• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川中海相碳酸盐岩层系小型走滑断裂地震识别

    马峰 汪泽成 雷明 付小东 文龙 刘雄志 李文正 周刚

    马峰, 汪泽成, 雷明, 付小东, 文龙, 刘雄志, 李文正, 周刚, 2023. 川中海相碳酸盐岩层系小型走滑断裂地震识别. 地球科学, 48(6): 2204-2220. doi: 10.3799/dqkx.2023.108
    引用本文: 马峰, 汪泽成, 雷明, 付小东, 文龙, 刘雄志, 李文正, 周刚, 2023. 川中海相碳酸盐岩层系小型走滑断裂地震识别. 地球科学, 48(6): 2204-2220. doi: 10.3799/dqkx.2023.108
    Ma Feng, Wang Zecheng, Lei Ming, Fu Xiaodong, Wen Long, Liu Xiongzhi, Li Wenzheng, Zhou Gang, 2023. Seismic Identification of Small Strike-Slip Faults in Marine Carbonate Strata in Paleouplift Area of Central Sichuan Basin. Earth Science, 48(6): 2204-2220. doi: 10.3799/dqkx.2023.108
    Citation: Ma Feng, Wang Zecheng, Lei Ming, Fu Xiaodong, Wen Long, Liu Xiongzhi, Li Wenzheng, Zhou Gang, 2023. Seismic Identification of Small Strike-Slip Faults in Marine Carbonate Strata in Paleouplift Area of Central Sichuan Basin. Earth Science, 48(6): 2204-2220. doi: 10.3799/dqkx.2023.108

    川中海相碳酸盐岩层系小型走滑断裂地震识别

    doi: 10.3799/dqkx.2023.108
    基金项目: 

    “十三•五”国家油气专项 2017ZX05008005

    中国石油天然气股份有限公司重点科技项目 2018A⁃0105

    基础性与前瞻性项目 2021DJ1503

    详细信息
      作者简介:

      马峰(1981-),男,高级工程师,主要从事勘探部署综合评价和科技管理工作.ORCID:0009-0009-4581-2954.E-mail:mafemg@petrochina.com.cn

      通讯作者:

      文龙, 高级工程师, ORCID:0000-0002-2897-3723.E-mail:wenlong@petrochina.com.cn

    • 中图分类号: P631.4

    Seismic Identification of Small Strike-Slip Faults in Marine Carbonate Strata in Paleouplift Area of Central Sichuan Basin

    • 摘要: 针对四川盆地川中古隆起高磨三维区震旦系-古生界二叠系海相碳酸盐岩层系不同尺度的断裂,特别是小型走滑断裂在地震资料上难以识别和解释的难点,利用地震数据及其属性携带的断裂结构信息、不连续性变化信息、裂缝带信息,优选应用构造导向滤波技术、本征值相干技术、分频相干与分方位相干技术、最大正/负曲率属性技术、蚂蚁体技术、最大似然断裂识别技术、PADD(poststack amplitude direction decomposition,叠后振幅方位分解)技术,分层系、分方位、分尺度逐级精细识别和描述了地震波同相轴错断型断裂、同相轴挠曲型断裂、裂缝型微小断裂,以及岩溶塌陷体,并应用成像测井裂缝信息定性验证不同尺度断裂方位和断裂密度,井震吻合效果好.集成形成“三分八步”逐级控制下的断裂地震识别技术方法系列.并根据地质模型和断裂模式判别了走滑断裂,进行了分级,总结了川中高磨区6种走滑断裂构造样式.

       

    • 图  1  研究区位置简图与南北向典型地震剖面

      Fig.  1.  Location diagram of the study area and typical north⁃south seismic profile

      图  2  “三分八步”逐级控制断裂地震识别技术方法和流程

      Fig.  2.  "Three classification and eight steps" gradually controlled fault seismic identification technology method and process

      图  3  构造导向滤波前后地震剖面对比图(Line1740)

      Fig.  3.  Comparison diagrams of seismic profiles before and after structure⁃oriented filtering (Line1740)

      图  4  分层相干属性沿层平面对比图

      a.Ꞓ1q层,b.Z2dn

      Fig.  4.  Comparison diagrams of coherence attribute along the different horizons

      图  5  分频相干属性剖面对比

      Fig.  5.  Comparison diagrams of frequency decomposition coherence attribute profiles

      图  6  相干属性地震道横向组合模式

      Fig.  6.  Lateral combination modes of seismic traces for coherence attribute

      图  7  分方位相干属性参数优化前(a)与优化后(b)切片显示效果对比

      Fig.  7.  Comparison of slice display effects before (a) and after (b) optimization of azimuth coherence attribute parameters

      图  8  最大负曲率属性识别同相轴挠曲型断裂

      Fig.  8.  Maximum negative curvature attribute identification seismic event flexural fracture

      图  9  蚂蚁体、AI断裂识别属性与相干属性剖面对比

      Fig.  9.  Ant attribute, AI fault identification attribute, and coherent attribute profile comparison

      图  10  地震剖面与最大似然体属性叠合图

      图中的色标表示最大似然结果显示的色标

      Fig.  10.  Seismic profile and maximum likelihood volume attribute overlay map

      图  11  灯影组顶向下5 ms相干增强(a)与最大似然属性(b)对比图

      a图中的色标表示是相干增强属性的色标,b图中的色标表示最大似然结果显示的色标

      Fig.  11.  Comparison of coherence enhancement (a) and maximum likelihood attribute (b) for 5 ms from the top of Z2dn

      图  12  茅口组顶界(P2l)PADD预测结果

      图中的色标表示裂缝发育密度,红色高值表示裂缝密度发育大

      Fig.  12.  Prediction result of PADD at the top of Maokou Formation (P2l)

      图  13  井点成像测井裂缝走向与周围断裂关系

      Fig.  13.  Fracture trend of well point imaging logging and surrounding fracture relationship diagrams

      图  14  井点处预测断裂与成像测井裂缝对比

      Fig.  14.  Comparison of predicted fractures and imaging logging fractures at well points

      图  15  1q (a)和Z2dn (b)断裂平面分布与分级平面图

      Fig.  15.  1q (a) and Z2dn (b) fault plane distribution and classification diagrams

      图  16  川中古隆起地区6种小型走滑断层典型构造样式

      Fig.  16.  Typical structural styles of six small strike⁃slip faults in the central Sichuan paleouplift area

    • Chang, D. K., Yong, X. S., Wang, Y. H., et al., 2021. Seismic Fault Interpretation Based on Deep Convolutional Neural Networks. Oil Geophysical Prospecting, 56(1): 1-8(in Chinese with English abstract).
      Chen, B., Sun, D. S., Zhu, X. M., et al., 2011. Fracture Detection in Volcanic Rocks Using Discrete Frequency Coherency Cubes on Full-Azimuth Seismic Data. Oil Geophysical Prospecting, 46(4): 610-613(in Chinese with English abstract).
      Deng, S., Li, H. L., Zhang, Z. P., et al., 2019. Structural Characterization of Intracratonic Strike-Slip Faults in the Central Tarim Basin. AAPG Bulletin, 103(1): 109-137. https://doi.org/10.1306/06071817354
      Ding, Z. W., Wang, R. J., Chen, F. F., et al., 2020. Origin, Hydrocarbon Accumulation and Oil-Gas Enrichment of Fault-Karst Carbonate Reservoirs: A Case Study of Ordovician Carbonate Reservoirs in South Tahe Area of Halahatang Oilfield, Tarim Basin. Petroleum Exploration and Development, 47(2): 286-296(in Chinese with English abstract).
      Duan, J. B., Mei, Q. H., Li, B. S., et al., 2019. Sinian-Early Cambrian Tectonic-Sedimentary Evolution in Sichuan Basin. Earth Science, 44(3): 738-755(in Chinese with English abstract).
      Guan, S. W., Liang, H., Jiang, H., et al., 2022. Characteristics and Evolution of the Main Strike-Slip Fault Belts of the Central Sichuan Basin, Southwestern China, and Associated Structures. Earth Science Frontiers, 29(6): 252-264(in Chinese with English abstract).
      He, D. F., Li, D. S., Zhang, G. W., et al., 2011. Formation and Evolution of Multi-Cycle Superposed Sichuan Basin, China. Chinese Journal of Geology, 46(3): 589-606(in Chinese with English abstract). doi: 10.3969/j.issn.0563-5020.2011.03.001
      Jia, C. Z., Ma, D. B., Yuan, J. Y., et al., 2021. Structural Characteristics, Formation & Evolution and Genetic Mechanisms of Strike-Slip Faults in the Tarim Basin. Natural Gas Industry, 41(8): 81-91(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.008
      Jiao, F. Z., 2018. Significance and Prospect of Ultra-Deep Carbonate Fault-Karst Reservoirs in Shunbei Area, Tarim Basin. Oil & Gas Geology, 39(2): 207-216(in Chinese with English abstract).
      Jiao, F. Z., Yang, Y., Ran, Q., et al., 2021. Distribution and Gas Exploration of the Strike-Slip Faults in the Central Sichuan Basin. Natural Gas Industry, 41(8): 92-101(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.009
      Lei, M., Chen, G. P., Zeng, Y. J., et al., 2018. Efficient and Fine Seismic Structure Interpretation in Wuerxun Depression and Beier Depression. Oil Geophysical Prospecting, 53(Suppl. 1): 219-227(in Chinese with English abstract).
      Li, N., Wang, L. Y., Huang, S. B., et al., 2019.3D Seismic Fine Structural Interpretation in Complex Fault Zones Based on the High-Definition Ant-Tracking Attribute Volume. Oil Geophysical Prospecting, 54(1): 182-190(in Chinese with English abstract).
      Li, W., Yi, H. Y., Hu, W. S., et al., 2014. Tectonic Evolution of Caledonian Paleohigh in the Sichuan Basin and Its Relationship with Hydrocarbon Accumulation. Natural Gas Industry, 34(3): 8-15(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2014.03.002
      Liu, Y., Wang, D., Liu, C., et al., 2014. Structure-Oriented Filtering and Fault Detection Based on Nonstationary Similarity. Chinese Journal of Geophysics, 57(4): 1177-1187(in Chinese with English abstract).
      Ma, D. B., Wang, Z. C., Duan, S. F., et al., 2018. Strike-Slip Faults and Their Significance for Hydrocarbon Accumulation in Gaoshiti-Moxi Area, Sichuan Basin, SW China. Petroleum Exploration and Development, 45(5): 795-805(in Chinese with English abstract).
      Ma, D. B., Wu, G. H., Zhu, Y. F., et al., 2019. Segmentation Characteristics of Deep Strike Slip Faults in the Tarim Basin and Its Control on Hydrocarbon Enrichment: Taking the Ordovician Strike Slip Fault in the Halahatang Oilfield in the Tabei Area as an Example. Earth Science Frontiers, 26(1): 225-237(in Chinese with English abstract).
      Ma, L. J., Jin, Z. J., 2005. Fine Interpretation of Complex Fault-Block Structure. Oil Geophysical Prospecting, 40(6): 688-692(in Chinese with English abstract). doi: 10.3321/j.issn:1000-7210.2005.06.014
      Ma, N., Yin, X. Y., Zong, Z. Y., et al., 2020. Tectonic Stress Prediction Method Based on Curvature Attribute. Oil Geophysical Prospecting, 55(3): 643-650(in Chinese with English abstract).
      Qiu, Z. H., Zhou, L., Chen, X., et al., 2022. Identification of Strike-Slip Faults in Gaoshiti-Moxi Area of Sichuan Basin. Oil Geophysical Prospecting, 57(3): 647-655(in Chinese with English abstract).
      Su, N., Yang, W., Yuan, B. G., et al., 2021. Structural Features and Deformation Mechanism of Transtensional Faults in Himalayan Period, Sichuan Basin. Earth Science, 46(7): 2362-2378(in Chinese with English abstract).
      Sylvester, A. G., 1988. Strike-Slip Faults. Geological Society of America Bulletin, 100(11): 1666-1703. https://doi.org/10.1130/0016-7606(1988)1001666:ssf>2.3.co;2 doi: 10.1130/0016-7606(1988)1001666:ssf>2.3.co;2
      Wang, H. Q., Yang, W. Y., Xie, C. H., et al., 2014. Azimuthal Anisotropy Analysis of Different Seismic Attributes and Fracture Prediction. Oil Geophysical Prospecting, 49(5): 925-931(in Chinese with English abstract).
      Wang, J. Q., Chen, H. H., Ping H. W., 2022. Can More Abundant Petroleum Reserve be Found in Ultra-Deep Craton Basins in China? Earth Science, 47(10): 3885-3886(in Chinese with English abstract).
      Wang, Z. C., Zhao, W. Z., Li, Z. Y., et al., 2008. Role of Basement Faults in Gas Accumulation of Xujiahe Formation, Sichuan Basin. Petroleum Exploration and Development, 35(5): 541-547(in Chinese with English abstract). doi: 10.1016/S1876-3804(09)60087-2
      Wei, G. Q., Jia, D., Yang, W., et al., 2019. Structural Characteristics and Petroleum in Sichuan Basin. Science Press, Beijing(in Chinese).
      Wu, G. H., Ma, B. S., Han, J. F., et al., 2021. Origin and Growth Mechanisms of Strike-Slip Faults in the Central Tarim Cratonic Basin, NW China. Petroleum Exploration and Development, 48(3): 510-520(in Chinese with English abstract).
      Yang, H. J., Wu, G. H., Han, J. F., et al., 2020. Structural Analysis of Strike-Slip Faults in the Tarim Intracratonic Basin. Chinese Journal of Geology, 55(1): 1-16(in Chinese with English abstract).
      Yang, P., Ding, B. Z., Fan, C., et al., 2017. Distribution Pattern and Origin of the Columnar Pull-down Anomalies in Gaoshiti Block of Central Sichuan Basin, SW China. Petroleum Exploration and Development, 44(3): 370-379(in Chinese with English abstract).
      Yang, T. T., Wang, B., Lü, F. L., et al., 2013. The Application of Seismic Coherence Technology for Petroleum Exploration. Progress in Geophysics, 28(3): 1531-1540(in Chinese with English abstract).
      Zhang, L., He, F., Chen, X. Z., et al., 2020. Quantitative Characterization of Fault Identification Using Likelihood Attribute Based on Dip-Steering Filter Control. Lithologic Reservoirs, 32(2): 108-114(in Chinese with English abstract).
      Zhang, R., Wen, X. T., Li, S. K., et al., 2017. Application of Frequency Division Ant-Tracking in Identifying Deep Minor Fault. Progress in Geophysics, 32(1): 350-356(in Chinese with English abstract).
      Zhen, Z. Y., Zheng, J. F., Sun, J. L., et al., 2020. Fault Identification Method Based on the Maximum Likelihood Attribute and Its Application. Progress in Geophysics, 35(1): 374-378(in Chinese with English abstract).
      Zhou, B. W., Chen, H. H., Yun, L., et al., 2022. The Relationship between Fault Displacement and Damage Zone Width of the Paleozoic Strike-Slip Faults in Shunbei Area, Tarim Basin. Earth Science, 47(2): 437-451(in Chinese with English abstract).
      Zou, C. N., Du, J. H., Xu, C. C., et al., 2014. Formation, Distribution, Resource Potential and Discovery of the Sinian-Cambrian Giant Gas Field, Sichuan Basin, SW China. Petroleum Exploration and Development, 41(3): 278-293(in Chinese with English abstract).
      常德宽, 雍学善, 王一惠, 等, 2021. 基于深度卷积神经网络的地震数据断层识别方法. 石油地球物理勘探, 56(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202101001.htm
      陈波, 孙德胜, 朱筱敏, 等, 2011. 利用地震数据分频相干技术检测火山岩裂缝. 石油地球物理勘探, 46(4): 610-613. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201104021.htm
      丁志文, 汪如军, 陈方方, 等, 2020. 断溶体油气藏成因、成藏及油气富集规律: 以塔里木盆地哈拉哈塘油田塔河南岸地区奥陶系为例. 石油勘探与开发, 47(2): 286-296. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002009.htm
      段金宝, 梅庆华, 李毕松, 等, 2019. 四川盆地震旦纪-早寒武世构造-沉积演化过程. 地球科学, 44(3): 738-755. doi: 10.3799/dqkx.2018.335
      管树巍, 梁瀚, 姜华, 等, 2022. 四川盆地中部主干走滑断裂带及伴生构造特征与演化. 地学前缘, 29(6): 252-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202206017.htm
      何登发, 李德生, 张国伟, 等, 2011. 四川多旋回叠合盆地的形成与演化. 地质科学, 46(3): 589-606. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201103001.htm
      贾承造, 马德波, 袁敬一, 等, 2021. 塔里木盆地走滑断裂构造特征、形成演化与成因机制. 天然气工业, 41(8): 81-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108012.htm
      焦方正, 2018. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景. 石油与天然气地质, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm
      焦方正, 杨雨, 冉崎, 等, 2021. 四川盆地中部地区走滑断层的分布与天然气勘探. 天然气工业, 41(8): 92-101. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108013.htm
      雷明, 陈广坡, 曾永军, 等, 2018. 乌尔逊-贝尔凹陷连片地震高效精细构造解释. 石油地球物理勘探, 53(增刊1): 219-227. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2018S1036.htm
      李楠, 王龙颖, 黄胜兵, 等, 2019. 利用高清蚂蚁体精细解释复杂断裂带. 石油地球物理勘探, 54(1): 182-190. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201901021.htm
      李伟, 易海永, 胡望水, 等, 2014. 四川盆地加里东古隆起构造演化与油气聚集的关系. 天然气工业, 34(3): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403004.htm
      刘洋, 王典, 刘财, 等, 2014. 基于非平稳相似性系数的构造导向滤波及断层检测方法. 地球物理学报, 57(4): 1177-1187. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201404015.htm
      马德波, 汪泽成, 段书府, 等, 2018. 四川盆地高石梯-磨溪地区走滑断层构造特征与天然气成藏意义. 石油勘探与开发, 45(5): 795-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805006.htm
      马德波, 邬光辉, 朱永峰, 等, 2019. 塔里木盆地深层走滑断层分段特征及对油气富集的控制: 以塔北地区哈拉哈塘油田奥陶系走滑断层为例. 地学前缘, 26(1): 225-237. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901022.htm
      马丽娟, 金之钧, 2005. 复杂断块构造的精细解释. 石油地球物理勘探, 40(6): 688-692. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200506014.htm
      马妮, 印兴耀, 宗兆云, 等, 2020. 基于曲率属性的构造应力预测方法. 石油地球物理勘探, 55(3): 643-650. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202003020.htm
      邱泽华, 周路, 陈骁, 等, 2022. 四川盆地高石梯-磨溪地区走滑断层识别. 石油地球物理勘探, 57(3): 647-655. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202203015.htm
      苏楠, 杨威, 苑保国, 等, 2021. 四川盆地喜马拉雅期张扭性断裂构造特征及形成机制. 地球科学, 46(7): 2362-2378. doi: 10.3799/dqkx.2020.202
      王洪求, 杨午阳, 谢春辉, 等, 2014. 不同地震属性的方位各向异性分析及裂缝预测. 石油地球物理勘探, 49(5): 925-931. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201405020.htm
      王君奇, 陈红汉, 平宏伟, 2022. 克拉通盆地超深层还能找得到丰富的油气资源吗? 地球科学, 47(10): 3885-3886. doi: 10.3799/dqkx.2022.850
      汪泽成, 赵文智, 李宗银, 等, 2008. 基底断裂在四川盆地须家河组天然气成藏中的作用. 石油勘探与开发, 35(5): 541-547. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200805005.htm
      魏国齐, 贾东, 杨威, 等. 2019. 四川盆地构造特征与油气. 北京: 科学出版社.
      邬光辉, 马兵山, 韩剑发, 等, 2021. 塔里木克拉通盆地中部走滑断裂形成与发育机制. 石油勘探与开发, 48(3): 510-520. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103008.htm
      杨海军, 邬光辉, 韩剑发, 等, 2020. 塔里木克拉通内盆地走滑断层构造解析. 地质科学, 55(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202001001.htm
      杨平, 丁博钊, 范畅, 等, 2017. 四川盆地中部高石梯地区柱状下拉异常体分布特征及成因. 石油勘探与开发, 44(3): 370-379. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201703007.htm
      杨涛涛, 王彬, 吕福亮, 等, 2013. 相干技术在油气勘探中的应用. 地球物理学进展, 28(3): 1531-1540. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201303048.htm
      张璐, 何峰, 陈晓智, 等, 2020. 基于倾角导向滤波控制的似然属性方法在断裂识别中的定量表征. 岩性油气藏, 32(2): 108-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202002011.htm
      张瑞, 文晓涛, 李世凯, 等, 2017. 分频蚂蚁追踪在识别深层小断层中的应用. 地球物理学进展, 32(1): 350-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201701050.htm
      甄宗玉, 郑江峰, 孙佳林, 等, 2020. 基于最大似然属性的断层识别方法及应用. 地球物理学进展, 35(1): 374-378. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202001049.htm
      周铂文, 陈红汉, 云露, 等, 2022. 塔里木盆地顺北地区下古生界走滑断裂带断距分段差异与断层宽度关系. 地球科学, 47(2): 437-451. doi: 10.3799/dqkx.2021.073
      邹才能, 杜金虎, 徐春春, 等, 2014. 四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现. 石油勘探与开发, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htm
    • 加载中
    图(16)
    计量
    • 文章访问数:  680
    • HTML全文浏览量:  736
    • PDF下载量:  163
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-09-01
    • 刊出日期:  2023-06-25

    目录

      /

      返回文章
      返回