during different growth stages (de Joussineau and Aydin, 2007)

      图  12  考虑不同因素的损伤带构造样式概念模型(de Joussineau and Aydin, 2007)

      Fig.  12.  Conceptual models of structural pattern of damage zone under the considering of different factors (de Joussineau and Aydin, 2007)

      图  13  走滑断层损伤带类型划分图(据Peacock et al., 2017修改)

      Fig.  13.  Diagram showing classification of different types of strike-slip fault damage zones (modified from Peacock et al., 2017)

      图  14  走滑断裂带断控洞穴(a)和溶洞(b)

      a.塔里木盆地富满油田满深4井(F17走滑断裂带上)FMI成像测井显示的近10 m的洞穴(据王清华等,2022中图2);b.鄂尔多斯盆地南缘泾河油田永和走滑断裂带上JH9井长811砂岩中发育的溶蚀孔洞

      Fig.  14.  The cave (a) and vugs (b) genetically controlled by strike-slip faults

      图  15  运用常规测井曲线预测裂缝带流程图

      Fig.  15.  The flow chart of using traditional log curves to predict fracture zones

      图  16  泾河油田榆林子走滑断裂带T6c形态指数(SI)平面图

      a.红色为负值,代表下降盘;黑色为正值,代表上升盘,白色代表断核;b.横切榆林子走滑断裂带的一条SI分布剖面;c.根据SI预测的该剖面裂缝密度分布

      Fig.  16.  Planar map of T6c shape index (SI) of Yulinzi strike-slip fault belt in Jinghe oilfield

    • Alaei, B., Torabi, A., 2017. Seismic Imaging of Fault Damaged Zone and Its Scaling Relation with Displacement. Interpretation, 5(4): 83-93. https://doi.org/10.1190/int-2016-0230.1
      Ampuero, J.P., Mao, X.L., 2017. Upper Limit on Damage Zone Thickness Controlled by Seismogenic Depth. In: Marion, Y.T., Thomas, M.M., Harsha, S.B., eds., Fault Zone Dynamic Processes: Evolution of Fault Properties during Seismic Rupture, Geophysical Monograph, 227: 243-253.
      Anderson, E.M., 1951. The Dynamics of Faulting and Dyke Formation with Applications to Britain. Oliver and Boyd, Edinburgh.
      Aydin, A., 2000. Fractures, Faults, and Hydrocarbon Entrapment, Migration and Flow. Marine and Petroleum Geology, 17(7): 797-814. https://doi.org/10.1016/s0264-8172(00)00020-9
      Aydin, A., Berryman, J.G., 2010. Analysis of the Growth of Strike-Slip Faults Using Effective Medium Theory. Journal of Structural Geology, 32(11): 1629-1642. https://doi.org/10.1016/j.jsg.2009.11.007
      Aydin, A., de Joussineau, G., 2014. The Relationship between Normal and Strike-Slip Faults in Valley of Fire State Park, Nevada, and Its Implications for Stress Rotation and Partitioning of Deformation in the East-Central Basin and Range. Journal of Structural Geology, 63: 12-26. https://doi.org/10.1016/j.jsg.2014.02.006
      Aydin, A., Nur, A., 1982. Evolution of Pull-apart Basins and Their Scale Independence. Tectonics, 1(1): 91-105. https://doi.org/10.1029/tc001i001p00091
      Белkин, B. И., Медведский, Р. И., 1989. Translated by Zhu, Q.H. . Vein-Shaped Hydrocarbon Trap. Geological Science and Technology Information, 8(2): 83-88(in Chinese).
      Caine, J.S., Evans, J.P., Forster, C.B., 1996. Fault Zone Architecture and Permeability Structure. Geology, 24(11): 1025-1028. doi: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
      Cao, S.Y., Neubauer, F., 2016. Deep Crustal Expressions of Exhumed Strike-Slip Fault Systems: Shear Zone Initiation on Rheological Boundaries. Earth-Science Reviews, 162: 155-176. https://doi.org/10.1016/j.earscirev.2016.09.010
      Carlini, M., Viola, G., Mattila, J., et al., 2019. The Role of Mechanical Stratigraphy on the Refraction of Strike-Slip Faults. Solid Earth, 10(1): 343-356. https://doi.org/10.5194/se-10-343-2019
      Chen, H.H., 2007. Advances in Geochronology of Hydrocarbon Accumulation. Oil & Gas Geology, 28(2): 143-150 (in Chinese with English abstract).
      Chen, H.H., Lu, Z.Y., Cao, Z.C., et al., 2016a. Hydrothermal Alteration of Ordovician Reservoir in Northeastern Slope of Tazhong Uplift, Tarim Basin. Acta Petrolei Sinica, 37(1): 43-63(in Chinese with English abstract).
      Chen, H.H., Wu, Y., Zhu, H.T., et al., 2016b. Eogenetic Karstification and Reservoir Formation Model of the Middle-Lower Ordovician in the Northeast Slope of Tazhong Uplift, Tarim Basin. Acta Petrolei Sinica, 37(10): 1231-1246(in Chinese with English abstract).
      Chen, J.J., He, D.F., Tian, F.L., et al., 2022. Control of Mechanical Stratigraphy on the Stratified Style of Strike-Slip Faults in the Central Tarim Craton, NW China. Tectonophysics, 830: 229307. https://doi.org/10.1016/j.tecto.2022.229307
      Chen, P.J., 1988. Age and Pattern of Huge Translation of Tanlu Fault. Chinese Science Bulletin, 33(4): 289-293(in Chinese). doi: 10.1360/csb1988-33-4-289
      Choi, J.H., Edwards, P., Ko, K., et al., 2016. Definition and Classification of Fault Damage Zones: A Review and a New Methodological Approach. Earth-Science Reviews, 152: 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006
      Craig, J., Thurow, J., Thusu, B., et al., 2009. Global Neoproterozoic Petroleum Systems: The Emerging Potential in North Africa. Geological Society, London, Special Publications, 326(1): 1-25. https://doi.org/10.1144/sp326.1
      Cunningham, W.D., Mann, P., 2007. Tectonics of Strike-Slip Restraining and Releasing Bends. Geological Society, London, Special Publications, 290(1): 1-12. https://doi.org/10.1144/sp290.1
      Dai, S.H., Ma, S.L., Pan, Y.S., et al., 2006. Experimental Study on Rupture Propagation along Buried Strike-Slip Fault. Seismology and Geology, 28(4): 635-645(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2006.04.011
      de Joussineau, G., Aydin, A., 2007. The Evolution of the Damage Zone with Fault Growth in Sandstone and Its Multiscale Characteristics. Journal of Geophysical Research: Solid Earth, 112(B12): B12401. https://doi.org/10.1029/2006jb004711
      Deng, Q.D., Zhang, W.Q., Zhang, P.Z., et al., 1989. Haiyuan Strike-Slip Fault Zone and Its Compressional Structures of the End. Seismology and Geology, 11(1): 1-14(in Chinese with English abstract).
      Deng, S., Li, H.L., Zhang, Z.P., et al., 2018. Characteristics of Differential Activities in Major Strike-Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Area and Its Surroundings, Tarim Basin. Oil & Gas Geology, 39(5): 878-888(in Chinese with English abstract).
      Deng, S., Li, H.L., Zhang, Z.P., et al., 2019. Structural Characterization of Intracratonic Strike-Slip Faults in the Central Tarim Basin. AAPG Bulletin, 103(1): 109-137. https://doi.org/10.1306/06071817354
      Deng, S., Zhao, R., Kong, Q.F., et al., 2022. Two Distinct Strike-Slip Fault Networks in the Shunbei Area and Its Surroundings, Tarim Basin: Hydrocarbon Accumulation, Distribution, and Controlling Factors. AAPG Bulletin, 106(1): 77-102. https://doi.org/10.1306/07202119113
      Deng, X.L., Yan, T., Zhang, Y.T., et al., 2021. Characteristics and Well Location Deployment Ideas of Strike-Slip Fault Controlled Carbonate Oil and Gas Reservoirs: A Case Study of the Tarim Basin. Natural Gas Industry, 41(3): 21-29(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.03.003
      Dong, S.L., Li, Z., Gao, J., et al., 2013. Progress of Studies on Early Paleozoic Tectonic Framework and Crystalline Rock Geochronology in Altun-Qilian-Kunlun Orogen. Geological Review, 59(4): 731-746(in Chinese with English abstract). doi: 10.3969/j.issn.0371-5736.2013.04.012
      Donzé, F.V., Klinger, Y., Bonilla-Sierra, V., et al., 2021. Assessing the Brittle Crust Thickness from Strike-Slip Fault Segments on Earth, Mars and Icy Moons. Tectonophysics, 805: 228779. https://doi.org/10.1016/j.tecto.2021.228779
      Dooley, T.P., Schreurs, G., 2012. Analogue Modelling of Intraplate Strike-Slip Tectonics: A Review and New Experimental Results. Tectonophysics, 574-575: 1-71. https://doi.org/10.1016/j.tecto.2012.05.030
      Evans, J.P., 1990. Thickness-Displacement Relationships for Fault Zones. Journal of Structural Geology, 12(8): 1061-1065. https://doi.org/10.1016/0191-8141(90)90101-4
      Fan, Q.H., Lü, X.X., Li, B.H., 2008. Strike-Slip Fault and the Hydrocarbon Reservoir Formation. Journal of Southwest Petroleum University (Science & Technology Edition), 30(6): 76-80, 209(in Chinese with English abstract). doi: 10.3863/j.issn.1000-2634.2008.06.018
      Feng, B.Z., Yu, C.L., He, T.H., et al., 2022. Discovery of Fault System in the North of Yishan Slope in Ordos Basin and Its Geological Significance. Journal of Xi'an Shiyou University (Natural Science Edition), 37(2): 1-8(in Chinese with English abstract).
      Fitch, T.J., 1972. Plate Convergence, Transcurrent Faults, and Internal Deformation Adjacent to Southeast Asia and the Western Pacific. Journal of Geophysical Research, 77(23): 4432-4460. https://doi.org/10.1029/jb077i023p04432
      Fossen, H., 2010. Structural Geology. Cambridge University Press, Cambridge, London.
      Goddard, J.V., Evans, J.P., 1995. Chemical Changes and Fluid-Rock Interaction in Faults of Crystalline Thrust Sheets, Northwestern Wyoming, U.S.A. . Journal of Structural Geology, 17(4): 533-547. doi: 10.1016/0191-8141(94)00068-B
      Gogonenkov, G.N., Timurziev, A.I., 2010. Strike-Slip Faults in the West Siberian Basin: Implications for Petroleum Exploration and Development. Russian Geology and Geophysics, 51(3): 304-316. https://doi.org/10.1016/j.rgg.2010.02.007
      Gogonenkov, G.N., Timurziev, A.I., 2012. Strike-Slip Faulting in the West Siberian Platform: Insights from 3D Seismic Imagery. Comptes Rendus Geoscience, 344(3-4): 214-226. https://doi.org/10.1016/j.crte.2011.09.010
      Gomila, R., Arancibia, G., Mitchell, T.M., et al., 2016. Palaeopermeability Structure within Fault-Damage Zones: A Snap-Shot from Microfracture Analyses in a Strike-Slip System. Journal of Structural Geology, 83: 103-120. doi: 10.1016/j.jsg.2015.12.002
      González, G., Gerbault, M., Martinod, J., et al., 2008. Crack Formation on Top of Propagating Reverse Faults of the Chuculay Fault System, Northern Chile: Insights from Field Data and Numerical Modelling. Journal of Structural Geology, 30(6): 791-808. https://doi.org/10.1016/j.jsg.2008.02.008
      Gu, X., 1999. Reservoir-Permeability Trap Different from Anticline Trap and Fault Trap. Marine Origin Petroleum Geology, 4(1): 7(in Chinese).
      Guan, S.W., Liang, H., Jiang, H., et al., 2022. Characteristics and Evolution of the Main Strike-Slip Fault Belts of the Central Sichuan Basin, Southwestern China, and Associated Structures. Earth Science Frontiers, 29(6): 252-264(in Chinese with English abstract).
      Guan, S.W., Wu, L., Ren, R., et al., 2017. Distribution and Petroleum Prospect of Precambrian Rifts in the Main Cratons, China. Acta Petrolei Sinica, 38(1): 9-22(in Chinese with English abstract). doi: 10.1038/aps.2016.94
      Hafner, W., 1951. Stress Distributions and Faulting. Geological Society of America Bulletin, 62(4): 373. https://doi.org/10.1130/0016-7606(1951)62[373:sdaf]2.0.co;2
      Harding, T.P., 1974. Petroleum Traps Associated with Wrench Faults. AAPG Bulletin, 58(7): 1290-1304. https://doi.org/10.1306/83d91669-16c7-11d7-8645000102c1865d
      Harding, T.P., 1985. Seismic Characteristics and Identification of Negative Flower Structures, Positive Flower Structures, and Positive Structural Inversion. AAPG Bulletin, 69(4): 1016-1058. https://doi.org/10.1306/ad462538-16f7-11d7-8645000102c1865d
      Harland, W.B., Francis, E.H., 1971. Phanerozoic Time-Scale: A Supplement. Geological Society, London, Special Publications, No. 5. The Geological Society, London.
      Harland, W.B., 1971. Tectonic Transpression in Caledonian Spitsbergen. Geological Magazine, 108(1): 27-41. https://doi.org/10.1017/s0016756800050937
      He, F.Q., Liang, C.C., Lu, C., et al., 2020. Identification and Description of Fault-Fracture Bodies in Tight and Low Permeability Reservoirs in Transitional Zone at the South Margin of Ordos Basin. Oil & Gas Geology, 41(4): 710-718(in Chinese with English abstract).
      Holdsworth, R.A., Strachan, R.A., Dewey, J.F., 1998. Continental Transpressional and Transtensional Tectonics. Geological Society, London, Special Publication, No. 135. The Geological Society, London.
      Hou, J.J., Liu, X.D., You, X.Z., et al., 1993. Characteristics of Surface Deformation Combination of Active Strike-Slip Fault System in Western Guangxi and Its Relationship with Seismic Activity. Acta Seismologica Sinica, 15(1): 119-122, 131(in Chinese with English abstract).
      Huang, C., Yun, L., Cao, Z.C., et al., 2022. Division and Formation Mechanism of Fault-Controlled Fracture-Vug System of the Middle-to-Lower Ordovician, Shunbei Area, Tarim Basin. Oil & Gas Geology, 43(1): 54-68(in Chinese with English abstract).
      Huang, J.Q., 1984. New Researches on the Tectonic Characteristics of China. Acta Geosicientia Sinica, 5(2): 5-18, 268(in Chinese with English abstract).
      Huang, J.X., Zhu, S.J., Zeng, W., et al., 1996. Reservoir-Permeation System Trap Models for Gas Accumulation of the Upper Triassic in the Intermediate Zone between the Centre and South of Sichuan Basin. Natural Gas Industry, 16(3): 5-8, 11(in Chinese with English abstract).
      Huang, L., Liu, C.Y., He, F.Q., et al., 2022. Strike-Slip Deformation Characteristics of Fault in Craton Basin. Journal of Northwest University (Natural Science Edition), 52(6): 930-942(in Chinese with English abstract).
      Huang, S.Y., Song, X.G., Luo, C.M., et al., 2021. Formation Mechanism of the Conjugate Strike-Slip Faults in Tabei Uplift. Geoscience, 35(6): 1797-1808, 1829(in Chinese with English abstract).
      Jia, C.Z., Ma, D.B., Yuan, J.Y., et al., 2021. Structural Characteristics, Formation & Evolution and Genetic Mechanisms of Strike-Slip Faults in the Tarim Basin. Natural Gas Industry, 41(8): 81-91(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.008
      Jiang, B., Xu, J.W., 1989. Formation and Evolution of the Ningwu Basin as a Mesozoic Pull-apart Basin. Chinese Journal of Geology, 24(4): 314-322(in Chinese with English abstract).
      Jiao, C.L., He, B.Z., Wang, T.Y., et al., 2018. Types and Quantitative Characterization of Reservoir Spaces of the Ultra-Deep Limestone Reservoirs in the Yijianfang Formation during the Middle Ordovician, Shuntuoguole Area, Tarim Basin. Acta Petrologica Sinica, 34(6): 1835-1846(in Chinese with English abstract).
      Jiao, F.Z., 2017. Significance of Oil and Gas Exploration in NE Strike-Slip Fault Belts in Shuntuoguole Area of Tarim Basin. Oil & Gas Geology, 38(5): 831-839(in Chinese with English abstract).
      Jiao, F.Z., Yang, Y., Ran, Q., et al., 2021. Distribution and Gas Exploration of the Strike-Slip Faults in the Central Sichuan Basin. Natural Gas Industry, 41(8): 92-101(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.009
      Jones, C.H., 2003. How Faults Accommodate Plate Motion. Science, 300(5622): 1105-1106. https://doi.org/10.1126/science.1084028
      Kennedy, B.M., Kharaka, Y.K., Evans, W.C., et al., 1997. Mantle Fluids in the San Andreas Fault System, California. Science, 278(5341): 1278-1281. https://doi.org/10.1126/science.278.5341.1278
      Lachenbruch, A.H., 1961. Depth and Spacing of Tension Cracks. Journal of Geophysical Research, 66(12): 4273-4292. https://doi.org/10.1029/JZ066i012p04273
      Li, G.H., Li, S.Y., Li, H.Y., et al., 2021. Distribution Pattern and Formation Mechanism of the Strike-Slip Fault System in the Central Tarim Basin. Natural Gas Industry, 41(3): 30-37(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.03.004
      Li, H.Y., Liu, J., Gong, W., et al., 2020. Identification and Characterization of Strike-Slip Faults and Traps of Fault-Karst Reservoir in Shunbei Area. China Petroleum Exploration, 25(3): 107-120(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2020.03.010
      Li, J.H., Li, W.B., Wang, H.H., et al., 2013. Kinematic Analysis of Plate Collision during the Assembly of Pangea in Late Paleozoic. Geological Review, 59(6): 1047-1059(in Chinese with English abstract).
      Li, P.J., Chen, H.H., Tang, D.Q., et al., 2017. Coupling Relationship between NE Strike-Slip Faults and Hypogenic Karstification in Middle-Lower Ordovician of Shunnan Area, Tarim Basin, Northwest China. Earth Science, 42(1): 93-104(in Chinese with English abstract).
      Li, S.G., 1962. Introduction to Geomechanics. Science Press, Beijing (in Chinese).
      Li, S.Z., Li, X.W., Zhang, J.W., et al., 2016. Application of GeoEast Software Volume Curvature Attribute Technology in Carbonate Rock Fracture Research. Petroleum Geology and Engineering, 30(2): 53-55, 79(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8217.2016.02.015
      Li, S.Z., Yang, Z., Zhao, S.J., et al., 2016. Global Early Paleozoic Orogens (Ⅳ): Plate Reconstruction and Supercontinent Carolina. Journal of Jilin University (Earth Science Edition), 46(4): 1026-1041(in Chinese with English abstract).
      Li, Z.J., Yang, Z.C., Li, H.Y., et al., 2020. Three-Dimensional Seismic Exploration Method for Ultra-Deep Fault-Related Dissolution Reservoirs in the Shunbei Desert Area. Geophysical Prospecting for Petroleum, 59(2): 283-294(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2020.02.015
      Liao, M.H., Liu, J., Gong, W., et al., 2020. Discussion on Reflection Characteristics and Prediction Technology of Fault-Controlling Fractured-Vuggy Reservoir in Shunbei Area. Chinese Journal of Engineering Geophysics, 17(6): 703-710(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7940.2020.06.007
      Lin, B., Zhang, X., Kuang, A.P., et al., 2021. Structural Deformation Characteristics of Strike-Slip Faults in Tarim Basin and Their Hydrocarbon Significance: A Case Study of No. 1 Fault and No. 5 Fault in Shunbei Area. Acta Petrolei Sinica, 42(7): 906-923(in Chinese with English abstract).
      Lin, C.Y., Fan, F.T., 1984. Microstructure Analysis of Fuyun Fault Zone in Xinjiang. Journal of Disaster Prevention and Mitigation Engineering, 4(2): 1-8, 87(in Chinese with English abstract).
      Liu, C.Y., Wang, J.Q., Zhao, H.G., et al., 2015. The Classification of Sedimentary Basins and Discussion on Relevant Issues. Earth Science Frontiers, 22(3): 1-26(in Chinese with English abstract).
      Liu, H.F., Li, X.Q., Liu, L.Q., et al., 2004. Petroleum Play Analysis and Strike Slip System Basin-Mountain Coupling. Geoscience, 18(2): 139-150(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2004.02.001
      Liu, H.F., Xia, Y.P., Yin, J.Y., 1999. Coupling Mechanism of Strike-Slip Orogen and Basin. Earth Science Frontiers, 6(3): 121-132(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1999.03.012
      Liu, J., Klinger, Y., Sieh, K., et al., 2004. Six Similar Sequential Ruptures of the San Andreas Fault, Carrizo Plain, California. Geology, 32(8): 649. https://doi.org/10.1130/g20478.1
      Liu, J., Ren, L.D., Li, Z.J., et al., 2017. Seismic Identification and Evaluation of Deep Carbonate Faults and Fractures in Shunnan Area, Tarim Basin. Oil & Gas Geology, 38(4): 703-710(in Chinese with English abstract).
      Liu, J., Sieh, K., Hauksson, E., 2003. A Structural Interpretation of the Aftershock "Cloud" of the 1992 Mw 7.3 Landers Earthquake. Bulletin of the Seismological Society of America, 93(3): 1333-1344. https://doi.org/10.1785/0120020060
      Liu, Y.Q., Deng, S., 2022. Structural Analysis of Intraplate Strike-Slip Faults with Small to Medium Displacement: A Case Study of the Shunbei 4 Fault, Tarim Basin. Journal of China University of Mining & Technology, 51(1): 124-136(in Chinese with English abstract).
      Liu, Z.F., Liu Z.Q., Guo, Y.L., et al., 2021. Concept and Geological Model of Fault-Fracture Reservoir and Their Application in Seismic Fracture Prediction: A Case Study on the Xu 2 Member Tight Sandstone Gas Pool in Xinchang Area, Western Sichuan Depression in Sichuan Basin. Oil & Gas Geology, 42(4): 973-980(in Chinese with English abstract).
      Lottaroli, F., Craig, J., Thusu, B., 2009. Neoproterozoic-Early Cambrian (Infracambrian) Hydrocarbon Prospectivity of North Africa: A Synthesis. Geological Society, London, Special Publications, 326(1): 137-156. https://doi.org/10.1144/sp326.7
      Lü, H.T., Zhang, S.N., Ma, Q.Y., 2017. Classification and Formation Mechanism of Fault Systems in the Central and Northern Tarim Basin. Petroleum Geology and Experiment, 39(4): 444-452(in Chinese with English abstract).
      Lü, W.Y., Zeng, L.B., Liao, Z.H., et al., 2017. Fault Damage Zone Characterization in Tight-Oil Sandstones of the Upper Triassic Yanchang Formation in the Southwest Ordos Basin, China: Integrating Cores, Image Logs, and Conventional Logs. Interpretation, 5(4): SP27-SP39. https://doi.org/10.1190/int-2016-0231.1
      Lu, X.B., Hu, W.G., Wang, Y., et al., 2015. Characteristics and Development Practice of Fault-Karst Carbonate Reservoirs in Tahe Area, Tarim Basin. Oil & Gas Geology, 36(3): 347-355(in Chinese with English abstract).
      Lu, Z.Y., Chen, H.H., Qing, H.R., et al., 2017. Petrography, Fluid Inclusion and Isotope Studies in Ordovician Carbonate Reservoirs in the Shunnan Area, Tarim Basin, NW China: Implications for the Nature and Timing of Silicification. Sedimentary Geology, 359: 29-43. https://doi.org/10.1016/j.sedgeo.2017.08.002
      Luo, Q., Huang, H.D., Pang, X.Q., et al., 2004. A Kind of Possible Natural Fault Petroleum Trap. Petroleum Exploration and Development, 31(3): 148-150(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2004.03.042
      Luo, X.G., 1994. The Relation between Simple Shear and Pure Shear in Rubber. Acta Polymerica Sinica, (4): 385-391(in Chinese with English abstract).
      Luo, Z.L., Qian, H., Wen, X.Z., 1987. Comparative Study on Seismic Geology of Xianshuihe Fault and San Andreas Fault. Earthquake Research in Sichuan, (4): 1-10, 20(in Chinese).
      Ma, D.B., Wang, Z.C., Duan, S.F., et al., 2018. Strike-Slip Faults and Their Significance for Hydrocarbon Accumulation in Gaoshiti-Moxi Area, Sichuan Basin, SW China. Petroleum Exploration and Development, 45(5): 795-805(in Chinese with English abstract).
      Ma, Q.Y., Cao, Z.C., Jiang, H.S., et al., 2020. Source-Connectivity of Strike Slip Fault Zone and Its Relationship with Oil and Gas Accumulation in Tahe-Shunbei Area, Tarim Basin. Marine Origin Petroleum Geology, 25(4): 327-334(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2020.04.005
      Ma, Y.S., He, Z.L., Zhao, P.R., et al., 2019. A New Progress in Formation Mechanism of Deep and Ultra-Deep Carbonate Reservoir. Acta Petrolei Sinica, 40(12): 1415-1425(in Chinese with English abstract). doi: 10.7623/syxb201912001
      Mann, P., 2007. Global Catalogue, Classification and Tectonic Origins of Restraining- and Releasing Bends on Active and Ancient Strike-Slip Fault Systems. Geological Society, London, Special Publications, 290(1): 13-142. https://doi.org/10.1144/sp290.2
      McClay, K., Bonora, M., 2001. Analog Models of Restraining Stepovers in Strike-Slip Fault Systems. AAPG Bulletin, 85(2): 233-260. https://doi.org/10.1306/8626c7ad-173b-11d7-8645000102c1865d
      Meng, Y.J., ,Chen, H.H., Zhao, Y.C., et al., 2023. Characterization of Architecture of Intraplate Strike-Slip Faults in Yanchang Formation of the Jinghe Oilfield in Southern Ordos Basin. Earth Science, 48(6): 2281-2293(in Chinese with English abstract).
      Müller, W., 2003. Strengthening the Link between Geochronology, Textures and Petrology. Earth and Planetary Science Letters, 206(3-4): 237-251. https://doi.org/10.1016/s0012-821x(02)01007-5
      Neng, Y.A., Li, Y., Qi, J.F., et al., 2022. Deformation Styles and Multi-Stage Evolution History of a Large Intraplate Strike-Slip Fault System in a Paleozoic Superimposed Basin: A Case Study from the Tarim Basin, NW China. Frontiers in Earth Science, 10: 837354. https://doi.org/10.3389/feart.2022.837354
      Pan, J., Liu, Z.Q., Pu, R.H., et al., 2017. Fault Characteristics and Oil-Controlling Effects in Zhenyuan-Jingchuan District, Southwestern Ordos Basin. Oil Geophysical Prospecting, 52(2): 360-370, 196(in Chinese with English abstract).
      Peacock, D.C.P., Anderson, M.W., 2012. The Scaling of Pull-aparts and Implications for Fluid Flow in Areas with Strike-Slip Faults. Journal of Petroleum Geology, 35(4): 389-399. https://doi.org/10.1111/j.1747-5457.2012.00537.x
      Peacock, D.C.P., Dimmen, V., Rotevatn, A., et al., 2017. A Broader Classification of Damage Zones. Journal of Structural Geology, 102: 179-192. https://doi.org/10.1016/j.jsg.2017.08.004
      Ping, H.W., Chen, H.H., Song, G.Q., et al., 2012. Contributions Degree of Petroleum Charging to Oil and Gas Accumulation and Its Significance. Earth Science, 37(1): 163-170(in Chinese with English abstract).
      Pollard, D.D., Segall, P., 1987. Theoretical Displacements and Stresses near Fractures in Rock: With Applications to Faults, Joints, Veins, Dikes, and Solution Surfaces. Fracture Mechanics of Rock. Elsevier, Amsterdam, 277-349. https://doi.org/10.1016/b978-0-12-066266-1.50013-2
      Qi, J.F., Li, X.G., Yu, F.S., et al., 2013. Cenozoic Structural Deformation and Expression of the "Tan-Lu Fault Zone" in the West Sag of Liaohe Depression, Bohaiwan Basin Province, China. Science China Earth Sciences, 56(10): 1707-1721. https://doi.org/10.1007/s11430-013-4617-2
      Qi, J.F., Xia, Y.P., Yang, Q., 2006. Structural Analysis of Oil Region. Petroleum Industry Press, Beijing(in Chinese).
      Qi, L.X., 2016. Oil and Gas Breakthrough in Ultra-Deep Ordovician Carbonate Formations in Shuntuoguole Uplift, Tarim Basin. China Petroleum Exploration, 21(3): 38-51(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2016.03.004
      Qi, L.X., Yun, L., Cao, Z.C., et al., 2021. Geological Reserves Assessment and Petroleum Exploration Targets in Shunbei Oil & Gas Field. Xinjiang Petroleum Geology, 42(2): 127-135(in Chinese with English abstract).
      Rostirolla, S.P., Mancini, F., Rigoti, A., et al., 2003. Structural Styles of the Intracratonic Reactivation of the Perimbó Fault Zone, Paraná Basin, Brazil. Journal of South American Earth Sciences, 16(4): 287-300. https://doi.org/10.1016/s0895-9811(03)00065-8
      Roy, M., Royden, L.H., 2000. Crustal Rheology and Faulting at Strike-Slip Plate Boundaries: 2. Effects of Lower Crustal Flow. Journal of Geophysical Research: Solid Earth, 105(B3): 5599-5613. https://doi.org/10.1029/1999JB900340
      Schröckenfuchs, T., Bauer, H., Grasemann, B., et al., 2015. Rock Pulverization and Localization of a Strike-Slip Fault Zone in Dolomite Rocks (Salzach-Ennstal-Mariazell-Puchberg Fault, Austria). Journal of Structural Geology, 78: 67-85. https://doi.org/10.1016/j.jsg.2015.06.009
      Shan, J.Z., 1996. Application of Structural Simulation to Petroleum Geology. Petroleum Industry Press, Beijing(in Chinese).
      Shen, Z.Y., Neng, Y., Han, J., et al., 2022. Structural Styles and Linkage Evolution in the Middle Segment of a Strike-Slip Fault: A Case from the Tarim Basin, NW China. Journal of Structural Geology, 157: 104558. https://doi.org/10.1016/j.jsg.2022.104558
      Song, G., Li, H.Y., Ye, N., et al., 2022. Types and Features of Diagenetic Fluids in Shunbei No. 4 Strike-Slip Fault Zone in Shuntuoguole Low Uplift, Tarim Basin. Petroleum Geology & Experiment, 44(4): 603-612(in Chinese with English abstract).
      Song, H.L., 1996. Oblique Sliding and Strike-Slip Transform Structures. Geological Science and Technology Information, 15(4): 33-38(in Chinese with English abstract).
      Spotila, J.A., Farley, K.A., Sieh, K., 1998. Uplift and Erosion of the San Bernardino Mountains Associated with Transpression along the San Andreas Fault, California, as Constrained by Radiogenic Helium Thermochronometry. Tectonics, 17(3): 360-378. https://doi.org/10.1029/98TC00378
      Swanson, M.T., 2005. Geometry and Kinematics of Adhesive Wear in Brittle Strike-Slip Fault Zones. Journal of Structural Geology, 27(5): 871-887. https://doi.org/10.1016/j.jsg.2004.11.009
      Sylvester, A.G., 1988. Strike-Slip Faults. Geological Society of America Bulletin, 100(11): 1666-1703. https://doi.org/10.1130/0016-7606(1988)1001666:ssf>2.3.co;2 doi: 10.1130/0016-7606(1988)1001666:ssf>2.3.co;2
      Tang, L.J., 1992. A Discussion on the Relation between Strike-Slip Fault Belts and Hydrocarbon Accumulation in Tarim Basin. Earth Science, 17(4): 403-410(in Chinese with English abstract).
      Tang, Z.Y., 1989. Reservoirs of Carbonate Rock. In: Petroleum Geology Writing Group of Sichuan Hydrocarbon Province, ed., Petroleum Geology of China (Vol. 10). Petroleum Industry Press, Beijing, 151-205(in Chinese).
      Thomas, P.C., Tajeddine, R., Tiscareno, M.S., et al., 2016. Enceladus's Measured Physical Libration Requires a Global Subsurface Ocean. Icarus, 264: 37-47. https://doi.org/10.1016/j.icarus.2015.08.037
      Tikoff, B., Teyssier, C., 1994. Strain Modeling of Displacement-Field Partitioning in Transpressional Orogens. Journal of Structural Geology, 16(11): 1575-1588. https://doi.org/10.1016/0191-8141(94)90034-5
      Timurziev, A.I., Gogonenkov, G.N., 2015. Translated by Qiu, W.T., Lei, X.Z. . 100% Success Rate of Oil and Gas Well Drilling in Russia. Leisure Reading (The World), (2): 157-161 (in Chinese).
      Tondi, E., Rustichelli, A., Cilona, A., et al., 2016. Hydraulic Properties of Fault Zones in Porous Carbonates, Examples from Central and Southern Italy. Italian Journal of Geosciences, 135(1): 68-79. https://doi.org/10.3301/ijg.2015.08
      Tveranger, J., Braathen, A., Skar, T., et al., 2005. Center for Integrated Petroleum Research-Research Activities with Emphasis on Fluid Flow in Fault Zones. Norwegian Journal of Geology, 85: 63-72.
      Wang, Q.H., Yang, H.J., Li, Y., et al., 2022. Control of Strike-Slip Fault on the Large Carbonate Reservoir in Fuman, Tarim Basin—A Reservoir Model. Earth Science Frontiers, 29(6): 239-251(in Chinese with English abstract).
      Wang, Q.H., Yang, H.J., Wang, R.J., et al., 2021. Discovery and Exploration Technology of Fault-Controlled Large Oil and Gas Fields of Ultra-Deep Formation in Strike Slip Fault Zone in Tarim Basin. China Petroleum Exploration, 26(4): 58-71(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2021.04.005
      Wang, W., Fan, R., 2019. Characteristics of Xujiahe Formation Fault-Fracture Reservoirs in the Northern Sichuan Basin and Its Exploration Significance. Journal of Chengdu University of Technology (Science & Technology Edition), 46(5): 541-548(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2019.05.04
      Wang, X.P., Xie, D.Y., 1989. Finding Flower Structures in China's Oil and Gas Bearing Basins and Its Significance in Petroleum Geology. Geological Science and Technology Information, 8(2): 59-66(in Chinese with English abstract).
      Wang, X.Z., Mu, S.G., Huang, J.X., et al., 1998. The Traps of the Dengying Formation Reserviors in Ziyang of Sichuan. China Offshore Oil and Gas, 10(6): 386-389(in Chinese with English abstract).
      Wang, Y.W., 2019. Multiple Originanl Mechanisms of the Ordovician Reservoir and Their Control on Hydrocarbon Charging in Shuntuoguole Area, Tarim Basin (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Wang, Y.W., Chen, H.H., Guo, H.F., et al., 2019. Hydrocarbon Charging History of the Ultra-Deep Reservoir in Shun 1 Strike-Slip Fault Zone, Tarim Basin. Oil & Gas Geology, 40(5): 972-989(in Chinese with English abstract).
      Watterson, J., 1986. Fault Dimensions, Displacements and Growth. Pure and Applied Geophysics, 124(1): 365-373. https://doi.org/10.1007/bf00875732
      Wen, L., Ran, Q., Tian, W.Z., et al., 2022. Strike-Slip Fault Effects on Diversity of the Ediacaran Mound-Shoal Distribution in the Central Sichuan Intracratonic Basin, China. Energies, 15(16): 5910. https://doi.org/10.3390/en15165910
      Wilcox, R.E., Harding, T.P., Seely, D.R., 1973. Basic Wrench Tectonics. AAPG Bulletin, 57: 74-96. https://doi.org/10.1306/819a424a-16c5-11d7-8645000102c1865d
      Wittlinger, G., Tapponnier, P., Poupinet, G., et al., 1998. Tomographic Evidence for Localized Lithospheric Shear along the Altyn Tagh Fault. Science, 282(5386): 74-76. https://doi.org/10.1126/science.282.5386.74
      Woodcock, N.H., 1986. The Role of Strike-Slip Fault Systems at Plate Boundaries. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 317(1539): 13-29. https://doi.org/10.1098/rsta.1986.0021
      Woodcock, N.H., Fischer, M., 1986. Strike-Slip Duplexes. Journal of Structural Geology, 8(7): 725-735. https://doi.org/10.1016/0191-8141(86)90021-0
      Wu, G.H., Cheng, L.F., Liu, Y.K., et al., 2011. Strike-Slip Fault System of the Cambrian-Ordovician and Its Oil-Controlling Effect in Tarim Basin. Xinjiang Petroleum Geology, 32(3): 239-243(in Chinese with English abstract).
      Wu, G.H., Ma, B.S., Han, J.F., et al., 2021. Origin and Growth Mechanisms of Strike-Slip Faults in the Central Tarim Cratonic Basin, NW China. Petroleum Exploration and Development, 48(3): 510-520(in Chinese with English abstract).
      Wu, H.W., Zhang, L.S., Ji, S.C., 1989. The Red River-Ailaoshan Fault Zone: A Himalayan Large Sinistral Strike-Slip Intracontinental Shear Zone. Chinese Journal of Geology, 24(1): 1-8, 109(in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.1989.01.001
      Wu, M.L., Liu, Y.F., Peng, P., et al., 2021. Characteristics of Strike-Slip Faults in Lunnan Buried Hill and Its Influence on Hydrocarbon Accumulation. Fault-Block Oil & Gas Field, 28(4): 456-462(in Chinese with English abstract).
      Xia, Y.P., Liu, W.H., Xu, L.G., et al., 2007. Identification of Strike-Slip Fault and Its Petroleum Geology Significance. China Petroleum Exploration, 12(1): 17-23, 48, 92(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2007.01.004
      Xu, H.M., Xu, Z.H., Li, Z.H., et al., 2008. Characteristics of Strike-Slip Faults in the Northwestern Margin of Junggar Basin and Their Geological Significance for Petroleum. Geological Journal of China Universities, 14(2): 217-222(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2008.02.011
      Xu, J.W., 1995. Some Major Problems on Strike-Slip Faulting. Earth Science Frontiers, 2(2): 125-136(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1995.02.015
      Xu, Z.Q., Zeng, L.S., Yang, J.S., et al., 2004. Role of Large-Scale Strike-Slip Faults in the Formation of Petroleum-Bearing Compressional Basin-Mountain Range Systems. Earth Science, 29(6): 631-643(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2004.06.001
      Yang, K., Sun, T.J., Wang, T.Y., et al., 2020. Application of Fault Shape Index Attribution to the Identification of Sub-Seismic Faults. In: The Album of International Geophysical Conference Sponsored by SPG/SEG in 2020, Nanjing, 746-949(in Chinese).
      Yin, A., Taylor, M.H., 2011. Mechanics of V-Shaped Conjugate Strike-Slip Faults and the Corresponding Continuum Mode of Continental Deformation. Geological Society of America Bulletin, 123(9-10): 1798-1821. https://doi.org/10.1130/b30159.1
      Yin, A., Zuza, A.V., Pappalardo, R.T., 2016. Mechanics of Evenly Spaced Strike-Slip Faults and Its Implications for the Formation of Tiger-Stripe Fractures on Saturn's Moon Enceladus. Icarus, 266: 204-216. https://doi.org/10.1016/j.icarus.2015.10.027
      Yu, J.X., Shi, K.B., Wang, Q.Q., et al., 2022. Structural Diagenesis of Deep Carbonate Rocks Controlled by Intra-Cratonic Strike-Slip Faulting: An Example in the Shunbei Area of the Tarim Basin, NW China. Basin Research, 34(5): 1601-1631. https://doi.org/10.1111/bre.12672
      Yule, D., Sieh, K., 2003. Complexities of the San Andreas Fault near San Gorgonio Pass: Implications for Large Earthquakes. Journal of Geophysical Research: Solid Earth, 108(B11): 2548. https://doi.org/10.1029/2001jb000451
      Yun, L., Deng, S., 2022. Structural Styles of Deep Strike-Slip Faults in Tarim Basin and the Characteristics of Their Control on Reservoir Formation and Hydrocarbon Accumulation: A Case Study of Shunbei Oil and Gas Field. Acta Petrolei Sinica, 43(6): 770-787(in Chinese with English abstract).
      Zhang, C.Z., Yu, H.F., Zhang, H.Z., et al., 2008. Characteristic, Genesis and Geologic Meaning of Strike-Slip Fault System in Tazhong Area. Journal of Southwest Petroleum University (Science & Technology Edition), 30(5): 22-26(in Chinese with English abstract). doi: 10.3863/j.issn.1000-2634.2008.05.005
      Zhang, J.X., Xu, Z.Q., Cui, J.W., 1998. Deformation Partitioning of Ductile Transpressional Zones: An Example from the Eastern Segment of the Altun Fault Zone. Geological Review, 44(4): 348-356(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.1998.04.003
      Zhang, W.Y., 1992. Anthology of Zhang Wenyou. Science Press, Beijing(in Chinese).
      Zhang, Y., Cao, Z.C., Chen, H.H., et al., 2023. The Difference of Hydrocarbon Charging Events and Their Contribution Percentages to the Ordovician Reservoirs among the Strike-Slip Fault Belts in Shunbei Area, Tarim Basin. Earth Science, 48(6): 2168-2188(in Chinese with English abstract).
      Zhang, Z.P., Kang, Y., Lin, H.X., et al., 2021. A Study on the Reservoir Controlling Characteristics and Mechanism of the Strike Slip Faults in the Northern Slope of Tazhong Uplift, Tarim Basin, China. Arabian Journal of Geosciences, 14(8): 1-18. https://doi.org/10.1007/s12517-021-07076-5
      Zhang, Z.T., 1985. Geological Characteristic of Altyn-Tagh Fault. Journal of Xi'an Geology and Earth Resource Research Institute, Chinese Academy of Geological Sciences, (9): 20-34(in Chinese).
      Zhao, R., Zhao, T., Li, H.L., et al., 2019. Fault-Controlled Fracture-Cavity Reservoir Characterization and Main-Controlling Factors in the Shunbei Hydrocarbon Field of Tarim Basin. Special Oil & Gas Reservoirs, 26(5): 8-13(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2019.05.002
      Zheng, H.R., Hu, Z.Q., Yun, L., et al., 2022. Strike-Slip Faults in Marine Cratonic Basins in China: Development Characteristics and Controls on Hydrocarbon Accumulation. Earth Science Frontiers, 29(6): 224-238(in Chinese with English abstract).
      Zhong, J.Y., Shan, J.Z., Wang, Z.Z., 1982. The Experimental Study of the Formation of Graben. Chinese Journal of Geology, 17(2): 171-178, 239(in Chinese with English abstract).
      Zhou, X.P., Guo, Y.Z., Zhang, Y.X., 2005. Influence of Intermediate Principal Stress on Mutual Relation of Different-Order Stress Fields and Fault Structure Tracks in Conjugate Strike-Slip Faulting. Chinese Journal of Geology, 40(3): 319-327(in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2005.03.002
      Zhou, X.Y., Lü, X.X., Yang, H.J., et al., 2013. Effects of Strike-Slip Faults on the Differential Enrichment of Hydrocarbons in the Northern Slope of Tazhong Area. Acta Petrolei Sinica, 34(4): 628-637(in Chinese with English abstract).
      Zhu, G.Y., Ren, R., Chen, F.R., et al., 2017. Neoproterozoic Rift Basins and Their Control on the Development of Hydrocarbon Source Rocks in the Tarim Basin, NW China. Journal of Asian Earth Sciences, 150: 63-72. https://doi.org/10.1016/j.jseaes.2017.09.018
      Zhu, H.T., Zhu, X., Chen, H.H., 2017. Seismic Characterization of Hypogenic Karst Systems Associated with Deep Hydrothermal Fluids in the Middle-Lower Ordovician Yingshan Formation of the Shunnan Area, Tarim Basin, NW China. Geofluids, 2017: 1-13. https://doi.org/10.1155/2017/8094125
      Zhu, L.P., 2000. Crustal Structure across the San Andreas Fault, Southern California from Teleseismic Converted Waves. Earth and Planetary Science Letters, 179(1): 183-190. https://doi.org/10.1016/s0012-821x(00)00101-1
      Zhu, X., Zhu, H.T., Chen, H.H., et al., 2016. Characterization of Hypogenic Karst Systems in the Middle-Lower Ordovician of Shunnan Area, Tarim Basin. Oil & Gas Geology, 37(5): 653-662(in Chinese with English abstract).
      Zhu, Y.F., Zhang, Y.T., Zhao, X.X., et al., 2022. The Fault Effects on the Oil Migration in the Ultra-Deep Fuman Oilfield of the Tarim Basin, NW China. Energies, 15(16): 5789. https://doi.org/10.3390/en15165789
      Zhu, Z.C., Song, H.L., 1990. Geotectonics. China University of Geosciences Press, Wuhan(in Chinese).
      Zuza, A.V., Yin, A., Lin, J., et al., 2017. Spacing and Strength of Active Continental Strike-Slip Faults. Earth and Planetary Science Letters, 457: 49-62. https://doi.org/10.1016/j.epsl.2016.09.041
      А. И. 齐穆尔基耶夫, Γ. Γ. 戈戈宁科夫, 2015, 裘慰庭, 雷学忠, 译. 俄罗斯油气井钻探成功率100%的案例. 休闲读品(天下), (2): 157-161.
      Белkин, B. И., Медведский, Р. И., 1989. 朱起煌, 译. 脉型油气圈闭. 地质科技情报, 8(2): 83-88.
      陈红汉, 2007. 油气成藏年代学研究进展. 石油与天然气地质, 28(2): 143-150. doi: 10.3321/j.issn:0253-9985.2007.02.003
      陈红汉, 鲁子野, 曹自成, 等, 2016a. 塔里木盆地塔中地区北坡奥陶系热液蚀变作用. 石油学报, 37(1): 43-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601005.htm
      陈红汉, 吴悠, 朱红涛, 等, 2016b. 塔中地区北坡中—下奥陶统早成岩岩溶作用及储层形成模式. 石油学报, 37(10): 1231-1246. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201610003.htm
      陈丕基, 1988. 郯庐断裂巨大平移的时代与格局. 科学通报, 33(4): 289-293. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198804013.htm
      代树红, 马胜利, 潘一山, 等, 2006. 隐伏走滑断层破裂扩展特征的实验研究. 地震地质, 28(4): 635-645. doi: 10.3969/j.issn.0253-4967.2006.04.011
      邓起东, 张维岐, 张培震, 等, 1989. 海原走滑断裂带及其尾端挤压构造. 地震地质, 11(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198901000.htm
      邓尚, 李慧莉, 张仲培, 等, 2018. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系. 石油与天然气地质, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm
      邓兴梁, 闫婷, 张银涛, 等, 2021. 走滑断裂断控碳酸盐岩油气藏的特征与井位部署思路: 以塔里木盆地为例. 天然气工业, 41(3): 21-29. doi: 10.3787/j.issn.1000-0976.2021.03.003
      董顺利, 李忠, 高剑, 等, 2013. 阿尔金—祁连—昆仑造山带早古生代构造格架及结晶岩年代学研究进展. 地质论评, 59(4): 731-746. doi: 10.3969/j.issn.0371-5736.2013.04.012
      范秋海, 吕修祥, 李伯华, 2008. 走滑构造与油气成藏. 西南石油大学学报(自然科学版), 30(6): 76-80, 209. doi: 10.3863/j.issn.1000-2634.2008.06.018
      冯保周, 于长录, 何太洪, 等, 2022. 鄂尔多斯盆地伊陕斜坡北部断裂体系的发现及地质意义. 西安石油大学学报(自然科学版), 37(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY202202001.htm
      谷溪, 1999. 与背斜圈闭和断层圈闭不同的储渗体圈闭. 海相油气地质, 4(1): 7. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ199901003.htm
      管树巍, 梁瀚, 姜华, 等, 2022. 四川盆地中部主干走滑断裂带及伴生构造特征与演化. 地学前缘, 29(6): 252-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202206017.htm
      管树巍, 吴林, 任荣, 等, 2017. 中国主要克拉通前寒武纪裂谷分布与油气勘探前景. 石油学报, 38(1): 9-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701002.htm
      何发岐, 梁承春, 陆骋, 等, 2020. 鄂尔多斯盆地南缘过渡带致密-低渗油藏断缝体的识别与描述. 石油与天然气地质, 41(4): 710-718. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004006.htm
      侯建军, 刘锡大, 游象照, 等, 1993. 桂西活动走滑断裂系的地表变形组合特征及其与地震活动的关系. 地震学报, 15(1): 119-122, 131. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB199301017.htm
      黄诚, 云露, 曹自成, 等, 2022. 塔里木盆地顺北地区中-下奥陶统"断控" 缝洞系统划分与形成机制. 石油与天然气地质, 43(1): 54-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202201004.htm
      黄汲清, 1984. 中国大地构造特征的新研究. 中国地质科学院院报, 5(2): 5-18, 268. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB198402001.htm
      黄继祥, 朱仕军, 曾伟, 等, 1996. 川中—川南过渡带上三叠统天然气聚集的储渗体圈闭模型. 天然气工业, 16(3): 5-8, 11. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG199603003.htm
      黄雷, 刘池洋, 何发岐, 等, 2022. 克拉通盆地内断裂走滑变形特征. 西北大学学报(自然科学版), 52(6): 930-942. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202206003.htm
      黄少英, 宋兴国, 罗彩明, 等, 2021. 塔北隆起X型走滑断裂成因机制的新解释. 现代地质, 35(6): 1797-1808, 1829. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202106025.htm
      贾承造, 马德波, 袁敬一, 等, 2021. 塔里木盆地走滑断裂构造特征、形成演化与成因机制. 天然气工业, 41(8): 81-91. doi: 10.3787/j.issn.1000-0976.2021.08.008
      姜波, 徐嘉炜, 1989. 一个中生代的拉分盆地: 宁芜盆地的形成及演化. 地质科学, 24(4): 314-322. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198904003.htm
      焦存礼, 何碧竹, 王天宇, 等, 2018. 顺托果勒奥陶系一间房组超深层灰岩储层类型及储集空间定量表征. 岩石学报, 34(6): 1835-1846. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201806019.htm
      焦方正, 2017. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义. 石油与天然气地质, 38(5): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705001.htm
      焦方正, 杨雨, 冉崎, 等, 2021. 四川盆地中部地区走滑断层的分布与天然气勘探. 天然气工业, 41(8): 92-101. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108013.htm
      李国会, 李世银, 李会元, 等, 2021. 塔里木盆地中部走滑断裂系统分布格局及其成因. 天然气工业, 41(3): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202103005.htm
      李海英, 刘军, 龚伟, 等, 2020. 顺北地区走滑断裂与断溶体圈闭识别描述技术. 中国石油勘探, 25(3): 107-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003010.htm
      李江海, 李维波, 王洪浩, 等, 2013. 晚古生代泛大陆聚合过程中板块碰撞的运动学分析. 地质论评, 59(6): 1047-1059. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201306006.htm
      李培军, 陈红汉, 唐大卿, 等, 2017. 塔里木盆地顺南地区中-下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系. 地球科学, 42(1): 93-104. doi: 10.3799/dqkx.2017.007
      李三忠, 杨朝, 赵淑娟, 等, 2016. 全球早古生代造山带(Ⅳ): 板块重建与Carolina超大陆. 吉林大学学报(地球科学版), 46(4): 1026-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604004.htm
      李树珍, 李相文, 张建伟, 等, 2016. GeoEast软件体曲率属性技术在碳酸盐岩断裂研究中的应用. 石油地质与工程, 30(2): 53-55, 79. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201602015.htm
      李四光, 1962. 地质力学概论. 北京: 科学出版社.
      李宗杰, 杨子川, 李海英, 等, 2020. 顺北沙漠区超深断溶体油气藏三维地震勘探关键技术. 石油物探, 59(2): 283-294. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT202002016.htm
      廖茂辉, 刘军, 龚伟, 等, 2020. 顺北地区断控缝洞型储层反射特征与预测技术探讨. 工程地球物理学报, 17(6): 703-710. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ202006007.htm
      林波, 张旭, 况安鹏, 等, 2021. 塔里木盆地走滑断裂构造变形特征及油气意义: 以顺北地区1号和5号断裂为例. 石油学报, 42(7): 906-923. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107007.htm
      林传勇, 范福田, 1984. 新疆富蕴断裂带的显微构造分析. 地震学刊, 4(2): 1-8, 87. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK198402000.htm
      刘池洋, 王建强, 赵红格, 等, 2015. 沉积盆地类型划分及其相关问题讨论. 地学前缘, 22(3): 1-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201503002.htm
      刘和甫, 李晓清, 刘立群, 等, 2004. 走滑构造体系盆山耦合与区带分析. 现代地质, 18(2): 139-150. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200402000.htm
      刘和甫, 夏义平, 殷进垠, 1999. 走滑造山带与盆地耦合机制. 地学前缘, 6(3): 121-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199903016.htm
      刘军, 任丽丹, 李宗杰, 等, 2017. 塔里木盆地顺南地区深层碳酸盐岩断裂和裂缝地震识别与评价. 石油与天然气地质, 38(4): 703-710. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704007.htm
      刘雨晴, 邓尚, 2022. 板内中小滑移距走滑断裂发育演化特征精细解析: 以塔里木盆地顺北4号走滑断裂为例. 中国矿业大学学报, 51(1): 124-136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202201012.htm
      刘振峰, 刘忠群, 郭元岭, 等, 2021. "断缝体" 概念、地质模式及其在裂缝预测中的应用: 以四川盆地川西坳陷新场地区须家河组二段致密砂岩气藏为例. 石油与天然气地质, 42(4): 973-980. https://xuewen.cnki.net/CCND-GERB202306300011.html
      吕海涛, 张哨楠, 马庆佑, 2017. 塔里木盆地中北部断裂体系划分及形成机制探讨. 石油实验地质, 39(4): 444-452. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201704003.htm
      鲁新便, 胡文革, 汪彦, 等, 2015. 塔河地区碳酸盐岩断溶体油藏特征与开发实践. 石油与天然气地质, 36(3): 347-355. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503003.htm
      罗群, 黄捍东, 庞雄奇, 等, 2004. 自然界可能存在的断层体圈闭. 石油勘探与开发, 31(3): 148-150. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200403041.htm
      罗贤光, 1994. 橡胶中简单剪切与纯剪切的关系. 高分子学报, (4): 385-391. https://www.cnki.com.cn/Article/CJFDTOTAL-GFXB404.000.htm
      罗灼礼, 钱洪, 闻学泽, 1987. 鲜水河断裂与圣安德列斯断层的地震地质对比研究. 四川地震, (4): 1-10, 20. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ198704000.htm
      马德波, 汪泽成, 段书府, 等, 2018. 四川盆地高石梯—磨溪地区走滑断层构造特征与天然气成藏意义. 石油勘探与开发, 45(5): 795-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805006.htm
      马庆佑, 曹自成, 蒋华山, 等, 2020. 塔河—顺北地区走滑断裂带的通源性及其与油气富集的关系. 海相油气地质, 25(4): 327-334. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202004005.htm
      马永生, 何治亮, 赵培荣, 等, 2019. 深层—超深层碳酸盐岩储层形成机理新进展. 石油学报, 40(12): 1415-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201912017.htm
      孟玉净, 陈红汉, 赵彦超, 等, 2023. 鄂尔多斯盆地南部泾河油田延长组板内走滑断裂内部结构刻画. 地球科学, 48(6): 2281-2293.
      潘杰, 刘忠群, 蒲仁海, 等, 2017. 鄂尔多斯盆地镇原—泾川地区断层特征及控油意义. 石油地球物理勘探, 52(2): 360-370, 196. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201702021.htm
      平宏伟, 陈红汉, 宋国奇, 等, 2012. 油气充注成藏贡献度及其意义. 地球科学, 37(1): 163-170. doi: 10.3799/dqkx.2012.016
      漆家福, 夏义平, 杨桥, 2006. 油区构造解析. 北京: 石油工业出版社.
      漆立新, 2016. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义. 中国石油勘探, 21(3): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603004.htm
      漆立新, 云露, 曹自成, 等, 2021. 顺北油气田地质储量评估与油气勘探方向. 新疆石油地质, 42(2): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102001.htm
      单家增, 1996. 构造模拟实验在石油地质学中的应用. 北京: 石油工业出版社.
      宋刚, 李海英, 叶宁, 等, 2022. 塔里木盆地顺托果勒低隆起顺北4号走滑断裂带成岩流体类型及活动特征. 石油实验地质, 44(4): 603-612. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202204005.htm
      宋鸿林, 1996. 斜向滑动与走滑转换构造. 地质科技情报, 15(4): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ604.007.htm
      汤良杰, 1992. 塔里木盆地走滑断裂带与油气聚集关系的探讨. 地球科学, 17(4): 403-410. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199204005.htm
      唐泽尧. 1989. 碳酸盐岩储集层[M]. 见: 四川油气区石油地质编写组. 中国石油地质志(卷十). 北京: 石油工业出版社, 151-205.
      王清华, 杨海军, 李勇, 等, 2022. 塔里木盆地富满大型碳酸盐岩油气聚集区走滑断裂控储模式. 地学前缘, 29(6): 239-251. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202206016.htm
      王清华, 杨海军, 汪如军, 等, 2021. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新. 中国石油勘探, 26(4): 58-71. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202104005.htm
      王威, 凡睿, 2019. 四川盆地北部须家河组"断缝体"气藏特征及勘探意义. 成都理工大学学报(自然科学版), 46(5): 541-548. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201905004.htm
      王燮培, 谢德宜, 1989. 中国含油气盆地中花状构造的发现及其石油地质意义. 地质科技情报, 8(2): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ198902013.htm
      王兴志, 穆曙光, 黄继祥, 等, 1998. 四川资阳地区灯影组气藏储渗体圈闭类型. 中国海上油气地质, 10(6): 386-389. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199806006.htm
      王玉伟, 2019. 顺托果勒地区奥陶系储层多成因形成机制及对油气充注的控制作用(博士学位论文). 武汉: 中国地质大学.
      王玉伟, 陈红汉, 郭会芳, 等, 2019. 塔里木盆地顺1走滑断裂带超深储层油气充注历史. 石油与天然气地质, 40(5): 972-989. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905003.htm
      邬光辉, 成丽芳, 刘玉魁, 等, 2011. 塔里木盆地寒武-奥陶系走滑断裂系统特征及其控油作用. 新疆石油地质, 32(3): 239-243. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201103008.htm
      邬光辉, 马兵山, 韩剑发, 等, 2021. 塔里木克拉通盆地中部走滑断裂形成与发育机制. 石油勘探与开发, 48(3): 510-520. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103008.htm
      吴海威, 张连生, 嵇少丞, 1989. 红河-哀牢山断裂带: 喜山期陆内大型左行走滑剪切带. 地质科学, 24(1): 1-8, 109. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198901000.htm
      吴梅莲, 刘永福, 彭鹏, 等, 2021. 轮南古潜山走滑断裂特征及其对油气成藏的影响. 断块油气田, 28(4): 456-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104006.htm
      夏义平, 刘万辉, 徐礼贵, 等, 2007. 走滑断层的识别标志及其石油地质意义. 中国石油勘探, 12(1): 17-23, 48, 92. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY200701004.htm
      徐怀民, 徐朝晖, 李震华, 等, 2008. 准噶尔盆地西北缘走滑断层特征及油气地质意义. 高校地质学报, 14(2): 217-222. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200802011.htm
      徐嘉炜, 1995. 论走滑断层作用的几个主要问题. 地学前缘, 2(2): 125-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY502.000.htm
      许志琴, 曾令森, 杨经绥, 等, 2004. 走滑断裂、"挤压性盆-山构造" 与油气资源关系的探讨. 地球科学, 29(6): 631-643. http://www.earth-science.net/article/id/1464
      杨珂, 孙铁军, 王田野, 等, 2020. 断层形态指数属性在小断层识别中的应用. 南京: SPG/SEG南京2020年国际地球物理会议, 746-949.
      云露, 邓尚, 2022. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例. 石油学报, 43(6): 770-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206003.htm
      张承泽, 于红枫, 张海祖, 等, 2008. 塔中地区走滑断裂特征、成因及地质意义. 西南石油大学学报, 30(5): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY200805008.htm
      张建新, 许志琴, 崔军文, 1998. 一个韧性转换挤压带的变形分解作用: 以阿尔金断裂带东段为例. 地质论评, 44(4): 348-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804002.htm
      张文佑, 1992. 张文佑文集. 北京: 科学出版社.
      张钰, 曹自成, 陈红汉, 等, 2023. 顺北地区不同走滑断裂带奥陶系油气成藏期次及其贡献度差异性. 地球科学, 48(6): 2168-2188.
      张治洮, 1985. 阿尔金断裂的地质特征. 中国地质科学院西安地质矿产研究所所刊, (9): 20-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202102003.htm
      赵锐, 赵腾, 李慧莉, 等, 2019. 塔里木盆地顺北油气田断控缝洞型储层特征与主控因素. 特种油气藏, 26(5): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201905002.htm
      郑和荣, 胡宗全, 云露, 等, 2022. 中国海相克拉通盆地内部走滑断裂发育特征及控藏作用. 地学前缘, 29(6): 224-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202206015.htm
      钟嘉猷, 单家增, 王在中, 1982. 地堑成因的实验研究. 地质科学, 17(2): 171-178, 239. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198202006.htm
      周小平, 郭映忠, 张永兴, 2005. 中间主应力对共轭平移断层中各序次应力场和断裂等构造形迹相互关系的影响. 地质科学, 40(3): 319-327. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200503001.htm
      周新源, 吕修祥, 杨海军, 等, 2013. 塔中北斜坡走滑断裂对碳酸盐岩油气差异富集的影响. 石油学报, 34(4): 628-637. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201304002.htm
      朱秀, 朱红涛, 陈红汉, 等, 2016. 塔里木盆地顺南地区中-下奥陶统深成岩溶特征. 石油与天然气地质, 37(5): 653-662. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201605006.htm
      朱志澄, 宋鸿林, 1990. 构造地质学. 武汉: 中国地质大学出版社.
    • 加载中
    图(16)
    计量
    • 文章访问数:  1228
    • HTML全文浏览量:  1189
    • PDF下载量:  319
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-11-30
    • 刊出日期:  2023-06-25

    目录

      /

      返回文章
      返回