• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华南埃迪卡拉纪晚期深水相氮循环过程重建

    叶凯云 赵坤 童霞 李松倬 郎咸国

    叶凯云, 赵坤, 童霞, 李松倬, 郎咸国, 2024. 华南埃迪卡拉纪晚期深水相氮循环过程重建. 地球科学, 49(9): 3212-3227. doi: 10.3799/dqkx.2023.116
    引用本文: 叶凯云, 赵坤, 童霞, 李松倬, 郎咸国, 2024. 华南埃迪卡拉纪晚期深水相氮循环过程重建. 地球科学, 49(9): 3212-3227. doi: 10.3799/dqkx.2023.116
    Ye Kaiyun, Zhao Kun, Tong Xia, Li Songzhuo, Lang Xianguo, 2024. Reconstruction of Deep-Water Nitrogen Cycle during the Late Ediacaran in South China. Earth Science, 49(9): 3212-3227. doi: 10.3799/dqkx.2023.116
    Citation: Ye Kaiyun, Zhao Kun, Tong Xia, Li Songzhuo, Lang Xianguo, 2024. Reconstruction of Deep-Water Nitrogen Cycle during the Late Ediacaran in South China. Earth Science, 49(9): 3212-3227. doi: 10.3799/dqkx.2023.116

    华南埃迪卡拉纪晚期深水相氮循环过程重建

    doi: 10.3799/dqkx.2023.116
    基金项目: 

    国家重点研发计划项目 2021YFA0718100

    详细信息
      作者简介:

      叶凯云(1997-),女,硕士研究生,主要从事埃迪卡拉纪古海洋环境相关研究.ORCID:0000-0002-0144-2375. E-mail:yekaiyun@stu.cdut.edu.cn

      通讯作者:

      郎咸国,E-mail: langxianguo19@cdut.edu.cn

    • 中图分类号: P597

    Reconstruction of Deep-Water Nitrogen Cycle during the Late Ediacaran in South China

    • 摘要: 重建地质历史时期的古海洋氮循环过程有助于了解当时的海洋氧化还原状态,而目前埃迪卡拉纪晚期的海洋氮循环研究程度较低,因此对桂北泗里口和黔东南上地坪剖面开展了详细的全岩氮(δ15N)和有机碳同位素(δ13Corg)研究.结果显示,泗里口和上地坪剖面的δ15N平均值分别为(1.6±2.0)‰和(3.5±1.1)‰,总体上均表现为由老到新逐渐降低,两个剖面的δ13Corg平均值分别为(-30.0±1.4)‰和(-30.6±1.4)‰.较高的δ15N值表明该时期为硝化‒反硝化作用相耦合的好氧氮循环,海洋中存在一个稳定的硝酸盐库.研究剖面δ15N值由老到新均表现为逐渐降低,可解释为底层缺氧水体的扩张,反硝化作用和厌氧氨氧化作用消耗了表层水体中大量的NO3,刺激了固氮作用.因此,埃迪卡拉纪末期深部缺氧水体的扩张可能加剧了~542 Ma埃迪卡拉生物群的灭绝.

       

    • 图  1  扬子地块埃迪卡拉纪‒寒武纪转折期古地理图(据Fu et al., 2022修改)

      Fig.  1.  Paleogeographic map of the Yangtze Block during the Ediacaran-Cambrian transition period (modified from Fu et al., 2022)

      图  2  野外露头与薄片照片

      a.泗里口剖面硅质岩野外照片;b.上地坪剖面硅质岩野外照片;c.泗里口剖面硅质岩镜下照片(4×10,单偏光),红色箭头指示的是有机质,深灰色,不规则;d.上地坪剖面硅质岩镜下照片(4×4,正交偏光)

      Fig.  2.  Field photographs and thin section photomicrographs of samples

      图  3  泗里口剖面有机碳、全岩氮同位素和总碳、总氮含量及C/N比值

      红点表示由于总氮含量过低,δ15N值仅供参考

      Fig.  3.  Profiles of δ13Corg, δ15N, TOC, TN and C/N ratios for the Silikou section

      图  4  上地坪剖面有机碳、全岩氮同位素和总碳、总氮含量及C/N比值

      红点表示由于总氮含量过低,δ15N值仅供参考

      Fig.  4.  Profiles of δ13Corg, δ15N, TOC, TN and C/N ratios for the Shangdiping section

      图  5  有机碳、全岩氮同位素、TNTOC和C/N比值的相关性

      Fig.  5.  Crossplots showing the relationship between δ13Corg, δ15N, TN, TOC and C/N ratios

      图  6  桂北泗里口剖面老堡组FeT/Al值(a)和湘西龙鼻嘴剖面E-C过渡时期铁组分数据(b)

      图a数据来自常华进等(2010b);图b数据来自Wang et al.(2012)

      Fig.  6.  The FeT/Al value of Laobao Formation in Silikou section (a) and shows the Fe speciation of Longbizui section in western Hunan during the E-C transition period (b)

      图  7  泗里口剖面老堡组Th/U、V/Sc和V/(V+Ni)沿剖面变化情况

      图a~c中虚线分别代表横坐标数值2、7.9和0.6,数据来自Chang et al.(2012)

      Fig.  7.  Stratigraphic distributions of Th/U, V/Sc, and V/(V+Ni) of the Laobao in Silikou section

      图  8  埃迪卡拉纪晚期南华盆地深水相区海洋氧化还原结构和氮循环示意

      在Ⅰ段沉积时期,海洋较为氧化,存在一个稳定的硝酸盐库;在Ⅱ段沉积时期,缺氧水体向上扩张,海洋氮循环以固氮作用为主;图据Chen et al.(2019)修改

      Fig.  8.  Schematic diagram of marine redox structure and nitrogen cycle in deep water facies during Late Ediacaran period on the Nanhua basin

      表  1  上地坪剖面和泗里口剖面有机碳、全岩氮同位素及TOCTN含量、C/N比值数据

      Table  1.   Data of δ13Corg, δ15N, TOC, TN and C/N ratios for the Shangdiping and Silikou sections

      样品号 厚度(m) δ15N(‰) δ13Corg(‰) TOC(%) TN(%) C/N
      SDP1 2.0 2.1 ‒27.0 0.13 0.065 2.27
      SDP2 2.3 2.2 ‒30.1 0.13 0.029 5.03
      SDP3 2.6 2.4 ‒27.8 0.09 0.039 2.66
      SDP4 8.0 ‒28.6 0.04
      SDP5 9.0 (2.8) ‒29.8 0.12 0.004 36.93
      SDP6 10.0 (1.0) ‒30.7 0.26 0.006 47.75
      SDP7 13.0 (2.2) ‒29.6 0.05 0.004 14.57
      SDP8 18.0 (5.0) ‒30.1 0.83 0.008 114.64
      SDP9 22.0 ‒28.0 0.09
      SDP10 22.5 (2.7) ‒32.6 0.58 0.002 292.20
      SDP11 23.5 (0.5) ‒30.7 0.18 0.002 97.86
      SDP12 24.5 ‒32.1 0.13
      SDP13 26.0 (5.7) ‒34.2 0.23 0.003 82.79
      SDP14 27.2 ‒31.5 0.17
      SDP15 27.7 ‒32.3 0.13
      SDP16 29.2 ‒28.5 0.06
      SDP17 31.2 ‒28.4 0.04
      SDP18 32.2 ‒30.2 0.06
      SDP19 35.2 ‒29.3 0.07
      SDP20 37.2 ‒29.4 0.08
      SDP21 38.2 ‒29.5 0.08
      SDP22 39.2 ‒23.3 0.35
      SDP23 40.7 ‒29.8 0.10
      SDP24 41.7 ‒31.3 0.08
      SDP25 42.7 ‒28.9 0.05
      SDP26 42.8 ‒32.7 0.16
      SDP27 43.8 ‒33.2 0.45
      SDP28 44.8 ‒32.7 0.66
      SDP29 45.8 (4.6) ‒32.9 0.38 0.002 236.94
      SDP30 46.8 ‒33.2 1.05
      SDP31 47.8 ‒31.5 0.15
      SDP32 48.8 ‒31.6 0.14
      SDP33 49.8 ‒32.1 0.37
      SDP34 51.8 ‒30.5 0.17
      SDP35 53.3 ‒31.6 0.30
      SDP36 55.3 ‒32.2 0.23
      SDP37 58.3 (3.1) ‒31.4 0.29 0.002 148.96
      SDP38 61.3 (4.0) ‒31.4 1.75 0.010 206.36
      SDP39 64.3 3.6 ‒32.4 0.81 0.016 59.80
      SDP40 67.3 (3.7) ‒31.6 0.54 0.007 90.96
      SDP41 70.3 (5.6) ‒32.0 0.37 0.005 85.02
      SDP42 73.3 (4.4) ‒32.7 0.59 0.005 132.80
      SDP43 76.3 (3.7) ‒31.9 0.39 0.009 53.09
      SDP44 79.3 (3.8) ‒31.1 0.35 0.011 38.79
      SDP45 82.3 4.6 ‒31.8 0.66 0.018 43.88
      SDP46 85.3 (4.6) ‒31.0 0.91 0.013 78.41
      SDP47 88.3 (5.2) ‒31.2 0.70 0.011 77.74
      SDP48 91.3 4.9 ‒29.8 0.69 0.019 41.64
      SDP49 93.3 (5.6) ‒30.4 0.79 0.007 133.46
      SDP50 94.3 (4.3) ‒31.4 0.97 0.015 73.54
      SDP51 95.3 5.3 ‒31.0 1.19 0.026 53.86
      SDP52 96.3 6.6 ‒30.2 1.65 0.025 77.78
      SDP53 97.3 5.3 ‒31.4 2.47 0.025 116.28
      SDP54 98.3 6.3 ‒31.4 1.26 0.018 82.45
      SDP55 99.8 (5.3) ‒32.0 1.41 0.014 118.65
      SDP56 100.8 4.9 ‒30.5 1.04 0.016 77.53
      SDP57 101.8 4.8 ‒30.5 0.66 0.017 46.04
      SDP58 102.8 4.3 ‒31.8 5.21 0.030 203.15
      SDP59 103.8 5.3 ‒30.6 1.13 0.023 57.26
      SDP60 104.8 (3.6) ‒31.5 0.85 0.012 80.33
      SDP61 105.8 3.8 ‒30.7 1.49 0.025 68.61
      SDP62 106.8 4.0 ‒30.8 1.44 0.045 37.31
      SDP63 107.8 (3.3) ‒30.8 1.08 0.013 97.43
      SDP64 108.8 3.3 ‒30.4 0.68 0.019 41.41
      SDP65 109.8 (2.9) ‒31.0 1.51 0.012 151.70
      SDP66 110.8 3.6 ‒30.4 1.00 0.017 67.94
      SDP67 112.8 4.0 ‒31.1 0.82 0.025 38.50
      SDP68 114.8 3.6 ‒30.9 1.34 0.020 78.20
      SDP69 116.8 (3.4) ‒31.0 0.63 0.014 54.16
      SDP70 117.8 3.4 ‒27.5 0.79 0.042 21.85
      SDP71 118.8 3.8 ‒30.2 1.78 0.046 45.58
      SDP72 119.8 3.5 ‒30.2 0.47 0.022 25.28
      SDP73 120.8 3.5 ‒29.8 0.44 0.021 24.27
      SDP74 121.8 (3.3) ‒30.6 1.28 0.014 107.04
      SDP75 122.8 ‒30.4 0.78
      SDP76 123.8 3.4 ‒30.9 0.92 0.020 52.90
      SDP77 125.3 3.5 ‒30.6 0.51 0.022 27.03
      SDP78 126.3 (3.4) ‒30.6 0.95 0.014 80.51
      SDP79 127.3 3.8 ‒30.0 0.83 0.024 40.87
      SDP80 128.3 4.1 ‒31.6 1.47 0.056 30.55
      SDP81 129.3 3.9 ‒31.5 0.75 0.030 29.65
      SDP82 130.3 3.5 ‒31.6 1.02 0.030 39.43
      SDP83 131.3 3.3 ‒30.4 0.63 0.020 36.96
      SDP84 132.3 3.2 ‒30.5 1.10 0.020 65.43
      SDP85 133.3 (3.3) ‒30.5 0.76 0.014 65.70
      SDP86 134.3 3.0 ‒30.6 1.12 0.024 54.69
      SDP87 135.3 3.4 ‒30.4 0.34 0.023 17.74
      SDP88 136.3 2.9 ‒30.3 0.75 0.023 38.32
      SDP89 137.3 (3.5) ‒29.7 0.16 0.014 13.82
      SDP90 138.3 3.2 ‒30.1 0.58 0.016 40.98
      SDP91 139.3 3.2 ‒31.1 0.78 0.018 50.46
      SDP92 140.3 3.5 ‒28.9 0.06 0.017 3.95
      SDP93 141.3 (2.3) ‒29.6 0.37 0.014 31.38
      SDP94 142.3 2.0 ‒31.2 0.86 0.018 55.80
      SDP95 143.3 2.4 ‒29.7 0.67 0.017 47.58
      SDP96 144.3 4.4 ‒29.6 0.77 0.018 50.62
      SDP97 145.3 2.0 ‒30.3 0.86 0.019 53.90
      SDP98 146.3 2.5 ‒30.6 0.72 0.077 10.91
      SDP99 147.3 2.4 ‒30.6 3.47 0.053 77.00
      SDP100 148.3 2.3 ‒30.3 1.18 0.032 43.56
      SDP101 149.3 2.0 ‒30.4 1.03 0.023 52.69
      SDP102 150.3 2.1 ‒30.1 3.38 0.049 80.90
      SDP103 151.3 2.6 ‒29.1 0.31 0.101 3.55
      SDP104 152.3 1.8 ‒30.7 2.19 0.110 23.28
      SDP105 153.3 2.4 ‒28.9 0.49 0.102 5.67
      SLK1 15.00 (3.9) ‒29.2 0.30 0.006 61.41
      SLK2 22.50 2.5 ‒25.9 1.65 0.016 118.32
      SLK3 26.25 8.2 ‒28.2 7.14 0.022 383.55
      SLK4 30.00 (3.5) ‒30.9 0.88 0.008 126.13
      SLK5 33.75 (4.2) ‒29.1 0.91 0.013 83.53
      SLK6 37.50 3.8 ‒30.1 2.73 0.018 197.50
      SLK7 41.25 (4.3) ‒29.8 0.51 0.012 48.69
      SLK8 45.00 4.1 ‒30.1 1.97 0.020 111.97
      SLK9 48.75 (3.3) ‒30.1 1.08 0.008 162.55
      SLK10 52.50 (7.0) ‒30.0 0.79 0.006 150.19
      SLK11 56.25 (2.8) ‒30.4 2.59 0.014 222.68
      SLK12 60.00 3.0 ‒30.5 3.21 0.017 223.11
      SLK13 63.75 2.7 ‒30.2 1.33 0.017 92.08
      SLK14 67.50 2.9 ‒30.5 2.22 0.019 139.57
      SLK15 71.25 3.0 ‒29.9 2.45 0.022 127.45
      SLK16 75.00 2.5 ‒30.3 3.96 0.018 254.76
      SLK17 78.75 (2.6) ‒29.8 1.23 0.010 139.02
      SLK18 82.50 1.4 ‒28.4 0.85 0.033 30.11
      SLK19 86.25 1.1 ‒28.8 0.18 0.044 4.88
      SLK20 90.00 0.6 ‒28.3 0.10 0.077 1.54
      SLK21 93.75 0.6 ‒28.2 0.09 0.053 1.91
      SLK22 97.50 ‒0.6 ‒28.3 0.11 0.032 4.00
      SLK23 101.25 (‒0.7) ‒28.9 0.06 0.010 7.05
      SLK24 105.00 ‒0.4 ‒29.3 0.32 0.022 16.52
      SLK25 108.75 ‒1.2 ‒29.9 0.36 0.043 9.80
      SLK26 112.50 ‒1.0 ‒29.1 0.07 0.034 2.33
      SLK27 116.25 ‒1.1 ‒29.5 0.20 0.054 4.39
      SLK28 120.00 ‒1.0 ‒28.9 0.10 0.032 3.62
      SLK29 122.38 1.3 ‒30.8 1.58 0.019 94.98
      SLK30 124.13 3.1 ‒31.5 4.07 0.036 132.85
      SLK31 131.88 (1.0) ‒31.4 2.16 0.012 203.64
      SLK32 133.63 (0.5) ‒31.3 1.48 0.010 179.60
      SLK33 136.38 1.8 ‒30.9 0.94 0.062 17.73
      SLK34 140.13 (0.8) ‒31.2 2.39 0.009 321.60
      SLK35 142.88 0.9 ‒31.2 12.50 0.084 173.30
      SLK36 145.63 (‒0.4) ‒30.8 1.51 0.014 125.61
      SLK37 148.38 1.4 ‒31.9 0.42 0.027 18.12
      SLK38 152.13 1.5 ‒32.3 1.11 0.019 67.73
      SLK39 155.88 1.8 ‒32.3 0.78 0.038 23.94
      SLK40 160.63 1.3 ‒32.9 2.93 0.020 172.49
      注:表中括号内的数值表示由于总氮含量过低,δ15N值仅供参考.
      下载: 导出CSV
    • Ader, M., Thomazo, C., Sansjofre, P., et al., 2016. Interpretation of the Nitrogen Isotopic Composition of Precambrian Sedimentary Rocks: Assumptions and Perspectives. Chemical Geology, 429: 93-110. https://doi.org/10.1016/j.chemgeo.2016.02.010
      Algeo, T. J., Meyers, P. A., Robinson, R. S., et al., 2014. Icehouse⁃Greenhouse Variations in Marine Denitrification. Biogeosciences, 11(4): 1273-1295. https://doi.org/10.5194/bg⁃11⁃1273⁃2014
      Bhattacharya, S., Dutta, S., 2015. Neoproterozoic⁃Early Cambrian Biota and Ancient Niche: A Synthesis from Molecular Markers and Palynomorphs from Bikaner⁃Nagaur Basin, Western India. Precambrian Research, 266: 361-374. https://doi.org/10.1016/j.precamres.2015.05.029
      Brocks, J. J., Jarrett, A. J. M., Sirantoine, E., et al., 2017. The Rise of Algae in Cryogenian Oceans and the Emergence of Animals. Nature, 548(7669): 578-581. https://doi.org/10.1038/nature23457
      Canfield, D. E., Poulton, S. W., Knoll, A. H., et al., 2008. Ferruginous Conditions Dominated Later Neoproterozoic Deep⁃Water Chemistry. Science, 321(5891): 949-952. https://doi.org/10.1126/science.1154499
      Chang, H. J., Chu, X. L., Feng, L. J., et al., 2010a. The Major and REE Geochemistry of the Silikou Chert in Northern Guangxi Province. Acta Sedimentologica Sinica, 28(6): 1098-1107 (in Chinese with English abstract).
      Chang, H. J., Chu, X. L., Feng, L. J., et al., 2012. Progressive Oxidation of Anoxic and Ferruginous Deep⁃Water during Deposition of the Terminal Ediacaran Laobao Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 321-322: 80-87.https://doi.org/10.1016/j.palaeo.2012.01.019
      Chang, H. J., Chu, X., Feng, L. J., et al., 2010b. Iron Speciation in Cherts from the Laobao Formation, South China: Implications for Anoxic and Ferruginous Deep⁃Water Conditions. Chinese Science Bulletin, 55(20): 2010-2017 (in Chinese). doi: 10.1360/csb2010-55-20-2010
      Charvet, J., 2013. The Neoproterozoic⁃Early Paleozoic Tectonic Evolution of the South China Block: An Overview. Journal of Asian Earth Sciences, 74: 198-209. https://doi.org/10.1016/j.jseaes.2013.02.015
      Chen, Y., Diamond, C. W., Stüeken, E. E., et al., 2019. Coupled Evolution of Nitrogen Cycling and Redoxcline Dynamics on the Yangtze Block across the Ediacaran⁃Cambrian Transition. Geochimica et Cosmochimica Acta, 257: 243-265. https://doi.org/10.1016/j.gca.2019.05.017
      Cremonese, L., Shields⁃Zhou, G., Struck, U., et al., 2013. Marine Biogeochemical Cycling during the Early Cambrian Constrained by a Nitrogen and Organic Carbon Isotope Study of the Xiaotan Section, South China. Precambrian Research, 225: 148-165. https://doi.org/10.1016/j.precamres.2011.12.004
      Dong, L., Shen, B., Lee, C. A., et al., 2015. Germanium/Silicon of the Ediacaran⁃Cambrian Laobao Cherts: Implications for the Bedded Chert Formation and Paleoenvironment Interpretations. Geochemistry, Geophysics, Geosystems, 16(3): 751-763. https://doi.org/10.1002/2014gc005595
      Du, Y., Song, H. Y., Grasby, S. E., et al., 2023. Recovery from Persistent Nutrient⁃N Limitation Following the Permian⁃Triassic Mass Extinction. Earth and Planetary Science Letters, 602: 117944. https://doi.org/10.1016/j.epsl.2022.117944
      Fu, Y., Wang, F. L., Guo, C., et al., 2022. Re⁃Os Geochronology of the Liuchapo Formation across the Ediacaran⁃Cambrian Boundary of the Yangtze Block (South China). Journal of Earth Science, 33(1): 25-35. https://doi.org/10.1007/s12583⁃021⁃1473⁃4
      Gao, P., Li, S. J., Lash, G. G., et al., 2020. Silicification and Si Cycling in a Silica⁃Rich Ocean during the Ediacaran⁃Cambrian Transition. Chemical Geology, 552: 119787. https://doi.org/10.1016/j.chemgeo.2020.119787
      Grotzinger, J. P., Fike, D. A., Fischer, W. W., 2011. Enigmatic Origin of the Largest⁃Known Carbon Isotope Excursion in Earth's History. Nature Geoscience, 4(5): 285-292. https://doi.org/10.1038/ngeo1138
      Guo, Q. J., Shields, G. A., Liu, C. Q., et al., 2007. Trace Element Chemostratigraphy of Two Ediacaran⁃Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 194-216. https://doi.org/10.1016/j.palaeo.2007.03.016
      Hu, J., 2008. The Cherty Microbolite in the Deeper Water Facies during the Precambrian⁃Cambrian Transitional Period in Northeast Guangxi Province, China. Acta Micropalaeontologica Sinica, 25(3): 291-305 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0674.2008.03.008
      Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (Ca. 635-551 Ma) in South China. Gondwana Research, 19(4): 831-849. https://doi.org/10.1016/j.gr.2011.01.006
      Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80-83. https://doi.org/10.1126/science.1182369
      Mingram, B., Hoth, P., Lüders, V., et al., 2005. The Significance of Fixed Ammonium in Palaeozoic Sediments for the Generation of Nitrogen⁃Rich Natural Gases in the North German Basin. International Journal of Earth Sciences, 94(5): 1010-1022. https://doi.org/10.1007/s00531⁃005⁃0015⁃0
      Narbonne, G. M., 2005. The Ediacara Biota: Neoproterozoic Origin of Animals and Their Ecosystems. Annual Review of Earth and Planetary Sciences, 33(1): 421-442. https://doi.org/10.1146/annurev.earth.33.092203.122519
      Och, L. M., Shields⁃Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth⁃Science Reviews, 110(1-4): 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004
      Sigman, D. M., Casciotti, K. L., 2009. Nitrogen Isotopes in the Ocean. In: Steele, J. H., ed., Encyclopedia of Ocean Sciences. Elsevier/Academic Press, London, 1884-1894. https://doi.org/10.1006/rwos.2001.0172
      Song, H. Y., An, Z. H., Ye, Q., et al., 2023. Mid⁃Latitudinal Habitable Environment for Marine Eukaryotes during the Waning Stage of the Marinoan Snowball Glaciation. Nature Communications, 14(1): 1564. https://doi.org/10.1038/s41467⁃023⁃37172⁃x
      Sperling, E. A., Wolock, C. J., Morgan, A. S., et al., 2015. Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation. Nature, 523(7561): 451-454. https://doi.org/10.1038/nature14589
      Stüeken, E. E., Kipp, M. A., Koehler, M. C., et al., 2016. The Evolution of Earth's Biogeochemical Nitrogen Cycle. Earth⁃Science Reviews, 160: 220-239. https://doi.org/10.1016/j.earscirev.2016.07.007
      Tian, L., Song, H. Y., Ye, Q., et al., 2020. Recurrent Anoxia Recorded in Shallow Marine Facies at Zhangcunping (Western Hubei, China) Throughout the Ediacaran to Earliest Cambrian. Precambrian Research, 340: 105617. https://doi.org/10.1016/j.precamres.2020.105617
      Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
      Wang, D., Ling, H. F., Struck, U., et al., 2018a. Coupling of Ocean Redox and Animal Evolution during the Ediacaran⁃Cambrian Transition. Nature Communications, 9: 2575. https://doi.org/10.1038/s41467⁃018⁃04980⁃5
      Wang, D., Struck, U., Ling, H. F., et al., 2015. Marine Redox Variations and Nitrogen Cycle of the Early Cambrian Southern Margin of the Yangtze Platform, South China: Evidence from Nitrogen and Organic Carbon Isotopes. Precambrian Research, 267: 209-226. https://doi.org/10.1016/j.precamres.2015.06.009
      Wang, J. G., Chen, D. Z., Yan, D. T., et al., 2012. Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran⁃Cambrian Transition and Implications for Bioradiation. Chemical Geology, 306-307: 129-138. https://doi.org/10.1016/j.chemgeo.2012.03.005
      Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break⁃up. Precambrian Research, 122(1-4): 141-158. https://doi.org/10.1016/s0301⁃9268(02)00209⁃7
      Wang, X. Q., Jiang, G. Q., Shi, X. Y., et al., 2018b. Nitrogen Isotope Constraints on the Early Ediacaran Ocean Redox Structure. Geochimica et Cosmochimica Acta, 240: 220-235. https://doi.org/10.1016/j.gca.2018.08.034
      Wang, X. Q., Shi, X. Y., Jiang, G. Q., et al., 2014. Organic Carbon Isotope Gradient and Ocean Stratification across the Late Ediacaran⁃Early Cambrian Yangtze Platform. Science in China (Series D), 44(6): 1142-1160 (in Chinese).
      Xue, J. Z., Wang, J. S., Li, B. X., et al., 2022. Origin and Early Evolution of Land Plants and the Effects on Earth's Environments. Earth Science, 47(10): 3648-3664 (in Chinese with English abstract).
      Zhang, F. F., Xiao, S. H., Kendall, B., et al., 2018. Extensive Marine Anoxia during the Terminal Ediacaran Period. Science Advances, 4(6): eaan8983. https://doi.org/10.1126/sciadv.aan8983
      Zhou, M. Z., Luo, T. Y., Liu, S. R., et al., 2013. SHRIMP Zircon Age for a K⁃Bentonite in the Top of the Laobao Formation at the Pingyin Section, Guizhou, South China. Science in China (Series D), 43(7): 1195-1206 (in Chinese).
      Zhu, M. Y., 2010. The Origin and Cambrian Explosion of Animals: Fossil Evidences from China. Acta Palaeontologica Sinica, 49(3): 269-287 (in Chinese with English abstract).
      Zhu, Y. Y., Sun, T. Y., Xing, T., et al., 2022. Reconstruction of Atmospheric Nitrogen Deposition and Nitrogen Source in Wuhan by the Nitrogen Contents and Isotopic Composition of Camphor Leaves. Earth Science, 47(3): 1136-1142 (in Chinese with English abstract).
      常华进, 储雪蕾, 冯连君, 等, 2010a. 桂北泗里口老堡组硅质岩的常量、稀土元素特征及成因指示. 沉积学报, 28(6): 1098-1107.
      常华进, 储雪蕾, 冯连君, 等, 2010b. 桂北老堡组硅岩中的铁组分: 指示缺氧含铁的盆地深水古环境. 科学通报, 55(20): 2010-2017.
      胡杰, 2008. 桂东北较深水相前寒武纪‒寒武纪之交的硅质微生物岩. 微体古生物学报, 25(3): 291-305. doi: 10.3969/j.issn.1000-0674.2008.03.008
      王新强, 史晓颖, Jiang, G. Q., 等, 2014. 华南埃迪卡拉纪‒寒武纪过渡期的有机碳同位素梯度和海洋分层. 中国科学(D辑), 44(6): 1142-1160.
      薛进庄, 王嘉树, 李炳鑫, 等, 2022. 陆地植物的起源、早期演化及地球环境效应. 地球科学, 47(10): 3648-3664. doi: 10.3799/dqkx.2022.332
      周明忠, 罗泰义, 刘世荣, 等, 2013. 贵州江口平引老堡组顶部的锆石SHRIMP年龄与对比意义. 中国科学(D辑), 43(7): 1195-1206.
      朱茂炎, 2010. 动物的起源和寒武纪大爆发: 来自中国的化石证据. 古生物学报, 49(3): 269-287.
      朱园园, 孙庭玉, 邢腾, 等, 2022. 利用樟树叶片氮含量和同位素组成初探武汉市大气氮沉降和氮源. 地球科学, 47(3): 1136-1142. doi: 10.3799/dqkx.2021.220
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  253
    • HTML全文浏览量:  123
    • PDF下载量:  48
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-02-07
    • 网络出版日期:  2024-10-16
    • 刊出日期:  2024-09-25

    目录

      /

      返回文章
      返回