• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    神农架大九湖泥炭孔隙水中微生物的碳代谢特征

    田文 王红梅 向兴 王锐诚 黄咸雨

    田文, 王红梅, 向兴, 王锐诚, 黄咸雨, 2024. 神农架大九湖泥炭孔隙水中微生物的碳代谢特征. 地球科学, 49(9): 3241-3251. doi: 10.3799/dqkx.2023.112
    引用本文: 田文, 王红梅, 向兴, 王锐诚, 黄咸雨, 2024. 神农架大九湖泥炭孔隙水中微生物的碳代谢特征. 地球科学, 49(9): 3241-3251. doi: 10.3799/dqkx.2023.112
    Tian Wen, Wang Hongmei, Xiang Xing, Wang Ruicheng, Huang Xianyu, 2024. Characteristics of Microbial Carbon Utilization in Peat Pore Water in the Dajiuhu Peatland, Shennongjia. Earth Science, 49(9): 3241-3251. doi: 10.3799/dqkx.2023.112
    Citation: Tian Wen, Wang Hongmei, Xiang Xing, Wang Ruicheng, Huang Xianyu, 2024. Characteristics of Microbial Carbon Utilization in Peat Pore Water in the Dajiuhu Peatland, Shennongjia. Earth Science, 49(9): 3241-3251. doi: 10.3799/dqkx.2023.112

    神农架大九湖泥炭孔隙水中微生物的碳代谢特征

    doi: 10.3799/dqkx.2023.112
    基金项目: 

    国家自然科学基金项目 41572325

    流域关键带演化湖北省重点实验室开放基金项目 CEZ2022F02

    详细信息
      作者简介:

      田文(1989-),男,博士,讲师,主要从事湿地微生物生态研究. ORCID:0000-0002-1212-2414. E-mail:LioueTW@163.com

      通讯作者:

      王红梅,E-mail: hmwang@cug.edu.cn

    • 中图分类号: P66

    Characteristics of Microbial Carbon Utilization in Peat Pore Water in the Dajiuhu Peatland, Shennongjia

    • 摘要: 为研究水位波动下泥炭地微生物碳代谢特征,利用Biolog-Eco微平板技术对神农架大九湖不同水位下泥炭孔隙水中微生物的碳代谢图谱进行测定.结果表明,不同水位下微生物的碳代谢活性和多样性差异显著,均表现为中水位 > 低水位 > 高水位.酯类(丙酮酸甲酯、吐温40、吐温80、D-半乳糖酸γ内酯),氨基酸(L-精氨酸、L-天冬酰胺酸、L-苯基丙氨酸、L-丝氨酸和甘氨酰-L-谷氨酸),胺类(苯乙基胺、腐胺和N-乙酰基-D-葡萄胺)是引起微生物碳代谢差异的主要贡献者.冗余度分析显示,电导率(F=3.2,P=0.018)和氧化还原电位(F=2.6,P=0.044)显著影响微生物的碳代谢,其变化与水位波动密切相关.水位波动通过改变泥炭孔隙水中微生物的碳代谢功能进而影响泥炭地碳循环.

       

    • 图  1  研究区地理位置和采样点分布

      Fig.  1.  Location and sampling sites of study area

      图  2  不同水位下泥炭孔隙水中微生物的碳代谢AWCD(a)和热图(b)

      H. 高水位;M. 中水位;L. 低水位

      Fig.  2.  AWCD (a) and the heatmap (b) of carbon utilization of microbial communities in peat pore water at different water table levels

      图  3  不同水位下泥炭孔隙水中微生物对6类碳源利用的AWCD

      缩写含义同图 2

      Fig.  3.  AWCD of six types carbon sources from microbial communities in peat pore water at different water table levels

      图  4  泥炭孔隙水中微生物的碳代谢主成分分析(a)和冗余度分析(b)

      ADONIS. 置换多元方差分析;ANOSIM. 相似性分析;MRPP. 多重响应排列程序分析;FRδ代表差异程度.实射线表示有显著性,虚射线代表无显著性.其余缩写同图 2

      Fig.  4.  Principle component of analysis (a) and redundancy analysis (b) of microbial carbon utilization from peat pore water

      图  5  水位与电导率(a)和氧化还原电位(b)拟合回归

      蓝色实线表示拟合曲线,灰色阴影代表95%的置信区,R2P值表示拟合效果.缩写同图 2

      Fig.  5.  The fitting regression models between electric conductivity (a), oxidation-reduction potential (b) and water table level

      表  1  不同水位下泥炭孔隙水理化性质

      Table  1.   Physiochemical properties of peat pore water with different water table levels

      pH 电导率(µS/cm) 溶解氧(mg/L) 氧化还原电位(mV) 水温(℃) 水位(cm)
      高水位 5.55±0.07c 20.37±2.27b 0.51±0.07c 123.0±12.2c 27.7±1.4a 2.7
      中水位 5.88±0.15b 41.38±6.08a 1.52±0.36b 192.4±5.4b 25.6±0.5a ‒2.6
      低水位 6.66 ±0.06a 16.26±3.32b 2.61±0.16a 221.7±7.5a 22.6±0.4b ‒8.1
      注:同一列不同小写字母表示各指标组间差异显著,相同小写字母表示各指标组间无显著差异(α=0.05).
      下载: 导出CSV

      表  2  不同水位下泥炭孔隙水中微生物的AWCD和碳代谢功能多样性

      Table  2.   AWCD and functional diversity of carbon metabolic activity from microbial communities in peat pore water with different water table levels

      AWCD Shannon多样性指数(H′) McIntosh多样性指数(U
      高水位 0.682±0.021b 3.02±0.04b 4.79±0.01b
      中水位 0.906±0.058a 3.28±0.07a 5.61±0.19a
      低水位 0.702±0.051b 3.08±0.05b 5.08±0.24b
      注:同一列不同小写字母表示各指标在组间差异显著,相同小写字母表示各指标组间无显著差异(α=0.05).
      下载: 导出CSV

      表  3  不同水位下泥炭孔隙水中微生物的碳源利用比较

      Table  3.   Comparison of microbial carbon utilization in peat pore water at different water table levels

      糖类 氨基酸类 胺类 酯类 羧酸类 醇类
      高水位 0.517±0.075Cb 0.804±0.031Bb 0.623± 0.147BCa 1.123±0.038Aa 0.566±0.084BCb 0.630±0.093BCa
      中水位 0.831±0.113BCa 1.153±0.123Aa 0.931±0.179ABa 1.198±0.048Aa 0.732±0.025BCa 0.584±0.070Ca
      低水位 0.293±0.131Bb 0.868±0.166Aab 0.885±0.152Aa 0.998±0.050Ab 0.666±0.070ABab 0.779±0.216Aa
      注:同一行不同大写字母表示各碳源利用率差异显著(α=0.05),相同大写字母表示各碳源利用率无显著差异;同一列不同小写字母表示各碳源利用率组间差异显著,相同小写字母表示各碳源利用率组间无显著差异(α=0.05).
      下载: 导出CSV

      表  4  31种碳源的主成分载荷因子

      Table  4.   Loading factor of principle components from 31 carbon sources

      碳源化学类别 底物 化学式 PC1 PC2
      糖类 D-木糖 C5H10O5 ‒0.247 0.276
      α-D-乳糖 C12H24O12 -0.716 ‒0.280
      ß-甲基D-葡萄糖苷 C7H14O6 0.244 0.499
      葡萄糖-1-磷酸盐 C6H13O9P -0.928 0.097
      α-环状糊精 C36H60O30 ‒0.381 0.113
      肝糖 C24H42O21 0.132 ‒0.182
      D-纤维二糖 C12H22O11 -0.523 0.690
      氨基酸类 L-精氨酸 C6H14N4O2 ‒0.057 -0.865
      L-天冬酰胺酸 C4H8N2O3 0.734 0.175
      L-苯基丙氨酸 C9H11NO2 0.327 -0.774
      L-丝氨酸 C3H7NO3 ‒0.116 0.554
      L-苏氨酸 C4H9NO3 ‒0.315 0.021
      甘氨酰-L-谷氨酸 C7H12N2O5 -0.485 ‒0.114
      酯类 丙酮酸甲酯 C4H6O3 0.670 0.586
      吐温40 -- 0.935 0.048
      吐温80 -- 0.852 ‒0.226
      D-半乳糖酸γ内酯 C6H10O6 -0.747 0.132
      醇类 i-赤藻糖醇 C4H10O4 ‒0.247 0.361
      D-甘露醇 C6H14O6 0.828 0.199
      D, L-α-甘油 C3H8O3 0.426 0.239
      胺类 苯乙基胺 C8H11N 0.024 -0.938
      腐胺 C4H12N2 0.025 -0.433
      N-乙酰基-D-葡萄胺 C8H15NO6 0.382 0.865
      羧酸类 D-半乳糖醛酸 C6H10O7 0.077 0.850
      D-氨基葡萄糖酸 C6H13NO6 ‒0.159 0.081
      2-羟基苯甲酸 C7H6O2 ‒0.172 -0.413
      4-羟基苯甲酸 C7H6O3 0.541 ‒0.089
      γ-羟基丁酸 C4H8O3 0.089 ‒0.182
      衣康酸 C5H6O4 ‒0.347 ‒0.270
      α-丁酮酸 C4H6O3 ‒0.333 ‒0.016
      D-苹果酸 C4H6O5 0.401 ‒0.053
      注:粗体代表PC上载荷因子的绝对值大于0.4.
      下载: 导出CSV

      表  5  泥炭孔隙水理化性质对微生物碳代谢差异的贡献

      Table  5.   Contribution of physicochemical properties of peat pore water to variances in microbial carbon metabolism

      变异解释量(%) F P
      电导率 31.2 3.2 0.018*
      氧化还原电位 20.6 2.6 0.044*
      溶解氧 9.0 1.1 0.452
      水温 10.5 1.5 0.398
      pH 7.0 1.0 0.485
      水位 9.9 1.7 0.398
      注:F值表示差异程度;P值表示差异性;*表示P < 0.05.
      下载: 导出CSV
    • Barel, J. M., Moulia, V., Hamard, S., et al., 2021. Come Rain, Come Shine: Peatland Carbon Dynamics Shift under Extreme Precipitation. Frontiers in Environmental Science, 9: 659953. https://doi.org/10.3389/fenvs.2021.659953
      Benoit, J. M., Shull, D. H., Harvey, R. M., et al., 2009. Effect of Bioirrigation on Sediment-Water Exchange of Methylmercury in Boston Harbor, Massachusetts. Environmental Science & Technology, 43(10): 3669-3674. https://doi.org/10.1021/es803552q
      Chen, H., Wu, N., Wang, Y. F., et al., 2021. A Historical Overview about Basic Issues and Studies of Mires. Science in China (Series D), 51(1): 15-26 (in Chinese with English abstract).
      Chen, Z., Li, Y. Z., Peng, Y. Y., et al., 2022. Feasibility of Sewage Sludge and Food Waste Aerobic Co-Composting: Physicochemical Properties, Microbial Community Structures, and Contradiction between Microbial Metabolic Activity and Safety Risks. The Science of the Total Environment, 825: 154047. https://doi.org/10.1016/j.scitotenv.2022.154047
      Corzo, A., Jiménez-Arias, J. L., Torres, E., et al., 2018. Biogeochemical Changes at the Sediment–Water Interface during Redox Transitions in an Acidic Reservoir: Exchange of Protons, Acidity and Electron Donors and Acceptors. Biogeochemistry, 139(3): 241-260. https://doi.org/10.1007/s10533-018-0465-7
      Fenner, N., Freeman, C., 2011. Drought-Induced Carbon Loss in Peatlands. Nature Geoscience, 4(12): 895-900. https://doi.org/10.1038/ngeo1323
      Freeman, C., Ostle, N., Kang, H., 2001. An Enzymic 'Latch' on a Global Carbon Store. Nature, 409: 149. https://doi.org/10.1038/35051650
      Garland, J. L., 1996. Analytical Approaches to the Characterization of Samples of Microbial Communities Using Patterns of Potential C Source Utilization. Soil Biology and Biochemistry, 28(2): 213-221. https://doi.org/10.1016/0038-0717(95)00112-3
      Haapalehto, T., Kotiaho, J. S., Matilainen, R., et al., 2014. The Effects of Long-Term Drainage and Subsequent Restoration on Water Table Level and Pore Water Chemistry in Boreal Peatlands. Journal of Hydrology, 519: 1493-1505. https://doi.org/10.1016/j.jhydrol.2014.09.013
      Hribljan, J. A., Kane, E. S., Pypker, T. G., et al., 2014. The Effect of Long-Term Water Table Manipulations on Dissolved Organic Carbon Dynamics in a Poor Fen Peatland. Journal of Geophysical Research: Biogeosciences, 119(4): 577-595. https://doi.org/10.1002/2013jg002527
      Huang, X. Y., Zhang, Z. Q., Wang, H. M., et al., 2017. Overview on Critical Zone Observatory at Dajiuhu Peatland, Shennongjia. Earth Science, 42(6): 1026-1038 (in Chinese with English abstract).
      Järveoja, J., Peichl, M., Maddison, M., et al., 2016. Impact of Water Table Level on Annual Carbon and Greenhouse Gas Balances of a Restored Peat Extraction Area. Biogeosciences, 13(9): 2637-2651. https://doi.org/10.5194/bg-13-2637-2016
      Kloss, S., Zehetner, F., Buecker, J., et al., 2015. Trace Element Biogeochemistry in the Soil-Water-Plant System of a Temperate Agricultural Soil Amended with Different Biochars. Environmental Science and Pollution Research, 22(6): 4513-4526. https://doi.org/10.1007/s11356-014-3685-y
      Kwon, M. J., Haraguchi, A., Kang, H., 2013. Long-Term Water Regime Differentiates Changes in Decomposition and Microbial Properties in Tropical Peat Soils Exposed to the Short-Term Drought. Soil Biology and Biochemistry, 60: 33-44. https://doi.org/10.1016/j.soilbio.2013.01.023
      Liao, H. H., Yu, K., Duan, Y. H., et al., 2019. Profiling Microbial Communities in a Watershed Undergoing Intensive Anthropogenic Activities. The Science of the Total Environment, 647: 1137-1147. https://doi.org/10.1016/j.scitotenv.2018.08.103
      Limpens, J., Berendse, F., Blodau, C., et al., 2008. Peatlands and the Carbon Cycle: From Local Processes to Global Implications-A Synthesis. Biogeosciences, 5(5): 1475-1491. https://doi.org/10.5194/bg-5-1475-2008
      Liu, H. M., An, K. R., Wang, H., et al., 2020. Effects of Fertilization Regimes on the Metabolic Diversity of Microbial Carbon Sources in a Maize Field of Fluvoaquic Soil in North China. Journal of Agro-Environment Science, 39(10): 2336-2344 (in Chinese with English abstract).
      Luo, T., Lun, Z. J., Gu, Y. S., et al., 2015. Plant Community Survey and Ecological Protection of Dajiuhu Wetlands in Shennongjia Area. Wetland Science, 13(2): 153-160 (in Chinese with English abstract).
      Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., et al., 2019. Response of Microbial Communities to Biochar-Amended Soils: a Critical Review. Biochar, 1(1): 3-22. https://doi.org/10.1007/s42773-019-00009-2
      Saunois, M., Stavert, A. R., Poulter, B., et al., 2020. The Global Methane Budget 2000–2017. Earth System Science Data, 12(3): 1561-1623. https://doi.org/10.5194/essd-12-1561-2020
      Si, G. H., Yuan, J. F., Xu, X. Y., et al., 2018. Effects of an Integrated Rice-Crayfish Farming System on Soil Organic Carbon, Enzyme Activity, and Microbial Diversity in Waterlogged Paddy Soil. Acta Ecologica Sinica, 38(1): 29-35. https://doi.org/10.1016/j.chnaes.2018.01.005
      Song, X. C., Wang, H. L., Qin, W. D., et al., 2019. Effects of Stand Type of Artificial Forests on Soil Microbial Functional Diversity. Chinese Journal of Applied Ecology, 30(3): 841-848 (in Chinese with English abstract).
      Tian, W., Wang, H. M., Xiang, X., et al., 2019. Structural Variations of Bacterial Community Driven by Sphagnum Microhabitat Differentiation in a Subalpine Peatland. Frontiers in Microbiology, 10: 1661-1671. https://doi.org/10.3389/fmicb.2019.01661
      Tian, W., Xiang, X., Wang, H. M., 2021. Differential Impacts of Water Table and Temperature on Bacterial Communities in Pore Water from a Subalpine Peatland, Central China. Frontiers in Microbiology, 12: 649981. https://doi.org/10.3389/fmicb.2021.649981
      Treat, C. C., Kleinen, T., Broothaerts, N., et al., 2019. Widespread Global Peatland Establishment and Persistence over the last 130, 000 Y. Proceedings of the National Academy of Sciences of the United States of America, 116(11): 4822-4827. https://doi.org/10.1073/pnas.1813305116
      Ulanowski, T. A., Branfireun, B. A., 2013. Small-Scale Variability in Peatland Pore-Water Biogeochemistry, Hudson Bay Lowland, Canada. The Science of the Total Environment, 454-455: 211-218. https://doi.org/10.1016/j.scitotenv.2013.02.087
      Urbanová, Z., Bárta, J., 2016. Effects of Long-Term Drainage on Microbial Community Composition Vary between Peatland Types. Soil Biology and Biochemistry, 92: 16-26. https://doi.org/10.1016/j.soilbio.2015.09.017
      Wang, D. X., Zhang, Y. M., Wang, R. C., et al., 2018. Characteristics of Dissolved Organic Matter in Pore Water from the Dajiuhu Peatland, Central China. Resources and Environment in the Yangtze Basin, 27(11): 2568-2577 (in Chinese with English abstract).
      Wang, R. C., Wang, H. M., Xi, Z. Q., et al., 2022. Hydrology Driven Vertical Distribution of Prokaryotes and Methane Functional Groups in a Subtropical Peatland. Journal of Hydrology, 608: 127592. https://doi.org/10.1016/j.jhydrol.2022.127592
      Wang, R. C., Wang, H. M., Xiang, X., et al., 2018. Temporal and Spatial Variations of Microbial Carbon Utilization in Water Bodies from the Dajiuhu Peatland, Central China. Journal of Earth Science, 29(4): 969-976. https://doi.org/10.1007/s12583-017-0818-5
      Wang, X., He, S. W., Pan, J. Z., et al., 2021. Effects of Aquatic Plant Restoration on Water Quality and Microbial Functional Diversity of Wanshan Lake. Journal of Ecology and Rural Environment, 37(10): 1352-1360 (in Chinese with English abstract).
      Xu, J. R., Morris, P. J., Liu, J. G., et al., 2018. PEATMAP: Refining Estimates of Global Peatland Distribution Based on a Meta-Analysis. CATENA, 160: 134-140. https://doi.org/10.1016/j.catena.2017.09.010
      Xue, D., Chen, H., Zhan, W., et al., 2021. How do Water Table Drawdown, Duration of Drainage, and Warming Influence Greenhouse Gas Emissions from Drained Peatlands of the Zoige Plateau? Land Degradation & Development, 32(11): 3351-3364. https://doi.org/10.1002/ldr.4013
      Yuan, M. M., Guo, X., Wu, L. W., et al., 2021. Climate Warming Enhances Microbial Network Complexity and Stability. Nature Climate Change, 11: 343–348. https://doi.org/10.1038/s41558-021-00989-9
      Yun, Y., Cheng, X. Y., Wang, W. Q., et al., 2018. Seasonal Variation of Bacterial Community and Their Functional Diversity in Drip Water from a Karst Cave. Chinese Science Bulletin, 63(36): 3932-3944 (in Chinese). doi: 10.1360/N972018-00627
      Zhang, W. X., Furtado, K., Wu, P. L., et al., 2021. Increasing Precipitation Variability on Daily-to-Multiyear Time Scales in a Warmer World. Science Advances, 7(31): eabf8021. https://doi.org/10.1126/sciadv.abf8021
      Zhang, Y. M., Naafs, B. D. A., Huang, X. Y., et al., 2022. Variations in Wetland Hydrology Drive Rapid Changes in the Microbial Community, Carbon Metabolic Activity, and Greenhouse Gas Fluxes. Geochimica et Cosmochimica Acta, 317: 269-285. https://doi.org/10.1016/j.gca.2021.11.014
      Zhang, Z. Q., Zhang, Y. M., Huang, X. Y., et al., 2021. Seasonal Variations and Influencing Factors of Dissolved Organic Carbon in Pore Water from the Dajiuhu Peatland in Shennongjia. Bulletin of Geological Science and Technology, 40(2): 147-155 (in Chinese with English abstract).
      Zhong, Q. P., Chen, H., Liu, L. F., et al., 2017. Water Table Drawdown Shapes the Depth-Dependent Variations in Prokaryotic Diversity and Structure in Zoige Peatlands. FEMS Microbiology Ecology, 93(6): fix049. https://doi.org/10.1093/femsec/fix049
      Zhou, G. X., Qiu, X. W., Chen, L., et al., 2019. Succession of Organics Metabolic Function of Bacterial Community in Response to Addition of Earthworm Casts and Zeolite in Maize Straw Composting. Bioresource Technology, 280: 229-238. https://doi.org/10.1016/j.biortech.2019.02.015
      陈槐, 吴宁, 王艳芬, 等, 2021. 泥炭沼泽湿地研究的若干基本问题与研究简史. 中国科学(D辑), 51(1): 15-26.
      黄咸雨, 张志麒, 王红梅, 等, 2017. 神农架大九湖泥炭湿地关键带监测进展. 地球科学, 42(6): 1026-1038. doi: 10.3799/dqkx.2017.081
      刘红梅, 安克锐, 王慧, 等, 2020. 不同施肥措施对华北潮土区玉米田土壤微生物碳源代谢多样性的影响. 农业环境科学学报, 39(10): 2336-2344.
      罗涛, 伦子健, 顾延生, 等, 2015. 神农架大九湖湿地植物群落调查与生态保护研究. 湿地科学, 13(2): 153-160.
      宋贤冲, 王会利, 秦文弟, 等, 2019. 退化人工林不同恢复类型对土壤微生物群落功能多样性的影响. 应用生态学报, 30(3): 841-848.
      王东香, 张一鸣, 王锐诚, 等, 2018. 神农架大九湖泥炭地孔隙水溶解有机碳特征及其影响因素. 长江流域资源与环境, 27(11): 2568-2577.
      汪欣, 何尚卫, 潘继征, 等, 2021. 水生植物恢复对宛山荡水质及水体微生物代谢功能多样性的影响. 生态与农村环境学报, 37(10): 1352-1360.
      云媛, 程晓钰, 王纬琦, 等, 2018. 喀斯特洞穴滴水细菌群落组成及其代谢功能的季节性变化. 科学通报, 63(36): 3932-3944.
      张志麒, 张一鸣, 黄咸雨, 等, 2021. 神农架大九湖泥炭地溶解有机碳季节性变化及其影响因素. 地质科技通报, 40(2): 147-155.
    • 加载中
    图(5) / 表(5)
    计量
    • 文章访问数:  257
    • HTML全文浏览量:  87
    • PDF下载量:  23
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-02-28
    • 网络出版日期:  2024-10-16
    • 刊出日期:  2024-09-25

    目录

      /

      返回文章
      返回